Novel Variants in the CLCN1, RYR2, and DCTN1 Found in Elderly Japanese Dementia Patients: A Case Series
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Recruitment
2.2. Genetic Analyses
2.3. Variant Interpretation
3. Results
3.1. Patient Background
3.2. Clinical Characteristics of the Patients with Rare Variants
3.3. Classification of the Three Variants Based upon the ACMG Guidelines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsugane, S. Why has Japan become the world’s most long-lived country: Insights from a food and nutrition perspective. Eur. J. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Ganguli, M.; Hughes, T.F.; Jia, Y.; Lingler, J.; Jacobsen, E.; Chang, C.H. Aging and Functional Health Literacy: A Population-based Study. Am. J. Geriatr. Psychiatry 2020. [Google Scholar] [CrossRef] [PubMed]
- Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect. Biol. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Lam, A.D.; Deck, G.; Goldman, A.; Eskandar, E.N.; Noebels, J.; Cole, A.J. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 2017, 23, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Humphries, C.; Kohli, M.A.; Whitehead, P.; Mash, D.C.; Pericak-Vance, M.A.; Gilbert, J. Alzheimer disease (AD) specific transcription, DNA methylation and splicing in twenty AD associated loci. Mol. Cell. Neurosci. 2015, 67, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, J.S.; Hahn, S.E.; Catania, J.W.; LaRusse-Eckert, S.; Butson, M.B.; Rumbaugh, M.; Strecker, M.N.; Roberts, J.S.; Burke, W.; Mayeux, R.; et al. Genetic counseling and testing for Alzheimer disease: Joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet. Med. 2011, 13, 597–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, T.; Imamura, K.; Funayama, M.; Tsukita, K.; Miyake, M.; Ohta, A.; Woltjen, K.; Nakagawa, M.; Asada, T.; Arai, T.; et al. iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid beta Combination for Alzheimer’s Disease. Cell Rep. 2017, 21, 2304–2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, J.S.; Van Deerlin, V.M. Alzheimer’s Disease and Frontotemporal Dementia: The Current State of Genetics and Genetic Testing Since the Advent of Next-Generation Sequencing. Mol. Diagn. Ther. 2018, 22, 505–513. [Google Scholar] [CrossRef]
- Koriath, C.A.M.; Kenny, J.; Ryan, N.S.; Rohrer, J.D.; Schott, J.M.; Houlden, H.; Fox, N.C.; Tabrizi, S.J.; Mead, S. Genetic testing in dementia-utility and clinical strategies. Nat. Rev. Neurol. 2020. [Google Scholar] [CrossRef]
- Valotassiou, V.; Malamitsi, J.; Papatriantafyllou, J.; Dardiotis, E.; Tsougos, I.; Psimadas, D.; Alexiou, S.; Hadjigeorgiou, G.; Georgoulias, P. SPECT and PET imaging in Alzheimer’s disease. Ann. Nucl. Med. 2018, 32, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Barthel, H.; Schroeter, M.L.; Hoffmann, K.T.; Sabri, O. PET/MR in dementia and other neurodegenerative diseases. Semin. Nucl. Med. 2015, 45, 224–233. [Google Scholar] [CrossRef]
- Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.L.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Reitz, C. Genetic diagnosis and prognosis of Alzheimer’s disease: Challenges and opportunities. Expert Rev. Mol. Diagn. 2015, 15, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Genome Aggregation Database (gnomAD). 2020. Available online: https://gnomad.broadinstitute.org/ (accessed on 18 January 2021).
- Landrum, M.J.; Kattman, B.L. ClinVar at five years: Delivering on the promise. Hum. Mutat. 2018, 39, 1623–3160. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information: Online Mendelian Inheritance in Man1/18/2021. 2020. Available online: https://www.omim.org/ (accessed on 18 January 2021).
- Adam, M.P.; Ardinger, H.H.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Stephens, K.; Amemiya, A. GeneReviews. 2020. Available online: https://www.ncbi.nlm.nih.gov/pubmed/20301295 (accessed on 18 January 2021).
- A New Ontology Lookup Service at EMBL-EBI. Proceedings of SWAT4LS International Conference 2015. 2015. Available online: https://www.ebi.ac.uk/ols/ontologies/mondo (accessed on 18 January 2021).
- Orphanet: The Portal for Rare Diseases and Orphan Drugs. 2020. Available online: https://www.orpha.net/consor/cgi-bin/index.php (accessed on 18 January 2021).
