Knee Extension Strength Measures Indicating Probable Sarcopenia Is Associated with Health-Related Outcomes and a Strong Predictor of 1-Year Mortality in Patients Following Hip Fracture Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Primary Exposures
2.3. Adjustment Variables
2.4. Physical Performance and Patient-Reported Measures
2.5. Primary and Secondary Outcomes
2.6. Statistical Analysis
3. Results
3.1. KES and HGS-Based Probable Sarcopenia Definitions and 1-Year Death
3.2. KES-Based Probable Sarcopenia Definition and Health-Related Outcomes
4. Discussion
4.1. Mortality
4.2. Health-Related Outcomes
4.3. Limitations
4.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobestiansky, S.; Michaelsson, K.; Cederholm, T. Sarcopenia prevalence and associations with mortality and hospitalisation by various sarcopenia definitions in 85–89 year old community-dwelling men: A report from the ULSAM study. BMC Geriatr. 2019, 318. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.C.; Ribeiro, S.M.; Silva Luna, N.M.; Peterson, M.D.; Bocalini, D.S.; Serra, M.M.; Brech, G.C.; D’Andréa Greve, J.M.; Garcez-Leme, L.E. Association between handgrip strength, balance, and knee flexion/extension strength in older adults. PLoS ONE 2018, 13, e0198185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris-Love, M.O.; Benson, K.; Leasure, E.; Adams, B.; McIntosh, V. The influence of upper and lower extremity strength on performance-based sarcopenia assessment tests. J. Funct. Morphol. Kinesiol. 2018, 3, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, S.S.Y.; Reijnierse, E.M.; Trappenburg, M.C.; Blauw, G.J.; Meskers, C.G.M.; Maier, A.B. Knee extension strength measurements should be considered as part of the comprehensive geriatric assessment. BMC Geriatr. 2018, 18, 130. [Google Scholar] [CrossRef]
- Menant, J.C.; Weber, F.; Lo, J.; Sturnieks, D.L.; Close, J.C.; Sachdev, P.S.; Brodaty, H.; Lord, S.R. Strength measures are better than muscle mass measures in predicting health-related outcomes in older people: Time to abandon the term sarcopenia? Osteoporos. Int. 2017, 28, 59–70. [Google Scholar] [CrossRef]
- Mayhew, A.J.; Raina, P. Sarcopenia: New definitions, same limitations. Age Ageing 2019, 48, 613–614. [Google Scholar] [CrossRef]
- Hulsbæk, S.; Larsen, R.F.; Rosthøj, S.; Kristensen, M.T. The Barthel Index and the Cumulated Ambulation Score are superior to the de Morton Mobility Index for the early assessment of outcome in patients with a hip fracture admitted to an acute geriatric ward. Disabil. Rehabil. 2019, 41, 1351–1359. [Google Scholar] [CrossRef]
- Lim, S.K.; Beom, J.; Lee, S.Y.; Lim, J.Y. Functional Outcomes of Fragility Fracture Integrated Rehabilitation Management in Sarcopenic Patients after Hip Fracture Surgery and Predictors of Independent Ambulation. J. Nutr. Health Aging 2019, 23, 1034–1042. [Google Scholar] [CrossRef]
- Kristensen, M.T.; Bandholm, T.; Bencke, J.; Ekdahl, C.; Kehlet, H. Knee-extension strength, postural control and function are related to fracture type and thigh edema in patients with hip fracture. Clin. Biomech. 2009, 24, 218–224. [Google Scholar] [CrossRef]
- Kronborg, L.; Bandholm, T.; Palm, H.; Kehlet, H.; Kristensen, M.T. Feasibility of progressive strength training implemented in the acute ward after hip fracture surgery. PLoS ONE 2014, 9, e0093332. [Google Scholar] [CrossRef] [PubMed]
- Kronborg, L.; Bandholm, T.; Palm, H.; Kehlet, H.; Kristensen, M.T. Effectiveness of acute in-hospital physiotherapy with knee-extension strength training in reducing strength deficits in patients with a hip fracture: A randomised controlled trial. PLoS ONE 2017, 12, e0179867. [Google Scholar] [CrossRef] [PubMed]
