Anti-Cancer Treatment Strategies in the Older Population: Time to Test More?
Abstract
:1. Introduction
2. Epidemiologic and Mechanistic Data
3. Maximum Tolerated Dose of Chemotherapy
4. Metronomic Chemotherapy
5. Immunotherapy
6. Metronomic Chemotherapy and Immunotherapy: A New Horizon?
7. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hutchins, L.F.; Unger, J.M.; Crowley, J.J.; Coltman, C.A., Jr.; Albain, K.S. Underrepresentation of patients 65 years of age or older in cancer-treatment trials. N. Engl. J. Med. 1999, 341, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.H.; Wang, X.; Stinchcombe, T.E.; Wong, M.L.; Cheng, P.; Ganti, A.K.; Sargent, D.J.; Zhang, Y.; Hu, C.; Mandrekar, S.J.; et al. Enrollment Trends and Disparity Among Patients With Lung Cancer in National Clinical Trials, 1990 to 2012. J. Clin. Oncol. 2016, 34, 3992–3999. [Google Scholar] [CrossRef]
- Freedman, R.A.; Foster, J.C.; Seisler, D.K.; Lafky, J.M.; Muss, H.B.; Cohen, H.J.; Mandelblatt, J.; Winer, E.P.; Hudis, C.A.; Partridge, A.H.; et al. Accrual of Older Patients With Breast Cancer to Alliance Systemic Therapy Trials Over Time: Protocol A151527. J. Clin. Oncol. 2017, 35, 421–431. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Miller, K.D.; Dale, W.; Mohile, S.G.; Cohen, H.J.; Leach, C.R.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J. Clin. 2019, 69, 452–467. [Google Scholar] [CrossRef] [Green Version]
- Ries, E.M.; Kosary, C.L.; Hankey, B.F. SEER Cancer Statistic Review 1975–2000; National Cancer Institute: Bethesda, MD, USA, 2003.
- De Angelis, R.; Sant, M.; Coleman, M.P.; Francisci, S.; Baili, P.; Pierannunzio, D.; Trama, A.; Visser, O.; Brenner, H.; Ardanaz, E.; et al. Cancer survival in Europe 1999–2007 by country and age: Results of EUROCARE--5-a population-based study. Lancet Oncol. 2014, 15, 23–34. [Google Scholar] [CrossRef]
- Niccoli, T.; Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 2012, 22, R741–R752. [Google Scholar] [CrossRef] [Green Version]
- Sandiford, O.A.; Moore, C.A.; Du, J.; Boulad, M.; Gergues, M.; Eltouky, H.; Rameshwar, P. Human Aging and Cancer: Role of miRNA in Tumor Microenvironment. Adv. Exp. Med. Biol. 2018, 1056, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Falandry, C.; Bonnefoy, M.; Freyer, G.; Gilson, E. Biology of Cancer and Aging: A Complex Association With Cellular Senescence. J. Clin. Oncol. 2014, 32, 2604–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aunan, J.R.; Cho, W.C.; Søreide, K. The Biology of Aging and Cancer: A Brief Overview of Shared and Divergent Molecular Hallmarks. Aging Dis. 2017, 8, 628–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawelec, G. Hallmarks of human “immunosenescence”: Adaptation or dysregulation? Immun. Ageing 2012, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Pawelec, G. Immunosenescence and cancer. Biogerontology 2017, 18, 717–721. [Google Scholar] [CrossRef]
- Ikuno, N.; Soda, H.; Watanabe, M.; Oka, M. Irinotecan (CPT-11) and characteristic mucosal changes in the mouse ileum and cecum. J. Natl. Cancer Inst. 1995, 87, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- Tralongo, A.C.; Antonuzzo, A.; Pronzato, P.; Sbrana, A.; Turrini, M.; Zoratto, F.; Danova, M. Management of chemotherapy-induced neutropenia in patients with cancer: 2019 guidelines of the Italian Medical Oncology Association (AIOM). Tumori 2020, 106, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Müller, V.; Tamási, L.; Gálffy, G.; Losonczy, G. Supportive care during chemotherapy for lung cancer in daily practice. Magy Onkol. 2012, 56, 159–165. [Google Scholar]
- Sawhney, R.; Sehl, M.; Naeim, A. Physiologic aspects of aging: Impact on cancer management and decision making, part I. Cancer J. 2005, 11, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Sehl, M.; Sawhney, R.; Naeim, A. Physiologic aspects of aging: Impact on cancer management and decision making, part II. Cancer J. 2005, 11, 461–473. [Google Scholar] [CrossRef]
