# Uncertainty Quantification in the In Vivo Image-Based Estimation of Local Elastic Properties of Vascular Walls

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Imaging Analysis

#### 2.2. Evaluation of the Elastic Module from PCMRI

#### 2.3. Uncertainty Quantification

#### 2.4. In Silico Modeling

#### 2.5. Post-Processing

## 3. Results

## 4. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Mesh Sensitivity

**Figure A1.**Mesh sensitivity analyses of five meshes (3, 2, 1, 0.5, and 0.25 mm) conducted on relative area change (

**a**) and maximum flow rate (

**b**) measured at a specific model’s cross-section.

## References

- Gasparotti, E.; Vignali, E.; Mariani, M.; Berti, S.; Celi, S. Image-based modelling and numerical simulations of the Cardioband® procedure for mitral valve regurgitation repair. Comput. Methods Appl. Mech. Eng.
**2022**, 394, 114941. [Google Scholar] [CrossRef] - Wang, Q.; Kodali, S.; Primiano, C.; Sun, W. Simulations of transcatheter aortic valve implantation: Implications for aortic root rupture. Biomech. Model. Mechanobiol.
**2015**, 14, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhao, S.; Wu, W.; Samant, S.; Khan, B.; Kassab, G.S.; Watanabe, Y.; Murasato, Y.; Sharzehee, M.; Makadia, J.; Zolty, D.; et al. Patient-specific computational simulation of coronary artery bifurcation stenting. Sci. Rep.
**2021**, 11, 16486. [Google Scholar] [CrossRef] - Fanni, B.M.; Capellini, K.; Di Leonardo, M.; Clemente, A.; Cerone, E.; Berti, S.; Celi, S. Correlation between LAA Morphological Features and Computational Fluid Dynamics Analysis for Non-Valvular Atrial Fibrillation Patients. Appl. Sci.
**2020**, 10, 1448. [Google Scholar] [CrossRef] [Green Version] - Vignali, E.; di Bartolo, F.; Gasparotti, E.; Malacarne, A.; Concistré, G.; Chiaramonti, F.; Murzi, M.; Positano, V.; Landini, L.; Celi, S. Correlation between micro and macrostructural biaxial behavior of ascending thoracic aneurysm: A novel experimental technique. Med. Eng. Phys.
**2020**, 86, 78–85. [Google Scholar] [CrossRef] - Capellini, K.; Gasparotti, E.; Cella, U.; Costa, E.; Fanni, B.M.; Groth, C.; Porziani, S.; Biancolini, M.E.; Celi, S. A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data. Med. Eng. Phys.
**2021**, 91, 68–78. [Google Scholar] [CrossRef] - Boonyasirinant, T.; Rajiah, P.; Flamm, S.D. Abnormal aortic stiffness in patients with bicuspid aortic valve: Phenotypic variation determined by magnetic resonance imaging. Int. J. Cardiovasc. Imaging
**2019**, 35, 133–141. [Google Scholar] [CrossRef] [PubMed] - Zaccaria, A.; Danielli, F.; Gasparotti, E.; Fanni, B.M.; Celi, S.; Pennati, G.; Petrini, L. Left atrial appendage occlusion device: Development and validation of a finite element model. Med. Eng. Phys.
**2020**, 82, 104–118. [Google Scholar] [CrossRef] - Viceconti, M.; Pappalardo, F.; Rodriguez, B.; Horner, M.; Bischoff, J.; Musuamba Tshinanu, F. In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods
**2021**, 185, 120–127. [Google Scholar] [CrossRef] - Huberts, W.; Heinen, S.G.H.; Zonnebeld, N.; van den Heuvel, D.A.F.; de Vries, J.P.M.; Tordoir, J.H.M.; Hose, D.R.; Delhaas, T.; van de Vosse, F.N. What is needed to make cardiovascular models suitable for clinical decision support? A viewpoint paper. J. Comput. Sci.
**2018**, 24, 68–84. [Google Scholar] [CrossRef] - Celi, S.; Berti, S. Biomechanics and FE Modelling of Aneurysm: Review and Advances in Computational Models. In Aneurysm; InTech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Fleeter, C.M.; Geraci, G.; Schiavazzi, D.E.; Kahn, A.M.; Marsden, A.L. Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Comput. Methods Appl. Mech. Eng.