- Foss, N.B.; Kristensen, M.T.; Jensen, P.S.; Palm, H.; Krasheninnikoff, M.; Kehlet, H. The effects of liberal versus restrictive transfusion thresholds on ambulation after hip fracture surgery. Transfusion 2009, 49, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; Mclean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study and Final Estimates. J. Gerontol. Ser. A 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.T.; Bandholm, T.; Foss, N.B.; Ekdahl, C.; Kehlet, H. High inter-tester reliability of the New Mobility Score in patients with hip fracture. J. Rehabil. Med. 2008, 40, 589–591. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, M.T.; Kehlet, H. Most patients regain prefracture basic mobility after hip fracture surgery in a fast-track programme. Dan. Med. J. 2012, 59. [Google Scholar]
- Parker, M.J.; Palmer, C.R. A new mobility score for predicting mortality after hip fracture. J. Bone Joint Surg. Br. 1993, 75, 797–798. [Google Scholar] [CrossRef]
- American Society of Anesthesiologists. New classification of physical status. Anesthesiology 1963, 24, 111. [Google Scholar]
- Mayhew, D.; Mendonca, V.; Murthy, B.V.S. A review of ASA physical status—historical perspectives and modern developments. Anaesthesia 2019, 74, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, K.J.; Sobolev, B.; Chudyk, A.; Stephens, T.; Guy, P. Patient and system factors of mortality after hip fracture: A scoping review. BMC Musculeskelet. Disord. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, M.T. Hip Fracture-Related Pain Strongly Influences Functional Performance of Patients With an Intertrochanteric Fracture Upon Discharge From the Hospital. PM&R 2013, 5, 135–141. [Google Scholar] [CrossRef]
- Kristensen, M.T.; Andersen, L.; Bech-Jensen, R.; Moos, M.; Hovmand, B.; Ekdahl, C.; Kehlet, H. High intertester reliability of the Cumulated Ambulation Score for the evaluation of basic mobility in patients with hip fracture. Clin. Rehabil. 2009, 23, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.L.; Jønsson, L.R.; Kristensen, M.T. Introducing a Third Timed Up & Go Test Trial Improves Performances of Hospitalized and Community-Dwelling Older Individuals. J. Geriatr. Phys. Ther. 2017, 40, 121–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, M.T.; Henriksen, S.; Stie, S.B.; Bandholm, T. Relative and absolute intertester reliability of the timed up and go test to quantify functional mobility in patients with hip fracture. J. Am. Geriatr. Soc. 2011, 59, 565–567. [Google Scholar] [CrossRef]
- Andersen, C.W.; Kristensen, M.T. Performance Stability and Interrater Reliability of Culturally Adapted 10-Meter Walking Test for Danes with Neurological Disorders. J. Stroke Cerebrovasc. Dis. 2019, 28, 2459–2467. [Google Scholar] [CrossRef]
- Kempen, G.I.J.M.; Yardley, L.; Van Haastregt, J.C.M.; Zijlstra, G.A.R.; Beyer, N.; Hauer, K.; Todd, C. The Short FES-I: A shortened version of the falls efficacy scale-international to assess fear of falling. Age Ageing 2008, 37, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, M.T.; Bandholm, T.; Holm, B.; Ekdahl, C.; Kehlet, H. Timed up & go test score in patients with hip fracture is related to the type of walking aid. Arch. Phys. Med. Rehabil. 2009, 90, 1760–1765. [Google Scholar] [CrossRef]
- Chen, Y.P.; Wong, P.K.; Tsai, M.J.; Chang, W.C.; Hsieh, T.S.; Leu, T.H.; Jeff Lin, C.F.; Lee, C.H.; Kuo, Y.J.; Lin, C.Y. The high prevalence of sarcopenia and its associated outcomes following hip surgery in Taiwanese geriatric patients with a hip fracture. J. Formos. Med. Assoc. 2020. [Google Scholar] [CrossRef]
