Vertebral Body Height Changes in Acute Symptomatic Osteoporotic Vertebral Compression Fractures Treated with Vertebral Cement Augmentation—Which Factors Affect Vertebral Body Height during Follow-up? A Multiple Linear Regression Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Description of the Surgical Technique
2.3. Collected Data
2.4. Statistical Analysis of Data
3. Results
3.1. Patients
3.2. Radiological Measurement
3.3. Multiple Linear Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, P.A.; Froyshteter, A.B.; Tontz, W.L. Meta-analysis of vertebral augmentation compared with conservative treatment for osteoporotic spinal fractures. J. Bone Miner. Res. 2013, 28, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; An, Z.-Q.; Song, S.; Tang, J.-F.; Qin, H. Percutaneous vertebroplasty compared with conservative treatment in patients with chronic painful osteoporotic spinal fractures. J. Clin. Neurosci. 2014, 21, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Mattie, R.; Laimi, K.; Yu, S.; Saltychev, M. Comparing percutaneous vertebroplasty and conservative therapy for treating osteoporotic compression fractures in the thoracic and lumbar spine a systematic review and meta-analysis. J. Bone Jt. Surg. Am. 2016, 98, 1041–1051. [Google Scholar] [CrossRef]
- Hiwatashi, A.; Moritani, T.; Numaguchi, Y.; Westesson, P.-L. Increase in Vertebral Body Height after Vertebroplasty. AJNR Am. J. Neuroradiol. 2003, 24, 185–189. [Google Scholar]
- Hiwatashi, A.; Sidhu, R.; Lee, R.K.; Deguzman, R.R.; Piekut, D.T.; Westesson, P.-L.A. Kyphoplasty versus Vertebroplasty to Increase Vertebral Body Height: A Cadaveric Study. Radiology 2005, 237, 1115–1119. [Google Scholar] [CrossRef]
- Hiwatashi, A.; Westesson, P.-L.; Yoshiura, T.; Noguchi, T.; Togao, O.; Yamashita, K.; Kamano, H.; Honda, H. Kyphoplasty and Vertebroplasty Produce the Same Degree of Height Restoration. AJNR Am. J. Neuroradiol. 2009, 30, 669–673. [Google Scholar] [CrossRef] [Green Version]
- Hiwatashi, A.; Yoshiura, T.; Yamashita, K.; Kamano, H.; Dashjamts, T.; Honda, H. Morphologic Change in Vertebral Body After Percutaneous Vertebroplasty: Follow-Up With MDCT. Am. J. Roentgenol. 2010, 195, W207–W212. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, F.; Jensen, R.; Faciszewski, T. The Dynamic Mobility of Vertebral Compression Fractures. J. Bone Miner. Res. 2003, 18, 24–29. [Google Scholar] [CrossRef]
- Teng, M.M.H.; Wei, C.-J.; Wei, L.-C.; Luo, C.-B.; Lirng, J.-F.; Chang, F.-C.; Liu, C.-L.; Chang, C.-Y. Kyphosis Correction and Height Restoration Effects of Percutaneous Vertebroplasty. AJNR Am. J. Neuroradiol. 2003, 24, 1893–1900. [Google Scholar]