**2020**, 365, 113030. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rego, B.V.; Weiss, D.; Bersi, M.R.; Humphrey, J.D. Uncertainty quantification in subject-specific estimation of local vessel mechanical properties. Int. J. Numer. Methods Biomed. Eng.
**2021**, 37, e3535. [Google Scholar] [CrossRef] [PubMed] - Celi, S.; Vignali, E.; Capellini, K.; Gasparotti, E. On the Role and Effects of Uncertainties in Cardiovascular in silico Analyses. Front. Med. Technol.
**2021**, 3, 748908. [Google Scholar] [CrossRef] [PubMed] - Gray, R.A.; Pathmanathan, P. Patient-Specific Cardiovascular Computational Modeling: Diversity of Personalization and Challenges. J. Cardiovasc. Transl. Res.
**2018**, 11, 80–88. [Google Scholar] [CrossRef] [Green Version] - Spronck, B.; Humphrey, J.D. Arterial Stiffness: Different Metrics, Different Meanings. J. Biomech. Eng.
**2019**, 141, 091004. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Gulsin, G.S.; McVeigh, N.; Leipsic, J.A.; Dodd, J.D. Cardiovascular CT and MRI in 2020: Review of Key Articles. Radiology
**2021**, 301, 263–277. [Google Scholar] [CrossRef] - Zhuang, B.; Sirajuddin, A.; Zhao, S.; Lu, M. The role of 4D flow MRI for clinical applications in cardiovascular disease: Current status and future perspectives. Quant. Imaging Med. Surg.
**2021**, 11, 4193–4210. [Google Scholar] [CrossRef] - De Nisco, G.; Tasso, P.; Calò, K.; Mazzi, V.; Gallo, D.; Condemi, F.; Farzaneh, S.; Avril, S.; Morbiducci, U. Deciphering ascending thoracic aortic aneurysm hemodynamics in relation to biomechanical properties. Med. Eng. Phys.
**2020**, 82, 119–129. [Google Scholar] [CrossRef] - Vignali, E.; Gasparotti, E.; Celi, S.; Avril, S. Fully-Coupled FSI Computational Analyses in the Ascending Thoracic Aorta Using Patient-Specific Conditions and Anisotropic Material Properties. Front. Physiol.
**2021**, 12, 732561. [Google Scholar] [CrossRef] - Celi, S.; Gasparotti, E.; Capellini, K.; Bardi, F.; Scarpolini, M.A.; Cavaliere, C.; Cademartiri, F.; Vignali, E. An image-based approach for the estimation of arterial local stiffness in vivo. Front. Bioeng. Biotechnol.
**2023**, 11, 107. [Google Scholar] [CrossRef] - Vignali, E.; Gasparotti, E.; Capellini, K.; Fanni, B.M.; Landini, L.; Positano, V.; Celi, S. Modeling biomechanical interaction between soft tissue and soft robotic instruments: Importance of constitutive anisotropic hyperelastic formulations. Int. J. Robot. Res.
**2021**, 40, 224–235. [Google Scholar] [CrossRef] - Cebull, H.L.; Rayz, V.L.; Goergen, C.J. Recent Advances in Biomechanical Characterization of Thoracic Aortic Aneurysms. Front. Cardiovasc. Med.
**2020**, 7, 75. [Google Scholar] [CrossRef] [PubMed] - Liu, M.; Liang, L.; Sulejmani, F.; Lou, X.; Iannucci, G.; Chen, E.; Leshnower, B.; Sun, W. Identification of in vivo nonlinear anisotropic mechanical properties of ascending thoracic aortic aneurysm from patient-specific CT scans. Sci. Rep.
**2019**, 9, 12983. [Google Scholar] [CrossRef] [Green Version] - Flamini, V.; Creane, A.P.; Kerskens, C.M.; Lally, C. Imaging and finite element analysis: A methodology for non-invasive characterization of aortic tissue. Med. Eng. Phys.
**2015**, 37, 48–54. [Google Scholar] [CrossRef] [PubMed] - Wittek, A.; Derwich, W.; Karatolios, K.; Fritzen, C.P.; Vogt, S.; Schmitz-Rixen, T.; Blase, C. A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4D ultrasound strain imaging. J. Mech. Behav. Biomed. Mater.
**2016**, 58, 122–138. [Google Scholar] [CrossRef] [PubMed] - D’Souza, G.A.; Taylor, M.D.; Banerjee, R.K. Evaluation of pulmonary artery wall properties in congenital heart disease patients using cardiac magnetic resonance. Prog. Pediatr. Cardiol.
