Frailty as a Risk Factor for Depression after COVID-19 Hospital Admission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Sample
2.2. Variables
- Demographic variables: age, sex, and educational level;
- Clinical service in which the patients were hospitalized;
- Clinical data: days from the onset of symptoms to admission, symptoms, comorbidity, and Charlson index; medication prescribed during admission and at hospital discharge; minimum oxygen saturation on admission, maximum FiO2 during admission, and oxygen saturation at evaluation visits. Frailty assessment was carried out using the FRAIL scale [17], which resulted in classifying the patients as either robust, pre-fragile, or fragile (independent variable);
- Neuropsychological assessment: CAMCOG (Cambridge Cognition Examination) scales [18] and the INECO Frontal Screening [19] for dementia, and PHQ-9 scale (Depression Patient Health Questionnaire) for depression (dependent variable) [20]. The PHQ-9 scale consists of 9 items, each with a score between 0 and 3, and a possible total score of 27. A patient’s total score can be interpreted as follows: no depression (<5 points); mild depression (5–9 points); moderate depression (10–14 points); moderately severe depression (15–19 points); and severe depression (≥20) [21];
- Nutritional assessment: CONUT (controlling nutritional status) [22];
- Analytical findings during admission (including leukocytes, C-reactive protein, ferritin, D-dimer, and interleukin-6) and after admission (including creatinine, folic acid, vitamin B12, thyroid hormones, cholesterol, albumin, lymphocytes, blood group, and vitamin D);
- Magnetic resonance imaging (MRI): the presence of cerebral atrophy, subjective white matter alterations of cerebral small-vessel disease (CSVD), large-vessel stroke, hemorrhage, space-occupying lesion, and normal-pressure hydrocephalus.
2.3. Interventionism and Follow-Up
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Demographics
3.2. Risk of Depression at Hospital Discharge
- Bivariate analysis at hospital discharge: It could be observed that frailty status was associated with a worse PHQ-9 score with an OR of 11.92 (95% CI 1.99–71.41; p = 0.007) compared to robust patients. There was also a significant association with the body mass index (OR 1.21; 95% CI 1.04–1.41; p = 0.007).
- Multivariate analysis at hospital discharge: The status of pre-frail (adjusted odds ratio (aOR) 23.25; 95% CI 2.36–229.20; p = 0.007) and frail (aOR 125.23; 95% CI 6.34–2476.11; p = 0.002) was related to the risk of depression. The age was also significant (aOR 0.88; 95% CI 0.78–0.99; p = 0.027).
Variable | PHQ-9 Normal (n = 40) n (%) | PHQ-9 ≥ 5 (n = 32) n (%) | Bivariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|---|
OR (CI 95%) | p | aOR (CI 95%) | p | |||
Age (mean ± SD) | 69.98 ± 7.57 | 67.91 ± 9.95 | 0.97 (0.92–1.03) | 0.320 | 0.88 (0.78–0.99) | 0.027 |
Sex | 0.347 | |||||
Men | 28 (70.0%) | 19 (59.4%) | 1 | |||
Women | 12 (30.0%) | 13 (40.6%) | 1.60 (0.60–4.24) | |||
Hypertension | 18 (45.0%) | 18 (56.3%) | 1.57 (0.62–4.01) | 0.344 | ||
DM2 1 | 9 (22.5%) | 10 (31.3%) | 1.57 (0.55–4.49) | 0.404 | ||
COPD 2 | 6 (15.0%) | 0 (0.0%) | 0.999 | |||
Asthma | 6 (15.0%) | 2 (6.3%) | 0.38 (0.07–2.02) | 0.287 * | ||
