Does Estimated Glomerular Filtration Rate Predict In-Hospital Mortality in Acutely Unwell Hospitalized Oldest Old?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. eGFR
2.4. Modified Frailty Index-5 (MFI-5)
2.5. Data Analysis
3. Results
3.1. Patient Characteristics
3.1.1. Multivariate Cox Proportional Hazard Models
3.1.2. Stratified Analyses by Frailty
3.1.3. Fully Adjusted Non-Stratified Cox Proportional Hazard Model (Model F)
4. Discussion
4.1. Clinical Relevance of the Findings
4.2. Limitations
4.3. Direction of Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunnell, K. Ageing and mortality in the UK-national statistician’s annual article on the population. Popul. Trends 2008, 134, 6. [Google Scholar]
- Van Pottelbergh, G.; Elzen, W.P.D.; Degryse, J.; Gussekloo, J. Prediction of mortality and functional decline by changes in eGFR in the very elderly: The Leiden 85-plus study. BMC Geriatr. 2013, 13, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, J.R.; Anderson, S. The Aging Kidney: Physiological Changes. Adv. Chronic Kidney Dis. 2010, 17, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidani, A.K.; Griffin, K.A. Pathophysiology of Hypertensive Renal Damage. Hypertension 2004, 44, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Boger, R.H. Asymmetric Dimethylarginine, an Endogenous Inhibitor of Nitric Oxide Synthase, Explains the “L-Arginine Paradox” and Acts as a Novel Cardiovascular Risk Factor. J. Nutr. 2004, 134, 2842S–2847S. [Google Scholar] [CrossRef] [Green Version]
- De La Higuera, L.; Riva, E.; Djade, C.D.; Mandelli, S.; Franchi, C.; Marengoni, A.; Salerno, F.; Corrao, S.; Pasina, L.; Tettamanti, M.; et al. Prognostic value of estimated glomerular filtration rate in hospitalized elderly patients. Intern. Emerg. Med. 2013, 9, 735–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rifkin, D.E.; Shlipak, M.G.; Katz, R.; Fried, L.F.; Siscovick, D.; Chonchol, M.; Newman, A.B.; Sarnak, M.J. Rapid Kidney Function Decline and Mortality Risk in Older Adults. Arch. Intern. Med. 2008, 168, 2212–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montesanto, A.; De Rango, F.; Berardelli, M.; Mari, V.; Lattanzio, F.; Passarino, G.; Corsonello, A. Glomerular filtration rate in the elderly and in the oldest old: Correlation with frailty and mortality. AGE 2014, 36, 9641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pai, Y.; Butchart, C.; Lunt, C.J.; Musonda, P.; Gautham, N.; Soiza, R.L.; Potter, J.F.; Myint, P.K. Age, co-morbidity and poor mobility: No evidence of predicting in-patient death and acute hospital length of stay in the oldest old. Qjm Int. J. Med. 2011, 104, 671–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandelli, S.; Riva, E.; Tettamanti, M.; DeToma, P.; Giacomin, A.; Lucca, U. Mortality Prediction in the Oldest Old with Five Different Equations to Estimate Glomerular Filtration Rate: The Health and Anemia Population-based Study. PLoS ONE 2015, 10, e0136039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, D.J.; Malik, A.T.; Jain, N.; Yu, E.; Kim, J.; Khan, S.N. The Modified 5-Item Frailty Index: A Concise and Useful Tool for Assessing the Impact of Frailty on Postoperative Morbidity Following Elective Posterior Lumbar Fusions. World Neurosurg. 2019, 124, e626–e632. [Google Scholar] [CrossRef] [PubMed]