**2017**, 47, 49–57. [Google Scholar] [CrossRef] - Zambrano, B.A.; McLean, N.A.; Zhao, X.; Tan, J.; Zhong, L.; Figueroa, C.A.; Lee, L.C.; Baek, S. Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients. J. Biomech.
**2018**, 68, 84–92. [Google Scholar] [CrossRef] [PubMed] - Fanni, B.M.; Pizzuto, A.; Santoro, G.; Celi, S. Introduction of a Novel Image-Based and Non-Invasive Method for the Estimation of Local Elastic Properties of Great Vessels. Electronics
**2022**, 11, 2055. [Google Scholar] [CrossRef] - Antonuccio, M.N.; Mariotti, A.; Fanni, B.M.; Capellini, K.; Capelli, C.; Sauvage, E.; Celi, S. Effects of Uncertainty of Outlet Boundary Conditions in a Patient-Specific Case of Aortic Coarctation. Ann. Biomed. Eng.
**2021**, 49, 3494–3507. [Google Scholar] [CrossRef] [PubMed] - Xiu, D.; Karniadakis, G.E. The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations. SIAM J. Sci. Comput.
**2002**, 24, 619–644. [Google Scholar] [CrossRef] - Boccadifuoco, A.; Mariotti, A.; Capellini, K.; Celi, S.; Salvetti, M.V. Validation of numerical simulations of thoracic aorta hemodynamics: Comparison with in vivo measurements and stochastic sensitivity analysis. Cardiovasc. Eng. Technol.
**2018**, 9, 688–706. [Google Scholar] [CrossRef] [PubMed] - Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In Intraoperative Imaging and Image-Guided Therapy; Springer: New York, NY, USA, 2014; pp. 277–289. [Google Scholar] [CrossRef]
- Pelc, N.J.; Herfkens, R.J.; Shimakawa, A.; Enzmann, D.R. Phase contrast cine magnetic resonance imaging. Magn. Reson. Q.
**1991**, 7, 229–254. [Google Scholar] [PubMed] - Thompson, R.B.; McVeigh, E.R. Flow-gated phase-contrast MRI using radial acquisitions. Magn. Reson. Med.
**2004**, 52, 598–604. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nayak, K.S.; Nielsen, J.F.; Bernstein, M.A.; Markl, M.; Gatehouse, P.D.; Botnar, R.M.; Saloner, D.; Lorenz, C.; Wen, H.; Hu, B.S.; et al. Cardiovascular magnetic resonance phase contrast imaging. J. Cardiovasc. Magn. Reson.
**2015**, 17, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bidhult, S.; Hedström, E.; Carlsson, M.; Töger, J.; Steding-Ehrenborg, K.; Arheden, H.; Aletras, A.H.; Heiberg, E. A new vessel segmentation algorithm for robust blood flow quantification from two-dimensional phase-contrast magnetic resonance images. Clin. Physiol. Funct. Imaging
**2019**, 39, 327–338. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tiwari, K.K.; Bevilacqua, S.; Aquaro, G.; Festa, P.; Ait-Ali, L.; Solinas, M. Evaluation of Distensibility and Stiffness of Ascending Aortic Aneurysm using Magnetic Resonance Imaging. JNMA J. Nepal Med. Assoc.
**2016**, 55, 67–71. [Google Scholar] [CrossRef] [PubMed] - Sugawara, J.; Tomoto, T.; Tanaka, H. Heart-to-Brachium Pulse Wave Velocity as a Measure of Proximal Aortic Stiffness: MRI and Longitudinal Studies. Am. J. Hypertens.
**2019**, 32, 146–154. [Google Scholar] [CrossRef] - Vulliémoz, S.; Stergiopulos, N.; Meuli, R. Estimation of local aortic elastic properties with MRI: Estimation of Local Aortic Elastic Properties. Magn. Reson. Med.
**2002**, 47, 649–654. [Google Scholar] [CrossRef] - Fanni, B.M.; Sauvage, E.; Celi, S.; Norman, W.; Vignali, E.; Landini, L.; Schievano, S.; Positano, V.; Capelli, C. A Proof of Concept of a Non-Invasive Image-Based Material Characterization Method for Enhanced Patient-Specific Computational Modeling. Cardiovasc. Eng. Technol.
**2020**, 11, 532–543. [Google Scholar] [CrossRef] - Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H.; et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J.
**2006**, 27, 2588–2605. [Google Scholar] [CrossRef] [Green Version] - Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method for Solid and Structural Mechanics; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Hughes, T.J. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
- Di Puccio, F.; Celi, S. A note on the use of first order quadrilateral elements in axisymmetric analysis. Comput.-Aided Des.