- Steihaug, O.M.; Gjesdal, C.G.; Bogen, B.; Kristoffersen, M.H.; Lien, G.; Hufthammer, K.O.; Ranhoff, A.H. Does sarcopenia predict change in mobility after hip fracture? A multicenter observational study with one-year follow-up. BMC Geriatr. 2018, 18, 65. [Google Scholar] [CrossRef]
- Kristensen, M.T.M.T.; Kehlet, H. The basic mobility status upon acute hospital discharge is an independent risk factor for mortality up to 5 years after hip fracture surgery: Survival rates of 444 pre-fracture ambulatory patients evaluated with the Cumulated Ambulation Score. Acta Orthop. 2018, 89, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.; Pelpola, K.; Ball, M.; Ong, A.; Myint, P.K. Pre-operative indicators for mortality following hip fracture surgery: A systematic review and meta-analysis. Age Ageing 2014, 43, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Foss, N.B.; Kristensen, M.T.; Kehlet, H. Prediction of postoperative morbidity, mortality and rehabilitation in hip fracture patients: The cumulated ambulation score. Clin. Rehabil. 2006, 20, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.T.; Öztürk, B.; Röck, N.D.; Ingeman, A.; Palm, H.; Pedersen, A.B. Regaining pre-fracture basic mobility status after hip fracture and association with post-discharge mortality and readmission—A nationwide register study in Denmark. Age Ageing 2019, 48, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Ferris, H.; Brent, L.; Coughlan, T. Early mobilisation reduces the risk of in-hospital mortality following hip fracture. Eur. Geriatr. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Maietti, E.; Abete, P.; Bellelli, G.; Bo, M.; Cherubini, A.; Corica, F.; Di Bari, M.; Maggio, M.; Martone, A.M.; et al. Comparing EWGSOP2 and FNIH Sarcopenia Definitions: Agreement and Three-Year Survival Prognostic Value in Older Hospitalized Adults. The GLISTEN Study. J. Gerontol. Ser. A 2019. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Volaklis, K.A.; Halle, M.; Meisinger, C. Muscular strength as a strong predictor of mortality: A narrative review. Eur. J. Intern. Med. 2015, 26, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Mangione, K.K.; Craik, R.L.; Tomlinson, S.S.; Palombaro, K.M. Can elderly patients who have had a hip fracture perform moderate- to high-intensity exercise at home? Phys. Ther. 2005, 85, 727–739. [Google Scholar] [CrossRef] [Green Version]
- Mangione, K.K.; Craik, R.L.; Palombaro, K.M.; Tomlinson, S.S.; Hofmann, M.T. Home-based leg-strengthening exercise improves function 1 year after hip fracture: A randomized controlled study. J. Am. Geriatr. Soc. 2010, 58, 1911–1917. [Google Scholar] [CrossRef]
- Binder, E.F.; Brown, M.; Sinacore, D.R.; Steger-May, K.; Yarasheski, K.E.; Schechtman, K.B. Effects of Extended Outpatient Rehabilitation After Hip Fracture. JAMA 2004, 292, 837. [Google Scholar] [CrossRef] [Green Version]
- Diong, J.; Allen, N.; Sherrington, C. Structured exercise improves mobility after hip fracture: A meta-analysis with meta-regression. Br. J. Sports Med. 2016, 50, 346–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherrington, C.; Fairhall, N.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S. Exercise for preventing falls in older people living in the community: An abridged Cochrane systematic Review. Br. J. Sports Med. 2019, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Palombaro, K.M.; Craik, R.L.; Mangione, K.K.; Tomlinson, J.D. Determining Meaningful Changes in Gait Speed After Hip Fracture. Phys. Ther. 2006, 86, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.Y.; Shields, N.; Gill, S.D.; Tacey, M.; Lindner, C.; Hill, K.D. Longitudinal changes in physical activity levels and fear of falling after hip fracture. Physiother. Res. Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bullo, V.; Roma, E.; Gobbo, S.; Duregon, F.; Bergamo, M.; Bianchini, G.; Doria, E.; Cugusi, L.; Di Blasio, A.; Bocalini, D.S.; et al. Lower limb strength profile in elderly with different pathologies: Comparisons with healthy subjects. Geriatrics 2020, 5, 83. [Google Scholar] [CrossRef]