- Bustos-Guadaño, F.; Martín-Calderón, J.L.; Criado-Álvarez, J.J.; Muñoz-Jara, R.; Cantalejo-Gutiérrez, A.; Mena-Moreno, M.C. Estimation of the glomerular filtration rate in people older than 85: Comparisons between CKD-EPI, MDRD-IDMS and BIS1 equations. Nefrologia 2017, 37, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Liber, M.; Sonnenblick, M.; Munter, G. Hypernatremia and Copeptin Levels in the Elderly Hospitalized Patient. Endocr. Pract. 2016, 22, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.M.; Jantzen, C.; Lauritzen, J.B.; Abrahamsen, B.; Jorgensen, H.L. Hyponatremia and hypernatremia are associated with increased 30-day mortality in hip fracture patients. Osteoporos. Int. 2016, 27, 397–404. [Google Scholar] [CrossRef]
- Jin, R.; Grunkemeier, G.L.; Brown, J.R.; Furnary, A.P. Estimated Glomerular Filtration Rate and Renal Function. Ann. Thorac. Surg. 2008, 86, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Schaeffner, E.S.; Ebert, N.; Delanaye, P.; Frei, U.; Gaedeke, J.; Jakob, O.; Kuhlmann, M.K.; Schuchardt, M.; Tölle, M.; Ziebig, R.; et al. Two Novel Equations to Estimate Kidney Function in Persons Aged 70 Years or Older. Ann. Intern. Med. 2012, 157, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Q.; Zhang, D.; Zhao, Y.; Liu, L.; Li, J.; Zhang, F.; Luan, F.; Duan, J.; Liu, Z.; Cai, G.; et al. The practicality of different eGFR equations in centenarians and near-centenarians: Which equation should we choose? PeerJ 2020, 8, e8636. [Google Scholar] [CrossRef] [PubMed]
- Vart, P.; Barlas, R.S.; Bettencourt-Silva, J.H.; Metcalf, A.K.; Bowles, K.M.; Potter, J.F.; Myint, P.K. Estimated glomerular filtration rate and risk of poor outcomes after stroke. Eur. J. Neurol. 2019, 26, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
All | MFI-5 ≤ 1 | MFI-5 ≥ 2 | p Value | |
---|---|---|---|---|
N | 392 | 292 (74.49%) | 100 (25.51%) | - |
Age, Mean (SD) | 93 (2.61) | 93 (2.59) | 93 (4.00) | 0.19 a |
Sex, N (%) | M = 124 | M = 89 | M = 34 | 0.76 * |
(31.55%) | (30.48%) | (34.00%) | ||
F = 269 | F = 203 | F = 66 | ||
(68.45%) | (69.52%) | (65.00%) | ||
Blood parameters on admission | ||||
Haemoglobin Mean (SD) g/dL | 12.20 (2.80) | 12.46 (5.45) | 12.20 (3.3) | 0.79 a |
WCC Median (IQR) K/uL | 9.6 (7.4–13.1) | 9.4 (7.2–13.07) | 9.95 (7.9–13.05) | 0.16 k |
CRP Median (IQR) mg/L | 78 (21.25–83.75) | 78 (22–78) | 78 (20.25–109) | 0.033 k |
Albumin Mean (SD) g/L | 37.00 (8.00) | 36.03 (5.94) | 34.00 (9.00) | 0.02 a |
Urea Median (IQR) mg/dL | 9.8 (7.2–13.9) | 9.65 (7.03–13.75) | 10.15 (7.5–15.1) | 0.60 k |
Creatine Median (IQR) µmol/L | 106.5 (81–136) | 105.5 (80.25–134.75) | 112 (84–139) | 0.49 k |
Sodium Median (IQR) mEq/L | 139 (135–141) | 139 (135–141) | 139 (135–142) | 0.36 k |
Co-morbidities, N (%) | ||||
IHD | 144 | 110 (37.67%) | 34 (34.00%) | 0.029 * |
Hypertension | 184 | 106 (36.30%) | 77 (77.00%) | <0.001 * |
Diabetes | 47 | 14 (4.79%) | 33 (33.00%) | <0.001 * |
Stroke/CVD | 82 | 70 (23.97%) | 12 (12.00%) | <0.001 * |
Hyperlipidaemia | 14 | 9 (3.08%) | 5 (5.00%) | 0.06 * |
COPD | 21 | 6 (2.05%) | 15 (15.00%) | <0.001 * |
Atrial fibrillation | 80 | 55 (18.83%) | 25 (25.00%) | <0.001 * |
Baseline Measurements | ||||
Systolic blood pressure Median (IQR) mmHg | 136 (115–161) | 137 (116–163.75) | 131 (113–160) | 0.57 k |
Pulse (Mean, SD) BPM | 87.72 (22.11) | 87.52 (22.72) | 88.51 (21.33) | 0.97 a |
Medications, N (%) | ||||
Polypharmacy ≥ 5 | ||||
Yes | 222 (56.49%) | 159 (54.45%) | 62 (62.00%) | 0.10 * |
No | 171 (43.51%) | 133 (45.55%) | 38 (38.00%) | 0.10 * |
eGFR mL/min/1.732, N (%) | ||||
≤30 | 237 (60.45%) | 175 (59.93%) | 62 (62.00%) | 0.34 k |
>30 | 155 (39.54%) | 117 (40.07%) | 38 (38.00%) | 0.34 k |
Outcomes, N (%) | ||||
Mortality | 63 (16.03%) | 46 (15.75%) | 17 (17.00%) | 0.035 * |