**2012**, 44, 1083–1089. [Google Scholar] [CrossRef] - Westerhof, N.; Lankhaar, J.; Westerhof, B.E. The arterial Windkessel. Med. Biol. Eng. Comput.
**2009**, 47, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D.A. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput.
**2008**, 46, 1097. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ahrens, J.; Geveci, B.; Law, C. ParaView: An End-User Tool for Large-Data Visualization. In Visualization Handbook; Elsevier: Amsterdam, The Netherlands, 2005; pp. 717–731. [Google Scholar] [CrossRef]
- Dalbey, K.; Eldred, M.; Geraci, G.; Jakeman, J.; Maupin, K.; Monschke, J.; Seidl, D.; Swiler, L.; Tran, A.; Menhorn, F.; et al. Dakota A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.12 Theory Manual; USDOE National Nuclear Security Administration (NNSA): Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Capellini, K.; Vignali, E.; Costa, E.; Gasparotti, E.; Biancolini, M.E.; Landini, L.; Positano, V.; Celi, S. Computational fluid dynamic study for aTAA hemodynamics: An integrated image-based and radial basis functions mesh morphing approach. J. Biomech. Eng.
**2018**, 140, 111007. [Google Scholar] [CrossRef] [PubMed] - Pirola, S.; Jarral, O.A.; O’Regan, D.P.; Asimakopoulos, G.; Anderson, J.R.; Pepper, J.R.; Athanasiou, T.; Xu, X.Y. Computational study of aortic hemodynamics for patients with an abnormal aortic valve: The importance of secondary flow at the ascending aorta inlet. APL Bioeng.
**2018**, 2, 026101. [Google Scholar] [CrossRef] - Calò, K.; Gallo, D.; Guala, A.; Rodriguez Palomares, J.; Scarsoglio, S.; Ridolfi, L.; Morbiducci, U. Combining 4D Flow MRI and Complex Networks Theory to Characterize the Hemodynamic Heterogeneity in Dilated and Non-dilated Human Ascending Aortas. Ann. Biomed. Eng.
**2021**, 49, 2441–2453. [Google Scholar] [CrossRef] - Vatner, S.F.; Zhang, J.; Vyzas, C.; Mishra, K.; Graham, R.M.; Vatner, D.E. Vascular Stiffness in Aging and Disease. Front. Physiol.
**2021**, 12, 762437. [Google Scholar] [CrossRef] - Cuomo, F.; Roccabianca, S.; Dillon-Murphy, D.; Xiao, N.; Humphrey, J.D.; Figueroa, C.A. Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling. PLoS ONE
**2017**, 12, e0173177. [Google Scholar] [CrossRef] [Green Version] - Bertoglio, C.; Barber, D.; Gaddum, N.; Valverde, I.; Rutten, M.; Beerbaum, P.; Moireau, P.; Hose, R.; Gerbeau, J.F. Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid–structure interaction model. J. Biomech.
**2014**, 47, 1027–1034. [Google Scholar] [CrossRef] [Green Version] - Kohn, J.C.; Lampi, M.C.; Reinhart-King, C.A. Age-related vascular stiffening: Causes and consequences. Front. Genet.
**2015**, 6. [Google Scholar] [CrossRef] [Green Version] - Lee, H.Y.; Oh, B.H. Aging and Arterial Stiffness. Circ. J.
**2010**, 74, 2257–2262. [Google Scholar] [CrossRef] [Green Version] - Angoff, R.; Mosarla, R.C.; Tsao, C.W. Aortic Stiffness: Epidemiology, Risk Factors, and Relevant Biomarkers. Front. Cardiovasc. Med.
**2021**, 8, 709396. [Google Scholar] [CrossRef] - Benetos, A. Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: Clinical applications. Am. J. Hypertens.
**2002**, 15, 1101–1108. [Google Scholar] [CrossRef] [PubMed] - Marx, L.; Gsell, M.A.F.; Rund, A.; Caforio, F.; Prassl, A.J.; Toth-Gayor, G.; Kuehne, T.; Augustin, C.M.; Plank, G. Personalization of electro-mechanical models of the pressure-overloaded left ventricle: Fitting of Windkessel-type afterload models. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
**2020**, 378, 20190342. [Google Scholar] [CrossRef] [PubMed] - Hu, Z.; Du, D.; Du, Y. Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology. Comput. Biol. Med.
**2018**, 102, 57–74. [Google Scholar] [CrossRef] - Huberts, W.; Donders, W.; Delhaas, T.; van de Vosse, F. Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model: Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model. Int. J. Numer. Methods Biomed. Eng.
**2014**, 30, 1679–1704. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Brault, A.; Dumas, L.; Lucor, D. Uncertainty quantification of inflow boundary condition and proximal arterial stiffness-coupled effect on pulse wave propagation in a vascular network: UQ of pulse wave propagation in a vascular network. Int. J. Numer. Methods Biomed. Eng.
**2017**, 33, e2859. [Google Scholar] [CrossRef] [Green Version] - Wuyts, F.L.; Vanhuyse, V.J.; Langewouters, G.J.; Decraemer, W.F.; Raman, E.R.; Buyle, S. Elastic properties of human aortas in relation to age and atherosclerosis: A structural model. Phys. Med. Biol.
**1995**, 40, 1577–1597. [Google Scholar] [CrossRef] - Khanafer, K.; Duprey, A.; Zainal, M.; Schlicht, M.; Williams, D.; Berguer, R. Determination of the elastic modulus of ascending thoracic aortic aneurysm at different ranges of pressure using uniaxial tensile testing. J. Thorac. Cardiovasc. Surg.
**2011**, 142, 682–686. [Google Scholar] [CrossRef] [Green Version] - Sun, W.; Chan, S.Y. Pulmonary Arterial Stiffness: An Early and Pervasive Driver of Pulmonary Arterial Hypertension. Front. Med.
**2018**, 5, 204. [Google Scholar] [CrossRef] - Zambrano, B.A.; McLean, N.; Zhao, X.; Tan, J.L.; Zhong, L.; Figueroa, C.A.; Lee, L.C.; Baek, S. Patient-Specific Computational Analysis of Hemodynamics and Wall Mechanics and Their Interactions in Pulmonary Arterial Hypertension. Front. Bioeng. Biotechnol.
**2021**, 8, 611149. [Google Scholar] [CrossRef] - Chen, Z.W.; Joli, P.; Feng, Z.Q. Anisotropic hyperelastic behavior of soft biological tissues. Comput. Methods Biomech. Biomed. Eng.
**2015**, 18, 1436–1444. [Google Scholar] [CrossRef] [PubMed] - Nolan, D.R.; Gower, A.L.; Destrade, M.; Ogden, R.W.; McGarry, J.P. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J. Mech. Behav. Biomed. Mater.
**2014**, 39, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Celi, S.; Gasparotti, E.; Capellini, K.; Vignali, E.; Fanni, B.M.; Ait-Ali, L.; Cantinotti, M.; Murzi, M.; Berti, S.; Santoro, G.; et al. 3D Printing in Modern Cardiology. Curr. Pharm. Des.
**2021**, 27, 1918–1930. [Google Scholar] [CrossRef] [PubMed] - Bramlet, M.; Olivieri, L.; Farooqi, K.; Ripley, B.; Coakley, M. Impact of Three-Dimensional Printing on the Study and Treatment of Congenital Heart Disease. Circ. Res.
**2017**, 120, 904–907. [Google Scholar] [CrossRef] [Green Version] - Geier, A.; Kunert, A.; Albrecht, G.; Liebold, A.; Hoenicka, M. Influence of Cannulation Site on Carotid Perfusion During Extracorporeal Membrane Oxygenation in a Compliant Human Aortic Model. Ann. Biomed. Eng.
**2017**, 45, 2281–2297. [Google Scholar] [CrossRef] - Vignali, E.; Gasparotti, E.; Mariotti, A.; Haxhiademi, D.; Ait-Ali, L.; Celi, S. High-Versatility Left Ventricle Pump and Aortic Mock Circulatory Loop Development for Patient-Specific Hemodynamic In Vitro Analysis. ASAIO J.
**2022**, 68, 1272–1281. [Google Scholar] [CrossRef] - Bardi, F.; Gasparotti, E.; Vignali, E.; Avril, S.; Celi, S. A Hybrid Mock Circulatory Loop for Fluid Dynamic Characterization of 3D Anatomical Phantoms. IEEE Trans. Biomed. Eng.
**2022**, 1–11. [Google Scholar] [CrossRef]