OSAHS 3 | 4 (10.0%) | 3 (9.4%) | 0.93 (0.19–4.50) | 0.929 * | ||
Tobacco | 4 (10.0%) | 3 (9.4%) | 0.93 (0.19–4.50) | 0.929 * | ||
FRAIL scale | 0.011 | 0.006 | ||||
Robust | 11 (27.5%) | 2 (6.3%) | 1 | 1 | ||
Pre-frail | 23 (57.5%) | 17 (53.1%) | 4.07 (0.80–20.79) | 0.092 | 23.25 (2.36–229.20) | 0.007 |
Frail | 6 (15.0%) | 13 (40.6%) | 11.92 (1.99–71.41) | 0.007 * | 125.23 (6.34–2476.11) | 0.002 |
Education level | 0.791 | |||||
Not schooled | 10 (25.0%) | 5 (15.6%) | 1 | |||
Children’s school | 9 (22.5%) | 7 (21.9%) | 1.56 (0.36–6.69) | 0.553 | ||
Elementary | 9 (22.5%) | 11 (34.4%) | 2.44 (0.61–9.80) | 0.207 | ||
High school | 9 (22.5%) | 7 (21.9%) | 1.56 (0.36–6.69) | 0.553 | ||
Higher education | 3 (7.5%) | 2 (6.3%) | 1.33 (0.17–10.74) | 0.787 | ||
Atrophy on MRI 4 | 27 (71.1%) | 19 (61.3%) | 0.64 (0.24–1.77) | 0.392 | ||
Antidepressants | 2 (5.0%) | 4 (12.5%) | 2.71 (0.46–15.87) | 0.396 * | ||
CSVD 5 on MRI | 17 (44.7%) | 11 (35.5%) | 0.68 (0.26–1.80) | 0.436 | ||
Days of admission | 9.45 ± 7.05 | 10.63 ± 6.90 | 1.03 (0.96–1.10) | 0.480 | ||
(mean ± SD) | ||||||
Charlson index | 1.48 ±1.49 | 1.44 ± 1.59 | 0.98 (0.72–1.34) | 0.918 | ||
(mean ± SD) | ||||||
BMI 6 | 28.44 ± 2.86 | 30.76 ± 4.20 | 1.21 (1.04–1.41) | 0.007 | 1.21 (1.01–1.44) | 0.035 |
(mean ± SD) | ||||||
CAMCOG 7 first visit | 88.10 ± 10.69 | 86.45 ± 11.57 | 0.99 (0.95–1.03) | 0.533 | ||
(mean ± SD) | ||||||
Vitamin D level ng/mL | 23.55 ± 13.03 | 24.17 ± 14.27 | 2.71 (0.46–15.87) | 0.850 | 1.05 (0.99–1.10) | 0.109 |
(mean ± SD) | ||||||
CONUT 8 admission | 4.54 ± 2.33 | 3.70 ± 2.15 | 0.83 (0.65–1.06) | 0.131 | 0.66 (0.44–0.97) | 0.035 |
(mean ± SD) | ||||||
Frontal screening | 21.39 ± 4.08 | 20.84 ± 4.48 | 0.97 (0.87–1.08) | 0.592 | 0.83 (0.77–1.04) | 0.104 |
(mean ± SD) | ||||||
first visit |
3.3. Risk of Depression at 6 Months
- Bivariate analysis at 6 months: It could be observed that frailty status was associated with a worse PHQ-9 score (OR 13.33; 95% CI 1.43–123.99; p = 0.023) compared to robust patients. There was also a significant association with the body mass index (OR 1.16; 95% CI 1.01–1.34; p = 0.037).
- Multivariate analysis at 6 months: We observed that frailty measured by the FRAIL scale was associated with the PHQ-9 score at or above 5 at 6 months with an aOR of 383.33 (95% CI 5.04–27,147.57; p = 0.006) for the pre-frail state, and an aOR of 83,959.65 (95% CI of 79.86–88,268,687.07; p = 0.001) for the frail state. Another variable that was significantly related was the presence of small-vessel cerebrovascular disease (aOR 18.78; 95% CI 1.27–277.76; p = 0.033), as well as the level of vitamin D (aOR 1.25; 95% CI 1.06–1.45; p = 0.006). Taking antidepressants was related to the presence of a pathological score on the PHQ-9 scale (aOR 112.66; 95% CI 2.99–4246.21; p = 0.011), although antidepressants were not used for treating depression since patients not having been diagnosed with depression was a condition to be included in the study. The variables negatively related to the presence of depression at 6 months were age (aOR 0.73; 95% CI 0.59–0.90; p = 0.003), the presence of atrophy in brain MRI (aOR 0.16; 95% CI 0.02–1.5; p = 0.170), and a higher score on the CAMCOG scale (aOR 0.86; 95% CI 0.75–0.99; p = 0.041).