- Manini, T.M.; Visser, M.; Won-Park, S.; Patel, K.V.; Strotmeyer, E.S.; Chen, H.; Goodpaster, B.; De Rekeneire, N.; Newman, A.B.; Simonsick, E.M.; et al. Knee extension strength cutpoints for maintaining mobility. J. Am. Geriatr. Soc. 2007, 55, 451–457. [Google Scholar] [CrossRef]
- Menéndez-Colino, R.; Alarcon, T.; Gotor, P.; Queipo, R.; Ramírez-Martín, R.; Otero, A.; González-Montalvo, J.I. Baseline and pre-operative 1-year mortality risk factors in a cohort of 509 hip fracture patients consecutively admitted to a co-managed orthogeriatric unit (FONDA Cohort). Injury 2018, 49, 656–661. [Google Scholar] [CrossRef]
- Glinkowski, W.; Narloch, J.; Krasuski, K.; Śliwczyński, A. The Increase of Osteoporotic Hip Fractures and Associated One-Year Mortality in Poland: 2008–2015. J. Clin. Med. 2019, 8, 1487. [Google Scholar] [CrossRef] [Green Version]
Knee-Extension Strength, n = 150 Probable Sarcopenic (Menant et al.) [6] | Hand Grip Strength, n = 32 Probable Sarcopenic (EWGSOP2) [1] | ||||||
---|---|---|---|---|---|---|---|
Variables | Total, n = 182 | No, n = 81 (54) | Yes, n = 69 (46) | p | No, n = 17(53) | Yes, n = 15 (47) | p |
Women | 136 (74.7) | 59 (52) | 55 (48) | 0.3 | 17 (54) | 15 (46) | 0.8 |
Men | 46 (25.3) | 22 (61) | 14 (39) | 5 (50) | 5 (50) | ||
Age, years, mean (SD) * | 78.7 (7.8) | 76.6 (7.2) | 82.4 (7.0) | <0.001 | 75.2 (7.8) | 77.1 (9.3) | 0.6 |
Weight, kg, mean (SD) | 64.1 (13.3) | 66.7 (12.8) | 61.1 (13.9) | 0.01 | 65.8 (13.1) | 61.4 (11.5) | 0.3 |
Height, cm, mean (SD) | 166.5 (9.0) | 167.7 (8.7) | 164.0 (8.4) | 0.009 | 169.2 (10.7) | 168.1 (9.7) | 0.8 |
BMI, mean (SD) | 23.0 (4.0) | 23.6 (3.9) | 22.6 (4.3) | 0.1 | 22.8 (3.1) | 21.7 (3.6) | 0.4 |
Cervical femoral neck fractures | 88 (48.4) | 36 (53) | 32 (47) | 0.8 | 11 (55) | 9 (45) | 0.8 |
Per- and Subtrochanteric fractures | 94 (51.6) | 45 (55) | 37 (45) | 6 (50) | 6 (50) | ||
Low pre-fracture function, NMS 2–6 * | 51 (28.0) | 9 (24) | 28 (76) | <0.001 | 4 (29) | 10 (71) | 0.03 |
High Pre-fracture function, NMS 7–9 * | 131 (72.0) | 72 (64) | 41 (36) | 13 (72) | 5 (28) | ||
Low cognitive status | 9 (4.9) | 1 (17) | 5 (83) | 0.1 | 0 (0) | 3 (100) | 0.09 |
High cognitive status | 173 (95.1) | 80 (56) | 64 (44) | 17 (59) | 12 (41) | ||
Low health status, ASA grade 3–4 | 38 (20.9) | 11 (33.3) | 22 (66.7) | 0.007 | 1 (20) | 4 (80) | 0.2 |
High health status, ASA grade 1–2 | 144 (79.1) | 70 (59.8) | 47 (40.2) | 16 (59) | 11 (41) | ||
At-home fallers | n/a | 33 (43) | 43 (57) | 0.008 | n/a | ||
Outdoor fallers | 48 (65) | 23 (35) | |||||
Days to surgery from admission, median (25–75% IQR) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 0.4 | 1 (1–1) | 1 (0–1) | 0.8 |
1-year mortality | 23 (12.6) | 2/81 (2.5) | 15/69 (21.7) | <0.001 | 2/17 (11.8) | 4/15 (26.7) | 0.4 |
Variables | Univariable Analyses | Multivariable Analyses | ||||||
---|---|---|---|---|---|---|---|---|
95.0% CI for Exp(B) | 95.0% CI for Exp(B) | |||||||
Exp(B) | Lower | Upper | p | Exp(B) | Lower | Upper | p | |
Age, per year older | 1.078 | 1.01 | 1.15 | 0.03 | 1.04 | 0.97 | 1.12 | 0.3 |
Women (reference) | ||||||||
Men | 2.4 | 0.89 | 6.2 | 0.08 | 3.1 | 1.2 | 8.4 | 0.03 |