**Figure 1.**CT imaging processing: sagittal (

**a**), axial (

**b**), and coronal (

**c**) planes of CT dataset, raw segmentation result (

**d**), and refined model of the aorta (

**e**).

**Figure 2.**Evenly spaced subsample of PCMRI frames, with aortic lumen countered with ROI (magenta) in both magnitude (

**a**) and phase images (

**b**); (

**c**) flow velocity (magenta boxes) obtained from PCMRI segmentation of the lumen of the aorta.

**Figure 3.**Fluid domain mesh (

**a**) and plane cut showing internal elements (

**b**) with grid details at wall surface (

**c**) and at plane cut (

**d**).

**Figure 4.**Location of the cross-sections extracted from the FSI simulations, perpendicular to the model centerline: $C{S}_{1}$ (green) proximal to inlet valve; $C{S}_{2}$ (blue) at the ascending aorta; $C{S}_{3}$ (yellow) after supra-aortic branches; and $C{S}_{4}$ (pink) and $C{S}_{5}$ (orange) at the descending aorta, with this latter closer to the outlet section.

**Figure 5.**(

**a**) Flow and area variations along the cardiac cycle obtained from the segmentation of the patient’s PCMRI data; (

**b**) QA loop (white circles) with indication of the points belonging to the early systole period (black circles) used for the linear interpolation (black line) to compute the $PWV$.

**Figure 6.**Localizer image (

**a**) used to define the acquisition plane ${\Sigma}_{PCMRI}$ of the PCMRI at the descending aorta (

**b**) and equivalent plane ${\Sigma}_{FSI}$ in the FSI domain (

**c**); (

**d**) comparison between flow curves as extracted from PCMRI data of the patient (black line with diamond markers) and FSI simulation (blue line with circle markers) at the same plane of the descending aorta.

**Figure 7.**Mean and standard deviation computed along the selected cross-sections of the coefficient ratio ${a}_{r}/{a}_{0}$ of the gPC polynomial expansion for the performed stochastic analyses.