Variable | PHQ-9 Normal (n = 47) n (%) | PHQ-9 ≥ 5 (n = 25) n (%) | Bivariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|---|
OR (CI 95%) | p | aOR (CI 95%) | p | |||
Age (mean ± SD) | 69.68 ± 7.85 | 67.88 ± 10.18 | 0.98 (0.92–1.03) | 0.402 | 0.73 (0.59–0.90) | 0.003 |
Sex | 0.230 | |||||
Men | 33 (70.2%) | 14 (56.0%) | 1 | |||
Women | 14 (29.8%) | 11 (44.0%) | 1.85 (0.68–5.07) | |||
Hypertension | 22 (46.8%) | 14 (56.0%) | 1.45 (0.55–3.84) | 0.459 | ||
DM2 1 | 12 (25.5%) | 7 (28.0%) | 1.13 (0.38–3.38) | 0.821 | ||
COPD 2 | 4 (8.5%) | 2 (8.0%) | 0.94 (0.16–5.50) | 0.941 | ||
Asthma | 6 (12.8%) | 2 (6.3%) | 0.59 (0.11–3.19) | 0.544 | ||
OSAHS 3 | 3 (6.4%) | 4 (16.0%) | 0.59 (0.11–3.19) | 0.504 | ||
Tobacco | 4 (8.5%) | 3 (12.0%) | 2.79 (0.57–13.63) | 0.204 | ||
FRAIL scale | 0.064 | 0.006 | ||||
Robust | 12 (25.5%) | 1 (4.0%) | 1 | 1 | ||
Pre-frail | 26 (55.3%) | 14 (56.0%) | 6.46 (0.76–54.92) | 0.088 | 383.33 (5.04–27,147.57) | 0.006 |
Frail | 9 (19.1%) | 10 (40.0%) | 13.33 (1.43–123.99) | 0.023 | 83,959.65 (79.86–88,268,687.07) | 0.001 |
Education level | 0.861 | 0.197 | ||||
Not schooled | 11 (23.4%) | 4 (16.0%) | 1 | 1 | ||
Children’s school | 9 (19.1%) | 7 (28.0%) | 2.13 (0.47–9.70) | 0.324 | 88.11 (1.83–4244.63) | 0.023 |
Elementary | 14 (29.8%) | 6 (24.0%) | 1.18 (0.27–5.24) | 0.829 | 23.56 (0.86–646.67) | 0.062 |
High school | 10 (21.3%) | 6 (24.0%) | 1.65 (0.36–7.60) | 0.521 | 1.49 (0.026–87.02) | 0.845 |
Higher education | 3 (6.4%) | 2 (8.0%) | 1.83 (0.22–15.33) | 0.576 | 18.86 (0.18–1932.85) | 0.214 |
Atrophy on MRI 4 | 32 (69.6%) | 14 (60.9%) | 0.68 (0.24–1.94) | 0.471 | 0.16 (0.02–1.500) | 0.107 |
Antidepressants | 3 (6.4%) | 3 (12.0%) | 2.00 (0.37–10.73) | 0.419 | 112.66 (2.99–4246.21) | 0.011 |
CSVD 5 on MRI | 19 (41.3%) | 9 (39.1%) | 0.91 (0.33–2.54) | 0.862 | 18.78 (1.27–277.76) | 0.033 |
Admission days | 10.60 ± 7.92 | 8.80 ± 4.57 | 0.96 (0.88–1.04) | 0.306 | 0.77 (0.58–1.01) | 0.062 |
(mean ± SD) | ||||||
Charlson index | 1.53 ± 1.53 | 1.32 ± 1.52 | 0.91 (0.65–1.27) | 0.571 | ||
(mean ± SD) | ||||||
BMI 6 | 28.78 ± 3.30 | 30.76 ± 4.06 | 1.16 (1.01–1.34) | 0.037 | ||
(mean ± SD) | ||||||
CAMCOG 7 follow-up at 6 months | 90.40 ±9.87 | 90.26 ± 10.37 | 0.99 (0.95–1.03) | 0.528 | 0.86 (0.75–0.99) | 0.041 |
(mean ± SD) | ||||||
Vitamin D level ng/mL | 22.29 ± 12.22 | 23.82 ± 13.50 | 4.29 (0.73–25.28) | 0.108 | 1.25 (1.06–1.45) | 0.006 |
(mean ± SD) | ||||||
CONUT 8 follow-up at 6 months | 0.91 ± 0.95 | 1.12 ± 1.45 | 1.17 (0.77–1.79) | 0.468 | ||
(mean ± SD) | ||||||
Frontal screening follow-up at 6 months | 21.69 ± 4.35 | 21.54 ± 4.47 | 0.99 (0.88–1.11) | 0.888 | 0.72 (0.52–1.04) | 0.053 |
(mean ± SD) |
3.4. Predictive Capacity of Depression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gasch-Illescas, A.; Calle-Serrano, M.; Vallejo-Vaz, A.J.; Praena-Fernández, J.M.; Guerrero, J.A.; Calderón, E.J.; Pollán, M.; Medrano, F.J. Impact of the first wave of the COVID-19 pandemic on non-COVID inpatient care in southern Spain. Sci. Rep. 2023, 13, 1634. [Google Scholar] [CrossRef]