- Lieberman, I.; Dudeney, S.; Reinhardt, M.-K.; Bell, G. Initial Outcome and Efficacy of “Kyphoplasty” in the Treatment of Painful Osteoporotic Vertebral Compression Fractures. Spine 2001, 26, 1631–1638. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, I.; Reinhardt, M.K. Vertebroplasty and Kyphoplasty for Osteolytic Vertebral Collapse. Clin. Orthop. Relat. Res. 2003, 415, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Chen, H.-Y.; Tsai, P.-P.; Lo, D.-F.; Hsu, H.-C. Significance of Dynamic Mobility in Restoring Vertebral Body Height in Vertebroplasty. AJNR Am. J. Neuroradiol. 2012, 33, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.K.; Lisitha, K.A.; Elias, D.M.; Yong, V.W.; Chan, C.Y.W.; Kwan, M.K. Do the dynamic stress mobility radiographs predict the post-operative vertebral height restoration, kyphosis correction, and cement volume injected after vertebroplasty for osteoporotic thoracolumbar vertebral fractures with intravertebral cleft? J. Orthop. Surg. 2018, 26, 2309499018806700. [Google Scholar] [CrossRef] [Green Version]
- Mehta, J.S.; Reed, M.R.; McVie, J.L.; Sanderson, P. Weight-bearing radiographs in thoracolumbar fractures: Do they influence management? Spine 2004, 29, 564–567. [Google Scholar] [CrossRef]
- Qian, L.; Pan, J.; Liu, Z.D.; Li, L.J.; Tan, J.; Cheng, L.M.; Zeng, Z.L.; Jia, Y.W.; Li, X.F.; Wang, H.T. The correlation between vertebral wedge-shaped changes in X-ray imaging at supine and standing positions and the efficacy of operative treatment of thoracolumbar spinal fracture in the elderly. Spinal Cord 2013, 51, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, K.; Kawanishi, M.; Yamada, M.; Tanaka, H.; Ito, Y.; Hirano, M.; Kuroiwa, T. In not only vertebroplasty but also kyphoplasty, the resolution of vertebral deformities depends on vertebral mobility. AJNR Am. J. Neuroradiol. 2013, 34, 1474–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fechtenbaum, J.; Etcheto, A.; Kolta, S.; Feydy, A.; Roux, C.; Briot, K. Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporos. Int. 2016, 27, 559–567. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Shi, L.T.; Tang, P.F.; Sun, Z.J.; Wang, Y.H. Correlation analysis of osteoporotic vertebral compression fractures and spinal sagittal imbalance. Orthopade 2017, 46, 249–255. [Google Scholar] [CrossRef]
- Naves, M.; Díaz-López, J.B.; Gómez, C.; Rodríguez-Rebollar, A.; Rodríguez-García, M.; Cannata-Andía, J.B. The effect of vertebral fracture as a risk factor for osteoporotic fracture and mortality in a Spanish population. Osteoporos. Int. 2003, 14, 520–524. [Google Scholar] [CrossRef]
- Su, W.-C.; Wu, W.-T.; Peng, C.-H.; Yu, T.-C.; Lee, R.-P.; Wang, J.-H.; Yeh, K.-T. The Short-Term Changes of the Sagittal Spinal Alignments After Acute Vertebral Compression Fracture Receiving Vertebroplasty and Their Relationship With the Change of Bathel Index in the Elderly. Geriatr. Orthop. Surg. Rehabil. 2022, 13, 21514593221100238. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Ma, S.B.; Shin, H.M.; Song, D.G.; Lee, J.W.; Chang, S.H.; Park, K.Y.; Choy, W.S.; Oh, T.H. Correlation of Sagittal Imbalance and Recollapse after Percutaneous Vertebroplasty for Thoracolumbar Osteoporotic Vertebral Compression Fracture: A Multivariate Study of Risk Factors. Asian Spine J. 2022, 16, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Genant, H.K.; Wu, C.Y.; van Kuijk, C.; Nevitt, M.C. Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 1993, 8, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Röllinghoff, M.; Zarghooni, K.; Zeh, A.; Wohlrab, D.; Delank, K.-S. Is there a stable vertebral height restoration with the new radiofrequency kyphoplasty? A clinical and radiological study. Eur. J. Orthop. Surg. Traumatol. 2013, 23, 507–513. [Google Scholar] [CrossRef]