- National Center for Biotechnology Information: PubMed. 2020. Available online: https://www.ncbi.nlm.nih.gov/pubmed/ (accessed on 18 January 2021).
- Kawamura, M.; Ohno, S.; Naiki, N.; Nagaoka, I.; Dochi, K.; Wang, Q.; Hasegawa, K.; Kimura, H.; Miyamoto, A.; Mizusawa, Y.; et al. Genetic Background of Catecholaminergic Polymorphic Ventricular Tachycardia in Japan. Circ. J. 2013, 77, 1705–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duno, M.; Colding-Jorgensen, E. Myotonia Congenita. In GeneReviews(R); Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Liu, J.; Supnet, C.; Sun, S.; Zhang, H.; Good, L.; Popugaeva, E.; Bezprozvanny, I. The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease. Channels 2014, 8, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Del Prete, D.; Checler, F.; Chami, M. Ryanodine receptors: Physiological function and deregulation in Alzheimer disease. Mol. Neurodegener. 2014, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Bussiere, R.; Lacampagne, A.; Reiken, S.; Liu, X.; Scheuerman, V.; Zalk, R.; Martin, C.; Checler, F.; Marks, A.R.; Chami, M. Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor. J. Biol. Chem. 2017, 292, 10153–10168. [Google Scholar] [CrossRef] [Green Version]
- Caroppo, P.; Le Ber, I.; Clot, F.; Rivaud-Péchoux, S.; Camuzat, A.; De Septenville, A.; Boutoleau-Bretonnière, C.; Mourlon, V.; Sauvée, M.; Lebouvier, T.; et al. DCTN1 mutation analysis in families with progressive supranuclear palsy-like phenotypes. JAMA Neurol. 2014, 71, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Konno, T.; Ross, O.A.; Teive, H.A.; Sławek, J.; Dickson, D.W.; Wszolek, Z.K. DCTN1-related neurodegeneration: Perry syndrome and beyond. Park. Relat. Disord. 2017, 41, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, J.; Hamabe, A.; Aiba, T.; Nagai, T.; Yoshida, M.; Toya, T.; Ishigami, N.; Hisadome, H.; Katsushika, S.; Tabata, H.; et al. A novel cardiac ryanodine receptor gene (RyR2) mutation in an athlete with aborted sudden cardiac death: A case of adult-onset catecholaminergic polymorphic ventricular tachycardia. Hear. Vessel. 2014, 30, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Vilariño-Güell, C.; Wider, C.; Soto-Ortolaza, A.I.; Cobb, S.A.; Kachergus, J.M.; Keeling, B.H.; Dachsel, J.C.; Hulihan, M.M.; Dickson, D.W.; Wszolek, Z.K.; et al. Characterization of DCTN1 genetic variability in neurodegeneration. Neurology 2009, 72, 2024–2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Procopio, R.; Gagliardi, M.; D’Amelio, M.; Brighina, L.; Nicoletti, G.; Morelli, M.; Bonapace, G.; Quattrone, A.; Annesi, G. DCTN1 mutation analysis in Italian patients with PSP, MSA, and DLB. Neurobiol. Aging 2020, 93, 143.e5–143.e7. [Google Scholar] [CrossRef]
- Riarh, A.; Shelesky, G.; Hogan, L. More Evidence Needed Regarding the Utility of Genetic Testing for Alzheimer Dementia. Am. Fam. Physician 2018, 98, 708. [Google Scholar]
- Cacquevel, M.; Aeschbach, L.; Houacine, J.; Fraering, P.C. Alzheimer’s Disease-Linked Mutations in Presenilin-1 Result in a Drastic Loss of Activity in Purified γ-Secretase Complexes. PLoS ONE 2012, 7, e35133. [Google Scholar] [CrossRef] [Green Version]
- Drummond, E.; Wisniewski, T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol. 2017, 133, 155–175. [Google Scholar] [CrossRef] [PubMed]
- Fatkin, D.; Johnson, R. Variants of Uncertain Significance and “Missing Pathogenicity”. J. Am. Heart Assoc. 2020, 9, e015588. [Google Scholar] [CrossRef] [PubMed]