Model | Events (n) | HR for All-Cause Mortality for Low eGFR | 95% CI | p-Value |
---|---|---|---|---|
A | 63/392 | 1.01 | 0.99–1.03 | 0.38 |
B | 63/392 | 1.00 | 0.98–1.02 | 0.80 |
C | 63/392 | 1.00 | 0.98–1.02 | 0.96 |
D | 63/392 | 1.00 | 0.98–1.01 | 0.64 |
E | 63/392 | 1.00 | 0.98–1.02 | 0.70 |
F | 63/392 | 1.00 | 0.98–1.02 | 0.79 |
Model’s stratified using MFI-5 | ||||
G (MFI-5 = ≤ 1) | 63/392 | 1.01 | 0.98–1.03 | 0.67 |
H (MFI-5 = ≥ 2) | 63/392 | 0.96 | 0.92–1.01 | 0.11 |
Model stratified using eGFR strata | ||||
I (eGFR strata = 1 (≤30 mL/min/1.732)) | 63/392 | 1.01 | 0.95–1.06 | 0.83 |
J (eGFR strata = 2 (>30 mL/min/1.732)) | 63/392 | 1.02 | 0.98–1.05 | 0.35 |
MFI-5 ≤ 1 | HR | 95% CI | p-Value |
---|---|---|---|
Sex | 1.29 | 0.49–3.40 | 0.60 |
Age | 1.00 | 0.88–1.14 | 0.99 |
eGFR | 1.01 | 0.98–1.03 | 0.67 |
Hb | 1.02 | 0.99–1.04 | 0.27 |
WCC | 1.00 | 0.97–1.03 | 0.88 |
CRP | 1.00 | 1.00–1.01 | 0.31 |
Albumin | 1.03 | 0.97–1.10 | 0.39 |
Sodium | 1.05 | 0.98–1.13 | 0.15 |
Pulse | 1.01 | 1.00–1.03 | 0.043 |
IHD | 1.45 | 0.74–2.84 | 0.28 |
Hypertension | 0.33 | 0.15–0.76 | 0.009 |
Diabetes | 0.00 | 0.00–0.00 | 0.97 |
Stroke/CVD | 0.70 | 0.28–1.74 | 0.44 |
COPD | 0.85 | 0.11–6.63 | 0.87 |
Atrial Fibrillation | 1.10 | 0.49–2.46 | 0.83 |
Polypharmacy | 1.48 | 0.75–2.91 | 0.25 |
MFI-5 ≥ 2 | HR | 95% CI | p-Value |
---|---|---|---|
Sex | 0.43 | 0.05–3.7 | 0.45 |
Age | 1.05 | 0.79–1.41 | 0.74 |
eGFR | 0.96 | 0.92–1.01 | 0.11 |
Hb | 1.16 | 0.83–1.62 | 0.38 |
WCC | 1.04 | 0.91–1.2 | 0.57 |
CRP | 1.00 | 0.99–1.01 | 0.87 |
Albumin | 0.98 | 0.88–1.09 | 0.69 |
Sodium | 1.07 | 1–1.14 | 0.054 |
Pulse | 1.00 | 0.98–1.04 | 0.77 |
IHD | 1.34 | 0.33–5.50 | 0.69 |
Hypertension | 0.35 | 0.83–1.62 | 0.19 |
Diabetes | 0.04 | 0.00–0.8 | 0.035 |
Stroke/CVD | 0.22 | 0.04–1.32 | 0.10 |
COPD | 0.000 | 0.000–0.000 | 0.98 |
Atrial Fibrillation | 0.44 | 0.09–2.30 | 0.33 |
Polypharmacy | 1.54 | 0.31–7.72 | 0.60 |
HR | 95% CI | p-Value | |
---|---|---|---|
Sex | 0.96 | 0.42–2.20 | 0.93 |
Age | 1.00 | 0.90–1.12 | 0.97 |
eGFR | 1.00 | 0.98–1.02 | 0.79 |
Hb | 1.02 | 0.99–1.04 | 0.18 |
WCC | 1.00 | 0.97–1.03 | 0.94 |
CRP | 1.00 | 1–1.01 | 0.19 |
Albumin | 1.01 | 0.96–1.06 | 0.66 |
Sodium | 1.06 | 1.02–1.10 | 0.002 |
Pulse | 1.01 | 1.00–1.03 | 0.026 |
IHD | 1.46 | 0.82–2.60 | 0.20 |
Hypertension | 0.36 | 0.19–0.69 | 0.002 |
Diabetes | 0.08 | 0.01–0.62 | 0.02 |
Stroke/CVD | 0.55 | 0.26–1.16 | 0.12 |
COPD | 0.30 | 0.04–2.26 | 0.24 |
Atrial Fibrillation | 0.92 | 0.48–1.78 | 0.81 |
Polypharmacy | 1.40 | 0.77–2.55 | 0.27 |
MFI | 2.61 | 1.27–5.36 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakerly, Z.R.; Soiza, R.L.; Pana, T.A.; Myint, P.K. Does Estimated Glomerular Filtration Rate Predict In-Hospital Mortality in Acutely Unwell Hospitalized Oldest Old? Geriatrics 2022, 7, 135. https://doi.org/10.3390/geriatrics7060135
Wakerly ZR, Soiza RL, Pana TA, Myint PK. Does Estimated Glomerular Filtration Rate Predict In-Hospital Mortality in Acutely Unwell Hospitalized Oldest Old? Geriatrics. 2022; 7(6):135. https://doi.org/10.3390/geriatrics7060135
Chicago/Turabian StyleWakerly, Zack Robert, Roy L. Soiza, Tiberiu A. Pana, and Phyo Kyaw Myint. 2022. "Does Estimated Glomerular Filtration Rate Predict In-Hospital Mortality in Acutely Unwell Hospitalized Oldest Old?" Geriatrics 7, no. 6: 135. https://doi.org/10.3390/geriatrics7060135
APA StyleWakerly, Z. R., Soiza, R. L., Pana, T. A., & Myint, P. K. (2022). Does Estimated Glomerular Filtration Rate Predict In-Hospital Mortality in Acutely Unwell Hospitalized Oldest Old? Geriatrics, 7(6), 135. https://doi.org/10.3390/geriatrics7060135