- Zocchi, M.R.; Poggi, A. Role of gammadelta T lymphocytes in tumor defense. Front Biosci. 2004, 9, 2588–2604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yancik, R.; Wesley, M.N.; Ries, L.A.; Havlik, R.J.; Long, S.; Edwards, B.K.; Yates, J.W. Comorbidity and age as predictors of risk for early mortality of male and female colon carcinoma patients: A population-based study. Cancer 1998, 82, 2123–2134. [Google Scholar] [CrossRef]
- Lindner, O.C.; Phillips, B.; McCabe, M.G.; Mayes, A.; Wearden, A.; Varese, F.; Talmi, D. A meta-analysis of cognitive impairment following adult cancer chemotherapy. Neuropsychology 2014, 28, 726–740. [Google Scholar] [CrossRef] [Green Version]
- Extermann, M.; Boler, I.; Reich, R.R.; Lyman, G.H.; Brown, R.H.; DeFelice, J.; Levine, R.M.; Lubiner, E.T.; Reyes, P.; Schreiber, F.J., 3rd; et al. Predicting the risk of chemotherapy toxicity in older patients: The Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score. Cancer 2012, 118, 3377–3386. [Google Scholar] [CrossRef] [PubMed]
- Kotzerke, D.; Moritz, F.; Mantovani, L.; Hambsch, P.; Hering, K.; Kuhnt, T.; Yahiaoui-Doktor, M.; Forstmeyer, D.; Lordick, F.; Knödler, M. The performance of three oncogeriatric screening tools—G8, optimised G8 and CARG—In predicting chemotherapy-related toxicity in older patients with cancer. A prospective clinical study. J. Geriatr. Oncol. 2019, 10, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Moth, E.B.; Kiely, B.E.; Stefanic, N.; Naganathan, V.; Martin, A.; Grimison, P.; Stockler, M.R.; Beale, P.; Blinman, P. Predicting chemotherapy toxicity in older adults: Comparing the predictive value of the CARG Toxicity Score with oncologists’ estimates of toxicity based on clinical judgement. J. Geriatr. Oncol. 2019, 10, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Browder, T.; Butterfield, C.E.; Kräling, B.M.; Shi, B.; Marshall, B.; O’Reilly, M.S.; Folkman, J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000, 60, 1878–1886. [Google Scholar] [PubMed]
- Cazzaniga, M.E.; Dionisio, M.R.; Riva, F. Metronomic chemotherapy for advanced breast cancer patients. Cancer Lett. 2017, 400, 252–258. [Google Scholar] [CrossRef]
- De Felice, F.; Benevento, I.; Musella, A.; Musio, D.; Tombolini, V. Metronomic chemotherapy in head and neck cancer. Cancer Lett. 2017, 400, 219–222. [Google Scholar] [CrossRef]
- Filippi, R.; Lombardi, P.; Depetris, I.; Fenocchio, E.; Quarà, V.; Chilà, G.; Aglietta, M.; Leone, F. Rationale for the use of metronomic chemotherapy in gastrointestinal cancer. Expert Opin. Pharmacother. 2018, 19, 1451–1463. [Google Scholar] [CrossRef]
- Woo, I.S.; Jung, Y.H. Metronomic chemotherapy in metastatic colorectal cancer. Cancer Lett. 2017, 400, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 2003, 3, 401–410. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Bocci, G.; Nicolaou, K.C.; Kerbel, R.S. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res. 2002, 62, 6938–6943. [Google Scholar] [PubMed]
- Klement, G.; Huang, P.; Mayer, B.; Green, S.K.; Man, S.; Bohlen, P.; Hicklin, D.; Kerbel, R.S. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin. Cancer Res. 2002, 8, 221–232. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, T.; Sakaguchi, S. Regulatory T cells in immune surveillance and treatment of cancer. Semin. Cancer Biol. 2006, 16, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Ostrand-Rosenberg, S.; Sinha, P. Myeloid-derived suppressor cells: Linking inflammation and cancer. J. Immunol. 2009, 182, 4499–4506. [Google Scholar] [CrossRef]
- Bryniarski, K.; Szczepanik, M.; Ptak, M.; Zemelka, M.; Ptak, W. Influence of cyclophosphamide and its metabolic products on the activity of peritoneal macrophages in mice. Pharmacol. Rep. 2009, 61, 550–557. [Google Scholar] [CrossRef]
- Ghiringhelli, F.; Menard, C.; Puig, P.E.; Ladoire, S.; Roux, S.; Martin, F.; Solary, E.; Le Cesne, A.; Zitvogel, L.; Chauffert, B. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 2007, 56, 641–648. [Google Scholar] [CrossRef]