- Hoffman-Andrews, L. The known unknown: The challenges of genetic variants of uncertain significance in clinical practice. J. Law Biosci. 2017, 4, 648–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macklin, S.K.; Jackson, J.L.; Atwal, P.S.; Hines, S.L. Physician interpretation of variants of uncertain significance. Fam. Cancer 2019, 18, 121–126. [Google Scholar] [CrossRef] [PubMed]
No. | Gender | Onset Age | Age | Past Medical History | Family Medical History | MMSE |
---|---|---|---|---|---|---|
1 | M | 74 | 76 | DM, Hypertension | Father: Parkinson (77 y.o.), Mother: AD (67 y.o.) | 20 |
2 | F | 73 | 75 | Hyperlipidemia | Mother: AD | 15 |
3 | F | 69 | 70 | NP | Mother: AD (86 y.o.) | 29 |
4 | F | 85 | 86 | DM, After Traumatic brain hemorrhage | Older sister: Dementia | 16 |
6 | F | 81 | 83 | Cerebral aneurysm, Hypertension, CAD | Father and Sisters: Dementia | 22 |
7 | F | 83 | 85 | DM, Hypertension, Collagen disease | Mother: Dementia (60 y.o.) | 23 |
9 | F | 68 | 71 | NP | Mother: Dementia (60 y.o.); Older Brother: Dementia (60 y.o.) | 25 |
11 | F | 54 | 61 | NP | Grandfather: AD | 21 |
12 | F | 69 | 74 | NP | Mother: AD (70 y.o.) | 19 |
13 | F | 61 | 63 | NP | Father: Possible AD | 18 |
14 | M | 72 | 73 | After Brain tumor surgery | Mother: AD (90 y.o.) | 24 |
15 | F | 78 | 80 | NP | Father and Older Sister: Dementia | 24 |
16 | M | 73 | 74 | DM | Mother and Brothers: Dementia | 24 |
17 | F | 87 | 87 | NP | Mother: cerebral infarction; Older Sister: AD | 28 |
18 | F | 81 | 90 | NP | Older Sister: Dementia | 21 |
19 | M | 81 | 81 | DM, CAD | Mother: Dementia (80 y.o.) | 30 |
21 | F | 74 | 74 | NP | Mother: visual hallucination (70 y.o.); Father: cerebral stroke | 19 |
23 | F | 63 | 65 | Bipolar disorder, Pulmonary thrombosis | Mother: AD (69 y.o.); Grandmother AD | 25 |
Patient. | Position | Transcript | Gene | Genotype | Coding | Protein | Sift | Polyphen | Grantham |
---|---|---|---|---|---|---|---|---|---|
1 | chr7:143048939 | NM_000083.2 | CLCN1 | G/A | c.2848G>A | p.Glu950Lys | 0.01 | 0.826 | 56 |
2 | chr1:237948187 | NM_001035.2 | RYR2 | A/G | c.13175A>G | p.Lys4392Arg | - | 0.001 | 26 |
6 | chr2:74590743 | NM_004082.4 | DCTN1 | C/T | c.3209G>A | p.Arg1070Gln | 0.43 | 0.829 | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hori, A.; Ai, T.; Isshiki, M.; Motoi, Y.; Yano, K.; Tabe, Y.; Hattori, N.; Miida, T. Novel Variants in the CLCN1, RYR2, and DCTN1 Found in Elderly Japanese Dementia Patients: A Case Series. Geriatrics 2021, 6, 14. https://doi.org/10.3390/geriatrics6010014
Hori A, Ai T, Isshiki M, Motoi Y, Yano K, Tabe Y, Hattori N, Miida T. Novel Variants in the CLCN1, RYR2, and DCTN1 Found in Elderly Japanese Dementia Patients: A Case Series. Geriatrics. 2021; 6(1):14. https://doi.org/10.3390/geriatrics6010014
Chicago/Turabian StyleHori, Atsushi, Tomohiko Ai, Miwa Isshiki, Yumiko Motoi, Kouji Yano, Yoko Tabe, Nobutaka Hattori, and Takashi Miida. 2021. "Novel Variants in the CLCN1, RYR2, and DCTN1 Found in Elderly Japanese Dementia Patients: A Case Series" Geriatrics 6, no. 1: 14. https://doi.org/10.3390/geriatrics6010014
APA StyleHori, A., Ai, T., Isshiki, M., Motoi, Y., Yano, K., Tabe, Y., Hattori, N., & Miida, T. (2021). Novel Variants in the CLCN1, RYR2, and DCTN1 Found in Elderly Japanese Dementia Patients: A Case Series. Geriatrics, 6(1), 14. https://doi.org/10.3390/geriatrics6010014