- Devleesschauwer, B.; Willem, L.; Jurčević, J.; Smith, P.; Scohy, A.; Wyper, G.M.A.; Pires, S.M.; Van Goethem, N.; Beutels, P.; Franco, N.; et al. The direct disease burden of COVID-19 in Belgium in 2020 and 2021. BMC Public Health 2023, 23, 1707. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-de-Las-Peñas, C.; Notarte, K.I.; Macasaet, R.; Velasco, J.V.; Catahay, J.A.; Ver, A.T.; Chung, W.; Valera-Calero, J.A.; Navarro-Santana, M. Persistence of post-COVID symptoms in the general population two years after SARS-CoV-2 infection: A systematic review and meta-analysis. J. Infect. 2024, 88, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Borba, V.; Martínez-García, L.; Peris-Baquero, Ó.; Osma, J.; Del Corral-Beamonte, E. Guiding future research on psychological interventions in people with COVID-19 and post COVID syndrome and comorbid emotional disorders based on a systematic review. Front. Public Health 2024, 11, 1305463. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Z.T.; Sun, X.C.; Chen, T.T.; Wu, X.T. Mental health status and related factors influencing healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. PLoS ONE 2024, 19, e0289454. [Google Scholar] [CrossRef]
- Szlejf, C.; Suemoto, C.K.; Goulart, A.C.; Santos, I.S.; Bacchi, P.S.; Fatori, D.; Razza, L.B.; Viana, M.C.; Lotufo, P.A.; Benseñor, I.M.; et al. A pandemic toll in frail older adults: Higher odds of incident and persistent common mental disorders in the ELSA-Brasil COVID-19 mental health cohort. J. Affect. Disord. 2023, 325, 392–398. [Google Scholar] [CrossRef]
- Kim, S.G.; Kwon, H.C.; Kang, T.K.; Kwak, M.Y.; Lee, S.; Lee, K.; Ko, K. COVID-19 Sequelae and Their Implications on Social Services. J. Korean Med. Sci. 2022, 37, e342. [Google Scholar] [CrossRef] [PubMed]
- Kodama, A.; Kume, Y.; Lee, S.; Makizako, H.; Shimada, H.; Takahashi, T.; Ono, T.; Ota, H. Impact of COVID-19 Pandemic Exacerbation of Depressive Symptoms for Social Frailty from the ORANGE Registry. Int. J. Environ. Res. Public Health 2022, 19, 986. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Ciciarello, F.; Zazzara, M.B.; Janiri, D.; Pais, C.; Cacciatore, S.; Montenero, R.; Leone, M.S.; Chisci, E.; Picca, A.; et al. Lifestyle Changes and Psychological Well-Being in Older Adults During COVID-19 Pandemic. Clin. Geriatr. Med. 2022, 38, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Snippe, E.; Simons, C.J.; Hartmann, J.A.; Menne-Lothmann, C.; Kramer, I.; Booij, S.H.; Viechtbauer, W.; Delespaul, P.; Myin-Germeys, I.; Wichers, M. Change in daily life behaviors and depression: Within-person and between-person associations. Health Psychol. 2016, 35, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Penninx, B.W.J.H.; Solmi, M.; Furukawa, T.A.; Firth, J.; Carvalho, A.F.; Berk, M. Major depressive disorder. Nat. Rev. Dis. Primers 2023, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Depression. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 11 November 2022).
- GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística (INE). European Survey of Health in Spain 2020. 2021. Available online: https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=EstadisticaC&cid=1254736176784&menu=resultados&idp=1254735573175 (accessed on 10 November 2022).