- Park, J.W.; Park, J.-H.; Jeon, H.J.; Lee, J.Y.; Cho, B.M.; Park, S.-H. Kümmell’s Disease Treated with Percutaneous Vertebroplasty: Minimum 1 Year Follow-Up. Korean J. Neurotrauma 2017, 13, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-W.; Park, S.-M.; Lee, H.J.; Lee, C.-K.; Chang, B.-S.; Kim, H. Infection following percutaneous vertebral augmentation with polymethylmethacrylate. Arch. Osteoporos. 2018, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhao, J.; Hao, C. Osteoporotic Vertebral Compression Fractures: Surgery versus Non-Operative Management. J. Int. Med. Res. 2011, 39, 1438–1447. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Hoshino, M.; Terai, H.; Toyoda, H.; Suzuki, A.; Tamai, K.; Watanabe, K.; Tsujio, T.; Yasuda, H.; Kono, H.; et al. Differences in short-term clinical and radiological outcomes depending on timing of balloon kyphoplasty for painful osteoporotic vertebral fracture. J. Orthop. Sci. 2018, 23, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.T.; Liao, W.J.; Tan, W.C.; Lee, J.K.; Liu, C.H.; Chen, Y.H.; Lin, T.B. Balloon kyphoplasty versus vertebroplasty for treatment of osteoporotic vertebral compression fracture: A prospective, comparative, and randomized clinical study. Osteoporos. Int. 2010, 21, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Lv, Y.-F.; Chen, B.; Li, H.-Y.; Han, X.-B.; Yang, K.; Zhang, W.; Zhou, Y.; Li, C.-Q. Vertebroplasty versus kyphoplasty in osteoporotic vertebral compression fracture: A meta-analysis of prospective comparative studies. Int. Orthop. 2015, 39, 491–500. [Google Scholar] [CrossRef]
Gender | |
---|---|
Male | 14 (29.2%) |
Female | 34 (70.8%) |
Age, SD | 73.8 ± 7 |
BMI (kg/m2), SD | 26.5 ± 4 |
T-Score, SD | −1.9 ± 1.1 |
Vertebral fracture age | |
<6 weeks | 49 (45.5%) |
>6 weeks | 59 (54.6%) |
Vertebral segment treated | |
Thoracic (T1–T10) | 42 (38.9%) |
Thoracolumbar (T11–L2) | 37 (34.3%) |
Lumbar (L3–L5) | 29 (26.8%) |
Type of fracture * | |
Wedge | 33 (30.6%) |
Biconcave | 75 (69.4%) |
Severity of fracture * | |
Grade I | 39 (36.1%) |
Grade II | 29 (26.9%) |
Grade III | 40 (37%) |
IVVC | |
No | 85 (78.7%) |
Yes | 23 (21.3%) |
Volume of cement injected | 3.5 ± 1.18 |
Pre-Surgery | Surgery | First Medical Check-Up | Last Medical Check-Up | ||
---|---|---|---|---|---|
Pre-Cementation | Post-Cementation | ||||
Percutaneous vertebroplasty | 2.24 | 2.31 | 2.43 | 2.3 | 2.21 |
StabiliT® system | 2.29 | 2.44 | 2.63 | 2.54 | 2.47 |
Difference | 0.05 | 0.13 | 0.2 | 0.24 | 0.26 |
p-Value | 0.723 | 0.322 | 0.135 | 0.061 | 0.042 |
Coefficient | SD | t | p Value | 95% CI | |
---|---|---|---|---|---|