- Kaneno, R.; Shurin, G.V.; Tourkova, I.L.; Shurin, M.R. Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J. Transl. Med. 2009, 7, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mencoboni, M.; Filiberti, R.A.; Taveggia, P.; Del Corso, L.; Del Conte, A.; Covesnon, M.G.; Puccetti, C.; Donati, S.; Auriati, L.; Amoroso, D.; et al. Safety of First-line Chemotherapy with Metronomic Single-agent Oral Vinorelbine in Elderly Patients with NSCLC. Anticancer Res. 2017, 37, 3189–3194. [Google Scholar] [CrossRef] [Green Version]
- Cazzaniga, M.E.; Riva, F. La chemioterapia metronomica nelle pazienti anziane con carcinoma mammario avanzato: È l’inizio di una nuova era? Arg. Geriat. Oncol. 2017, 2, 13–19. [Google Scholar]
- Coley, W.B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin. Orthop. Relat. Res. 1991, 262, 3–11. [Google Scholar]
- Martin-Liberal, J.; Ochoa de Olza, M.; Hierro, C.; Gros, A.; Rodon, J.; Tabernero, J. The expanding role of immunotherapy. Cancer Treat. Rev. 2017, 54, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 2009, 206, 3015–3029. [Google Scholar] [CrossRef]
- Amarnath, S.; Mangus, C.W.; Wang, J.C.; Wei, F.; He, A.; Kapoor, V.; Foley, J.E.; Massey, P.R.; Felizardo, T.C.; Riley, J.L.; et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci. Transl. Med. 2011, 3, 111ra120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, C.A.; Sullivan, T.J.; Allison, J.P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997, 7, 885–895. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): Post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019, 20, 1239–1251. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Hanna, N.H.; Schneider, B.J.; Temin, S.; Baker, S., Jr.; Brahmer, J.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; et al. Therapy for Stage IV Non-Small-Cell Lung Cancer Without Driver Alterations: ASCO and OH (CCO) Joint Guideline Update. J. Clin. Oncol. 2020, 38, 1608–1632. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Elias, R.; Giobbie-Hurder, A.; McCleary, N.J.; Ott, P.; Hodi, F.S.; Rahma, O. Efficacy of PD-1 & PD-L1 inhibitors in older adults: A meta-analysis. J. Immunother. Cancer 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccarese, C.; Iacovelli, R.; Bria, E.; Palazzo, A.; Maiorano, B.A.; Mosillo, C.; Carbone, C.; Piro, G.; Tortora, G. The Anticancer Efficacy of Immune Checkpoint Inhibitors According to Patients’ Age: A Systematic Review and Meta-Analysis. J. Immunother. 2020, 43, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, Y.; Rolfe, P.A.; Hernández, V.M.; Guzman, W.; Kradjian, G.; Marelli, B.; Qin, G.; Qi, J.; Wang, H.; et al. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models. Clin. Cancer Res. 2017, 23, 5869–5880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kareva, I. A Combination of Immune Checkpoint Inhibition with Metronomic Chemotherapy as a Way of Targeting Therapy-Resistant Cancer Cells. Int. J. Mol. Sci. 2017, 18, 2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellebaek, E.; Engell-Noerregaard, L.; Iversen, T.Z.; Froesig, T.M.; Munir, S.; Hadrup, S.R.; Andersen, M.H.; Svane, I.M. Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: Results from a phase II trial. Cancer Immunol. Immunother. 2012, 61, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- Karachi, A.; Yang, C.; Dastmalchi, F.; Sayour, E.J.; Huang, J.; Azari, H.; Long, Y.; Flores, C.; Mitchell, D.A.; Rahman, M. Modulation of temozolomide dose differentially affects T-cell response to immune checkpoint inhibition. Neuro Oncol. 2019, 21, 730–741. [Google Scholar] [CrossRef]
- Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015, 162, 1229–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author, Year Reference | Study Design | Treatment Regimen | Outcomes |
---|---|---|---|
Xu C et al., 2017 | EMT-6 and MC38 murine tumor models | NHS-muIL12 (2 or 10 μg) and avelumab (200 μg) combination therapy | Complete tumor regression, generation of long-term tumor-specific protective immunity |
Ma J, 2009 | PC-3 tumors and 9 L gliosarcoma xenograft models in mice | Axitinib (25 mg/kg body weight) and cyclophosphamide (140 mg/kg body weight) combination therapy | Increased antitumor activity |