BMI, per point higher | 0.98 | 0.87 | 1.1 | 0.8 | 0.98 | 0.87 | 1.1 | 0.8 |
High prefracture level, NMS, 7–9 (reference) | ||||||||
Low prefracture level NMS, 2–6 | 3.7 | 1.4 | 9.6 | 0.007 | 1.5 | 0.54 | 4.19 | 0.4 |
High health status ASA, 1–2 (reference) | ||||||||
Low health status ASA, 3–4 | 5.8 | 2.2 | 15.3 | <0.001 | 3.7 | 1.3 | 10.3 | 0.01 |
Cervical femoral fracture (reference) | ||||||||
Trochanteric fracture | 2.1 | 0.72 | 5.83 | 0.2 | 1.8 | 0.61 | 5.3 | 0.3 |
Not sarcopenic * (reference) | ||||||||
Probable sarcopenic * | 9.8 | 2.2 | 43.0 | 0.002 | 7.2 | 1.6 | 33.4 | 0.01 |
Variables | Total, n = 150 | Probable Sarcopenia | Difference Mean (95%CI) | p | |
---|---|---|---|---|---|
No, n = 81 | Yes, n = 69 | ||||
POD of independent mobility, CAS = 6, mean (SD) | 6.2 (3.1) | 5.6 (3.0) | 7.2 (3.1) | 1.7 (0.6; 2.8) | 0.003 |
Not independent in basic mobility, CAS < 6, n (%) | 22 (14.7) | 3 (13.6) | 19 (86.4) | n/a | <0.001 |
Independent in basic mobility, CAS = 6, n (%) | 128 (85.3) | 78 (60.9) | 50 (39.1) | ||
Timed Up and Go test, seconds, n = 122, mean (SD) | 27.2 (13.9) | 22.9 (9.9) | 34.0 (16.5) | 11.1 (6.4; 15.9) | <0.001 |
Timed Up and Go test ≥ 20 s *, n (%) | 105 (70) | 45 (43) | 60 (57) | n/a | <0.001 |
Timed Up and Go test < 20 s, n (%) | 45 (30) | 36 (80) | 9 (20) | ||
Fast Gait speed, seconds, n = 121, mean (SD) | 23.5 (17.1) | 19.3 (13.4) | 29.9 (29.9) | 10.6 (4.6; 16.6) | 0.002 |
Fast Gait speed, m/s, n = 121, mean (SD) | 0.55 (0.24) | 0.64 (0.25) | 0.42 (0.18) | −0.21 (−0.29; −0.13) | <0.001 |
Gait speed ≤ 0.8 s *, n (%) | 132 (88) | 64 (48) | 68 (52) | n/a | <0.001 |
Fast Gait speed > 0.8 s, n (%) | 18 (12) | 17 (94) | 1 (6) | ||
Short Falls Efficacy Scale–I, n = 131, mean (SD) | 14.0 (5.4) | 12.5 (4.4) | 16.0 (5.9) | 3.5 (1.7; 5.3) | <0.001 |
Fractured knee-extension strength, Nm/kg, mean (SD) | 0.57 (0.32) | 0.70 (0.35) | 0.43 (0.20) | −0.27 (−0.36; −0.17) | <0.001 |
Non-fractured Knee-extension strength, Nm/kg, mean (SD) | 1.04 (0.41) | 1.31 (0.32) | 0.72 (0.24) | −0.60 (−0.69; −0.50) | <0.001 |
Non-fractured knee-extension strength, kg, mean (SD) | 19.2 (8.5) | 25.0 (6.9) | 12.4 (4.0) | −12.6 (−14.5; −10.8) | <0.001 |
POD of strength testing, mean (SD) | 8.2 (2.8) | 7.8 (2.6) | 8.7 (2.9) | 0.94 (0.1; 1.8) | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kristensen, M.T.; Hulsbæk, S.; Faber, L.L.; Kronborg, L. Knee Extension Strength Measures Indicating Probable Sarcopenia Is Associated with Health-Related Outcomes and a Strong Predictor of 1-Year Mortality in Patients Following Hip Fracture Surgery. Geriatrics 2021, 6, 8. https://doi.org/10.3390/geriatrics6010008
Kristensen MT, Hulsbæk S, Faber LL, Kronborg L. Knee Extension Strength Measures Indicating Probable Sarcopenia Is Associated with Health-Related Outcomes and a Strong Predictor of 1-Year Mortality in Patients Following Hip Fracture Surgery. Geriatrics. 2021; 6(1):8. https://doi.org/10.3390/geriatrics6010008
Chicago/Turabian StyleKristensen, Morten Tange, Signe Hulsbæk, Louise Lohmann Faber, and Lise Kronborg. 2021. "Knee Extension Strength Measures Indicating Probable Sarcopenia Is Associated with Health-Related Outcomes and a Strong Predictor of 1-Year Mortality in Patients Following Hip Fracture Surgery" Geriatrics 6, no. 1: 8. https://doi.org/10.3390/geriatrics6010008
APA StyleKristensen, M. T., Hulsbæk, S., Faber, L. L., & Kronborg, L. (2021). Knee Extension Strength Measures Indicating Probable Sarcopenia Is Associated with Health-Related Outcomes and a Strong Predictor of 1-Year Mortality in Patients Following Hip Fracture Surgery. Geriatrics, 6(1), 8. https://doi.org/10.3390/geriatrics6010008