- Andronescu, L.R.; Richard, S.A.; Scher, A.I.; Lindholm, D.A.; Mende, K.; Ganesan, A.; Huprikar, N.; Lalani, T.; Smith, A.; Mody, R.M.; et al. SARS-CoV-2 infection is associated with self-reported post-acute neuropsychological symptoms within six months of follow-up. PLoS ONE 2024, 19, e0297481. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.I.; Bui, D.; Iwashyna, T.J.; Shahoumian, T.A.; Hickok, A.; Shepherd-Banigan, M.; Hawkins, E.J.; Naylor, J.; Govier, D.J.; Osborne, T.F.; et al. Impact of SARS-CoV-2 Infection on Long-Term Depression Symptoms among Veterans. J. Gen. Intern. Med. 2024, 39, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Malmstrom, T.K.; Miller, D.K. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. J. Nutr. Health Aging 2012, 16, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Huppert, F.A.; Jorm, A.F.; Brayne, C.; Girling, D.M.; Barkeley, C.; Bearsdall, L.; Paykel, E.S. Psychometric properties of the CAMCOG and its efficacy in the diagnosis of dementia. Aging Neuropsychol. Cogn. 1996, 3, 201–214. [Google Scholar] [CrossRef]
- Torralva, T.; Roca, M.; Gleichgerrcht, E.; López, P.; Manes, F. INECO Frontal Screening (IFS): A brief, sensitive, and specific tool to assess executive functions in dementia. J. Int. Neuropsychol. Soc. 2009, 15, 777–786, Erratum in J. Int. Neuropsychol. Soc. 2010, 16, 737. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Huarcaya-Victoria, J.; De-Lama-Morán, R.; Quiros, M.; Bazán, J.; López, K.; Lora, D. Psychometric properties of the Patient Health Questionnaire (PHQ-9) in medical students, Lima, Peru. Rev. Neuropsiquiatr. 2020, 83, 72–78. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Kojima, G.; Iliffe, S.; Walters, K. Frailty index as a predictor of mortality: A systematic review and meta-analysis. Age Ageing 2018, 47, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Abizanda, P.; Romero, L.; Sánchez-Jurado, P.M.; Martínez-Reig, M.; Alfonso-Silguero, S.A.; Rodríguez-Mañas, L. Age, frailty, disability, institutionalization, multimorbidity or comorbidity. Which are the main targets in older adults? J. Nutr. Health Aging 2014, 18, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Soysal, P.; Veronese, N.; Thompson, T.; Kahl, K.G.; Fernandes, B.S.; Prina, A.M.; Solmi, M.; Schofield, P.; Koyanagi, A.; Tseng, P.T.; et al. Relationship between depression and frailty in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2017, 36, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.G.; Liu, F.; Liang, Y.; Wang, K.; Nie, J.Q.; Liu, J. Association between frailty and depression: A bidirectional Mendelian randomization study. Sci. Adv. 2023, 9, eadi3902. [Google Scholar] [CrossRef] [PubMed]
- Kok, R.M.; Reynolds, C.F., 3rd. Management of Depression in Older Adults: A Review. JAMA 2017, 317, 2114–2122. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.H.; Salmond, C.H.; Jones, P.B.; Sahakian, B.J. Cognitive reserve in neuropsychiatry. Psychol. Med. 2006, 36, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Zijlmans, J.L.; Vernooij, M.W.; Ikram, M.A.; Luik, A.I. The role of cognitive and brain reserve in late-life depressive events: The Rotterdam Study. J. Affect. Disord. 2023, 320, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Coolen, T.; Lolli, V.; Sadeghi, N.; Rovai, A.; Trotta, N.; Taccone, F.S.; Creteur, J.; Henrard, S.; Goffard, J.C.; Dewitte, O.; et al. Early postmortem brain MRI findings in COVID-19 non-survivors. Neurology 2020, 95, e2016–e2027. [Google Scholar] [CrossRef] [PubMed]