Ko H.-J, 2007 | Tumor model in mice; mouse Her-2/neu as self-antigen investigated whether genetic vaccination with DNA plasmid and/or adenoviral vector expressing the extracellular and transmembrane domain of syngeneic mouse Her-2/neu or xenogenic human Her-2/neu could induce mouse Her-2/neu–specific CTL responses. | 60 mg/kg (1.2 mg per mouse) of gemcitabine, followed by AdhHM 1 treatment and agonistic αGITR Ab 2 (DTA-1 3) | Higher levels of therapeutic antitumor immunity |
A Karachi, 2019 | GL261 and KR158 murine glioma models | MD 4 temozolomide (25 mg/kg × 10 days) or standard dose temozolomide (50 mg/kg × 5 days) and PD-1 antibody combination therapy | Decrease in exhaustion markers in tumor infiltrating lymphocytes with MD temozolomide/PD-1 antibody group Benefit of PD-1 inhibition’s reduction with standard dosing strategies of temozolomide |
Author, Year | Study Design | Primary Endpoint | Study Population, n, Disease, Mean Age (Range) | Treatment Regimen | Outcome |
---|---|---|---|---|---|
M Podrazil, 2015 | Open-label, single-arm Phase I/II clinical trial | Safety and immune responses | 25 patients, metastatic CRPC a, median age 73 years (age range 48–82) | Docetaxel combined with treatment with autologous mature DCs b pulsed with DCVAC/PCa c Twelve doses of 1 × 107 dendritic cells injected. Administration of docetaxel (75 mg/m2) and prednisone (5 mg twice daily) after the initial two doses of DCVAC/PCa Metronomic cyclophosphamide (Cyclophosphamide Orion® 50 mg daily for 1 week), before the 1st DCVAC/PCa dose | PSA reduction by at least 50% on two visits at least 6 weeks apart in 39.1% A ≥50% decrease in PSA in 34.8% of patients at 6 months after the initiation of chemo/immunotherapy Median survival of 19 months for the DCVAC/PCa-treated group compared to 11.8 months in the Halabi and 13 months in the MSKCC control predictions Improvement in the median overall survival with combined docetaxel and DCVAC/PCa |
N Abd El Bary, 2010 | Tolerability and PFS | 41 patients, istologically aggressive non-Hodgkin lymphoma, median age 56 years | Oral cyclophosphamide (50 mg every day), oral methotrexate (2.5 mg 4 times/week) and high-dose oral celecoxib (400 mg twice daily) until disease progression or unacceptable toxicity | No major toxicities Partial response in 31.7% Stable disease in 48.8% Progression-free survival was 12 months Median response duration was 10 months | |
E Ellebaek, 2012 | Phase II vaccination trial | Tolerability and safety, immunological and clinical response and to determine PFS as well as OS | 28 patients, progressive metastatic melanoma, median age 58 years (age range 22–82) | Metronomic dose of cyclophosphamide (50 mg twice a day for 1 week altering with off treatment) and celecoxib (200 mg daily throughout the study) followed by vaccination with DC | Improved survival compared to treatment without chemotherapy and celecoxib Prolonged survival in SD d patients compared with PD e patients (10.5 vs. 6.0 months, p = 0.048) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tralongo, A.C.; Fratamico, R.S.; Russo, C.; Sbrana, A.; Antonuzzo, A.; Danova, M. Anti-Cancer Treatment Strategies in the Older Population: Time to Test More? Geriatrics 2021, 6, 42. https://doi.org/10.3390/geriatrics6020042
Tralongo AC, Fratamico RS, Russo C, Sbrana A, Antonuzzo A, Danova M. Anti-Cancer Treatment Strategies in the Older Population: Time to Test More? Geriatrics. 2021; 6(2):42. https://doi.org/10.3390/geriatrics6020042
Chicago/Turabian StyleTralongo, Antonino C., Roberto S. Fratamico, Chiara Russo, Andrea Sbrana, Andrea Antonuzzo, and Marco Danova. 2021. "Anti-Cancer Treatment Strategies in the Older Population: Time to Test More?" Geriatrics 6, no. 2: 42. https://doi.org/10.3390/geriatrics6020042
APA StyleTralongo, A. C., Fratamico, R. S., Russo, C., Sbrana, A., Antonuzzo, A., & Danova, M. (2021). Anti-Cancer Treatment Strategies in the Older Population: Time to Test More? Geriatrics, 6(2), 42. https://doi.org/10.3390/geriatrics6020042