Pre-cementation point | |||||
Vertebral segment treated | |||||
Thoracic (T1–T10) | Ref. | ||||
Thoracolumbar (T11–L2) | −0.03 | 0.05 | −0.64 | 0.524 | −0.14 to 0.72 |
Lumbar (L3–L5) | 0.03 | 0.06 | 0.48 | 0.633 | −0.08 to 0.14 |
Type of fracture | |||||
Wedge | Ref. | ||||
Biconcave | −0.02 | 0.051 | −0.50 | 0.617 | −0.13 to 0.08 |
Severity of fracture | |||||
Grade I | Ref. | ||||
Grade II | −0.023 | 0.057 | −0.41 | 0.686 | −0.13 to 0.09 |
Grade III | 0.155 | 0.05 | 2.83 | 0.006 | 0.045 to 0.26 |
IVVC | |||||
No | Ref. | ||||
Yes | 0.06 | 0.05 | 1.16 | 0.250 | −0.05 to 0.18 |
Vertebral fracture age | |||||
<6 weeks | Ref. | ||||
>6 weeks | −0.04 | 0.05 | −0.78 | 0.438 | −0.13 to 0.06 |
Constant | 0.05 | 0.07 | 0.73 | 0.465 | −0.09 to 0.20 |
Post-cementation point | |||||
Vertebral segment treated | |||||
Thoracic (T1–T10) | Ref. | ||||
Thoracolumbar (T11–L2) | −0.13 | 0.07 | −1.82 | 0.072 | −0.27 to 0.01 |
Lumbar (L3–L5) | 0.006 | 0.07 | 0.08 | 0.939 | −0.14 to 0.16 |
Type of fracture | |||||
Wedge | Ref. | ||||
Biconcave | −0.03 | 0.07 | −0.47 | 0.641 | −0.17 to 0.11 |
Severity of fracture | |||||
Grade I | Ref. | ||||
Grade II | 0.007 | 0.07 | 0.1 | 0.921 | −0.14 to 0.16 |
Grade III | 0.18 | 0.07 | 2.4 | 0.018 | 0.03 to 0.32 |
IVVC | |||||
No | Ref. | ||||
Yes | 0.19 | 0.07 | 2.4 | 0.018 | 0.03 to 0.34 |
Vertebral fracture age | |||||
<6 weeks | Ref. | ||||
>6 weeks | 0.03 | 0.06 | 0.46 | 0.647 | −0.095 to 0.15 |
Vertebral augmentation technique | |||||
Vertebroplasty | Ref. | ||||
StabiliT system | 0.13 | 0.08 | 1.66 | 0.1 | −0.02 to 0.29 |
Cement injected | 0.05 | 0.03 | 1.69 | 0.095 | −0.01 to 0.1 |
Constant | −0.03 | 0.12 | −0.22 | 0.826 | −0.26 to 0.21 |
First medical check-up point | |||||
Vertebral segment treated | |||||
Thoracic (T1–T10) | Ref. | ||||
Thoracolumbar (T11–L2) | −0.14 | 0.06 | −2.44 | 0.017 | −0.26 to -0.03 |
Lumbar (L3–L5) | −0.05 | 0.06 | −0.74 | 0.464 | −0.17 to 0.08 |
Type of fracture | |||||
Wedge | Ref. | ||||
Biconcave | −0.05 | 0.06 | −0.93 | 0.354 | −0.16 to 0.06 |
Severity of fracture | |||||
Grade I | Ref. | ||||
Grade II | −0.05 | 0.06 | −0.88 | 0.379 | −0.17 to 0.07 |
Grade III | 0.15 | 0.06 | 2.57 | 0.012 | 0.03 to 0.27 |
IVVC | |||||
No | Ref. | ||||
Yes | 0.03 | 0.06 | 0.53 | 0.595 | −0.09 to 0.16 |
Vertebral fracture age | |||||
<6 weeks | Ref. | ||||
>6 weeks | −0.04 | 0.05 | −0.68 | 0.496 | −0.13 to 0.06 |
Vertebral augmentation technique | |||||
Vertebroplasty | Ref. | ||||
StabiliT system | 0.22 | 0.06 | 3.46 | 0.001 | 0.09 to 0.35 |
Cement injected | 0.0007 | 0.02 | 0.03 | 0.972 | −0.04 to 0.04 |
Constant | 0.12 | 0.09 | 1.23 | 0.221 | −0.07 to 0.31 |
First medical check-up point | |||||
Vertebral segment treated | |||||
Thoracic (T1–T10) | Ref. | ||||
Thoracolumbar (T11–L2) | −0.08 | 0.06 | −1.36 | 0.176 | −0.21 to 0.04 |
Lumbar (L3–L5) | −0.06 | 0.07 | −0.92 | 0.358 | −0.19 to 0.07 |
Type of fracture | |||||
Wedge | Ref. | ||||
Biconcave | −0.06 | 0.06 | −0.97 | 0.334 | −0.18 to 0.07 |
Severity of fracture | |||||