- Vivas, D.; Roldán, V.; Esteve-Pastor, M.A.; Roldán, I.; Tello-Montoliu, A.; Ruiz-Nodar, J.M.; Cosín-Sales, J.; Gámez, J.M.; Consuegra, L.; Ferreiro, J.L.; et al. Recomendaciones sobre el tratamientoantitrombótico durante la pandemia COVID-19. Posicionamiento del Grupo de Trabajo de Trombosis Cardiovascular de la Sociedad Española de Cardiología. Rev. Esp. Cardiol. 2020, 73, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ríos, R.; Espiño Díaza, I.; Araúxo Vilara, A.; Ecénarro Tomé, P. Depression and cerebrovascular disease. Psiquiatr. Biol. 2008, 15, 80–89. [Google Scholar] [CrossRef]
- Ezpeleta, D.; García, D. Manual COVID-19 Para el Neurólogo General; Sociedad Española de Neurología: San Sebastián de los Reyes, Spain, 2020. [Google Scholar]
- Saidi, I.; Koumeka, P.P.; Ait Batahar, S.; Amro, L. Factors associated with anxiety and depression among patients with COVID-19. Respir. Med. 2021, 186, 106512. [Google Scholar] [CrossRef] [PubMed]
- Okereke, O.I.; Singh, A. The role of vitamin D in the prevention of late-life depression. J. Affect. Disord. 2016, 198, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Shaikh, A.S.; Han, W.; Chen, D.; Guo, Y.; Jiang, P. Vitamin D and depression: Mechanisms, determination and application. Asia Pac. J. Clin. Nutr. 2019, 28, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Itkonen, S.T.; Erkkola, M.; Lamberg-Allardt, C.J.E. Vitamin D Fortification of Fluid Milk Products and Their Contribution to Vitamin D Intake and Vitamin D Status in Observational Studies—A Review. Nutrients 2018, 10, 1054. [Google Scholar] [CrossRef] [PubMed]
Variable | n (%) |
---|---|
Sex | |
Men | 47 (65.3%) |
Women | 25 (34.5%) |
Age (mean ± SD) | 69.06 ± 8.70 |
Education level | |
Not schooled | 15 (20.8%) |
Children’s school | 16 (22.2%) |
Elementary | 20 (27.8%) |
High school | 16 (22.2%) |
Higher education | 5 (6.9%) |
Hypertension | 36 (50.0%) |
DM2 1 | 19 (26.4%) |
COPD 2 | 6 (8.3%) |
Asthma | 8 (11.1%) |
OSAHS 3 | 7 (9.7%) |
Tobacco | 7 (9.7%) |
FRAIL scale | |
Robust | 13 (18.1%) |
Pre-frail | 40 (55.6%) |
Frail | 19 (26.4%) |
Antidepressants | 6 (8.3%) |
BMI 4 | 29.47 ± 3.67 |
Charlson comorbidity index | 1.46 ± 1.519 |
Days of admission | 9.97 ± 6.959 |
Atrophy on MRI 5 | 46/69 (63.9%) |
Cerebral small-vessel disease on MRI | 28/69 (38.9%) |
CAMCOG 6 | |
First visit | 87.368 ± 11.038 |
Follow-up | 90.354 ± 1.175 |
Vitamin D (ng/mL) | 23.828 ± 13.504 |
CONUT 7 | |
First visit | 4.177 ± 0.273 |
Follow-up at 6 months | 0.985 ± 1.140 |
Frontal screening | |
First visit | 21.145 ± 4.241 |
Follow-up at 6 months | 21.638 ± 0.514 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soler-Moratalla, I.M.; Salmerón, S.; Lozoya-Moreno, S.; Hermosilla-Pasamar, A.M.; Henández-Martínez, A.; Solís-García del Pozo, J.; Escribano-Talaya, M.; Font-Payeras, M.A.; García-Alcaraz, F. Frailty as a Risk Factor for Depression after COVID-19 Hospital Admission. Geriatrics 2024, 9, 97. https://doi.org/10.3390/geriatrics9040097
Soler-Moratalla IM, Salmerón S, Lozoya-Moreno S, Hermosilla-Pasamar AM, Henández-Martínez A, Solís-García del Pozo J, Escribano-Talaya M, Font-Payeras MA, García-Alcaraz F. Frailty as a Risk Factor for Depression after COVID-19 Hospital Admission. Geriatrics. 2024; 9(4):97. https://doi.org/10.3390/geriatrics9040097
Chicago/Turabian StyleSoler-Moratalla, Isabel María, Sergio Salmerón, Silvia Lozoya-Moreno, Ana María Hermosilla-Pasamar, Antonio Henández-Martínez, Julián Solís-García del Pozo, Margarita Escribano-Talaya, Maria Antonia Font-Payeras, and Francisco García-Alcaraz. 2024. "Frailty as a Risk Factor for Depression after COVID-19 Hospital Admission" Geriatrics 9, no. 4: 97. https://doi.org/10.3390/geriatrics9040097
APA StyleSoler-Moratalla, I. M., Salmerón, S., Lozoya-Moreno, S., Hermosilla-Pasamar, A. M., Henández-Martínez, A., Solís-García del Pozo, J., Escribano-Talaya, M., Font-Payeras, M. A., & García-Alcaraz, F. (2024). Frailty as a Risk Factor for Depression after COVID-19 Hospital Admission. Geriatrics, 9(4), 97. https://doi.org/10.3390/geriatrics9040097