**Figure 8.**PDF (color scale), mean (straight line), and standard deviation (dashed line) plots of flow variations along the cardiac cycle at cross-sections $C{S}_{1}$ (

**a**), $C{S}_{2}$ (

**b**), $C{S}_{3}$ (

**c**), $C{S}_{4}$ (

**d**), and $C{S}_{5}$ (

**e**), respectively identified by the green, blue, yellow, pink, and orange slices in the aortic model (

**f**).

**Figure 9.**PDF (color scale), mean (straight line), and standard deviation (dashed line) plots of area variations along the cardiac cycle at cross-sections $C{S}_{1}$ (

**a**), $C{S}_{2}$ (

**b**), $C{S}_{3}$ (

**c**), $C{S}_{4}$ (

**d**), and $C{S}_{5}$ (

**e**), respectively identified by the green, blue, yellow, pink, and orange slices in the aortic model (

**f**).

**Figure 10.**PDFs of area variation at the five cross-sections, i.e., $C{S}_{1}$ (

**a**,

**b**), $C{S}_{2}$ (

**c**,

**d**), $C{S}_{3}$ (

**e**,

**f**), $C{S}_{4}$ (

**g**,

**h**), and $C{S}_{5}$ (

**i**,

**j**) along the entire cardiac cycle (

**a**,

**c**,

**e**,

**g**,

**i**) and at the time instances ${t}_{1}$, ${t}_{2}$, and ${t}_{3}$ of the cardiac cycle (

**b**,

**d**,

**f**,

**h**,

**j**).

**Table 1.**List of the four quadrature points ${x}_{i}$, calculated using the Gauss–Legendre integration rule.

Quadrature Points ${\mathit{x}}_{\mathit{i}}$ | |||
---|---|---|---|

${x}_{1}$ | ${x}_{2}$ | ${x}_{3}$ | ${x}_{4}$ |

$1.2\widehat{E}$ | $1.08\widehat{E}$ | $0.92\widehat{E}$ | $0.8\widehat{E}$ |

**Table 2.**$RCR$ values of the Windkessel models for the boundary conditions assigned to the aorta outlets: the three supra-aortic vessels, i.e., the brachiocephalic artery, the left common carotid artery, and the left subclavian artery, and the descending aorta.

${\mathit{R}}_{\mathit{p}}$ (Kg s${}^{-1}$ m${}^{-4}$) | C (m${}^{3}$ Pa ${}^{-1}$) | ${\mathit{R}}_{\mathit{d}}$ (Kg s${}^{-1}$ m${}^{-4}$) | |
---|---|---|---|

Brachiocephalic artery | $1.3\times {10}^{7}$ | $1.5\times {10}^{-9}$ | $1.3\times {10}^{9}$ |

Left common carotid artery | $5.1\times {10}^{7}$ | $3.8\times {10}^{-10}$ | $5.0\times {10}^{9}$ |

Left subclavian artery | $1.1\times {10}^{7}$ | $1.7\times {10}^{-9}$ | $1.1\times {10}^{9}$ |

Descending aorta | $2.5\times {10}^{6}$ | $7.7\times {10}^{-9}$ | $2.4\times {10}^{8}$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fanni, B.M.; Antonuccio, M.N.; Pizzuto, A.; Berti, S.; Santoro, G.; Celi, S.
Uncertainty Quantification in the In Vivo Image-Based Estimation of Local Elastic Properties of Vascular Walls. *J. Cardiovasc. Dev. Dis.* **2023**, *10*, 109.
https://doi.org/10.3390/jcdd10030109

**AMA Style**

Fanni BM, Antonuccio MN, Pizzuto A, Berti S, Santoro G, Celi S.
Uncertainty Quantification in the In Vivo Image-Based Estimation of Local Elastic Properties of Vascular Walls. *Journal of Cardiovascular Development and Disease*. 2023; 10(3):109.
https://doi.org/10.3390/jcdd10030109

**Chicago/Turabian Style**

Fanni, Benigno Marco, Maria Nicole Antonuccio, Alessandra Pizzuto, Sergio Berti, Giuseppe Santoro, and Simona Celi.
2023. "Uncertainty Quantification in the In Vivo Image-Based Estimation of Local Elastic Properties of Vascular Walls" *Journal of Cardiovascular Development and Disease* 10, no. 3: 109.
https://doi.org/10.3390/jcdd10030109