Grade I | Ref. | ||||
Grade II | −0.08 | 0.07 | −1.24 | 0.219 | −0.21 to 0.05 |
Grade III | 0.11 | 0.06 | 1.65 | 0.102 | −0.02 to 0.23 |
IVVC | |||||
No | Ref. | ||||
Yes | 0.03 | 0.07 | 0.42 | 0.675 | −0.11 to 0.16 |
Vertebral fracture age | |||||
<6 weeks | Ref. | ||||
>6 weeks | 0.06 | 0.05 | 1.08 | 0.283 | −0.05 to 0.17 |
Vertebral augmentation technique | |||||
Vertebroplasty | Ref. | ||||
StabiliT system | 0.21 | 0.07 | 3.04 | 0.003 | 0.07 to 0.36 |
Cement injected | −0.01 | 0.02 | −0.44 | 0.66 | −0.06 to 0.04 |
Constant | 0.03 | 0.11 | 0.35 | 0.726 | −0.17 to 0.24 |
Increase Height | Reduce Height | Questionable | Not Associated | |
---|---|---|---|---|
Pre-cementation | Collapse grade III | Demographic factor (age, gender, BMI and T-Score) Vertebral segment treated Type of fracture IVVC Vertebral fracture age | ||
Post-cementation | Collapse grade III IVVC | Thoracolumbar zone Cement injected | Demographic factor (age, gender, BMI and T-Score) Type of fracture IVVC Vertebral fracture age Vertebral augmentation technique | |
First medical check-up | Collapse grade III StabiliT® system | Thoracolumbar zone | Demographic factor (age, gender, BMI and T-Score) Type of fracture IVVC Vertebral fracture age Cement injected | |
Last medical check-up | StabiliT® system | Demographic factor (age, gender, BMI and T-Score) Vertebral segment treated Type of fracture Severity of fracture IVVC Vertebral fracture age Cement injected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Payo-Ollero, J.; Llombart-Blanco, R.; Villas, C.; Alfonso, M. Vertebral Body Height Changes in Acute Symptomatic Osteoporotic Vertebral Compression Fractures Treated with Vertebral Cement Augmentation—Which Factors Affect Vertebral Body Height during Follow-up? A Multiple Linear Regression Study. Geriatrics 2022, 7, 142. https://doi.org/10.3390/geriatrics7060142
Payo-Ollero J, Llombart-Blanco R, Villas C, Alfonso M. Vertebral Body Height Changes in Acute Symptomatic Osteoporotic Vertebral Compression Fractures Treated with Vertebral Cement Augmentation—Which Factors Affect Vertebral Body Height during Follow-up? A Multiple Linear Regression Study. Geriatrics. 2022; 7(6):142. https://doi.org/10.3390/geriatrics7060142
Chicago/Turabian StylePayo-Ollero, Jesús, Rafael Llombart-Blanco, Carlos Villas, and Matías Alfonso. 2022. "Vertebral Body Height Changes in Acute Symptomatic Osteoporotic Vertebral Compression Fractures Treated with Vertebral Cement Augmentation—Which Factors Affect Vertebral Body Height during Follow-up? A Multiple Linear Regression Study" Geriatrics 7, no. 6: 142. https://doi.org/10.3390/geriatrics7060142
APA StylePayo-Ollero, J., Llombart-Blanco, R., Villas, C., & Alfonso, M. (2022). Vertebral Body Height Changes in Acute Symptomatic Osteoporotic Vertebral Compression Fractures Treated with Vertebral Cement Augmentation—Which Factors Affect Vertebral Body Height during Follow-up? A Multiple Linear Regression Study. Geriatrics, 7(6), 142. https://doi.org/10.3390/geriatrics7060142