The Role of Eye Tracking Technology in Assessing Older Driver Safety
Abstract
:1. Introduction
1.1. Objective
1.2. Methods
- “eye tracking”/exp/mj OR ((eye OR visual OR optical) NEAR/1 (track*)):ti,ab,de,kw AND
- (“car driving”/exp OR “traffic accident”/exp OR
- (automobile* OR car OR cars OR vehicle*):ti OR
- ((driv*) NEAR/1 (license* OR simulation*)):ti,ab OR
- ((driving* OR drive*) NEAR/3 (automobile* OR car OR cars* OR vehicle*)):ti,ab OR
- ((accident* OR collision*) NEAR/2 (traffic* OR road* OR streetcar* OR automobile* OR car OR vehicle OR motorc* OR vehicular)):ti,ab OR
- ((road) NEAR/2 (test*)):ti,ab OR
- ((motor) NEAR/1 (vehicle*) NEAR/1 (crash* OR accident* OR collision*)):ti,ab)
2. Background
2.1. Visual System Anatomy
2.2. Eye Movements
2.3. Bedside Examination
2.4. Tracking Methods
2.5. Eye Tracking Parameters
2.6. Eye Tracking Vendors
- Tobii, https://www.tobii.com/
- SensoMotoric Instrument, acquired by Apple, no active website
- EyeLink., https://www.sr-research.com/
- LC Technologies, https://eyegaze.com/category/assistive-tech/page/5/
- 6.
- Gazepoint, https://www.gazept.com
- 7.
- ITU Gaze Tracker is a video-based open source tracker: It is hosted through SourceForge: https://sourceforge.net/projects/gazetrackinglib/.
- 8.
- Cogain Association: https://www.cogain.org
- 9.
- Attention Tool by iMotions Eye Tracking Solutions: http://www.imotionsglobal.com/
- 10.
- Interactive Minds: https://www.interactive-minds.com/eye-tracking, http://www.interactive-minds.com/en/eye-tracking-software
3. Eye Movements, Aging and Neurodegeneration
3.1. Eye Tracking, Aging and Cognitive Impairment
3.2. Eye Tracking and Alzheimer’s Disease
3.3. Eye Tracking Examinations and other Neurodegenerative Disease
3.4. Eye Tracking and Neurorehabilitation
4. Eye Tracking and Driving
4.1. Visual Search, Eye Tracking and Driving
4.2. Inexperienced and Experienced Drivers
4.3. Older Drivers and Eye Tracking
4.4. Limitations of Studies
5. New Directions
Eye Tracking in Advanced Driving Assistance Systems (ADAS)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Johnson, B.P.; Lum, J.A.; Rinehart, N.J.; Fielding, J. Ocular motor disturbances in autism spectrum disorders: Systematic review and comprehensive meta-analysis. Neurosci. Biobehav. Rev. 2016, 69, 260–279. [Google Scholar] [CrossRef] [PubMed]
- Nij Bijvank, J.A.; Petzold, A.; Balk, L.J.; Tan, H.S.; Uitdehaag, B.M.J.; Theodorou, M.; van Rijn, L.J. A standardized protocol for quantification of saccadic eye movements: DEMoNS. PLoS ONE 2018, 13, e0200695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lykstad, J.; Hanna, A. Neuroanatomy, Pupillary Dilation Pathway. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Somisetty, S.; Das, J.M. Neuroanatomy, Vestibulo-ocular Reflex. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Land, M. Eye movements in man and other animals. Vis. Res. 2019, 162, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Terao, Y.; Fukuda, H.; Hikosaka, O. What do eye movements tell us about patients with neurological disorders? An introduction to saccade recording in the clinical setting. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 772–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkelens, C.J. Coordination of smooth pursuit and saccades. Vis. Res. 2006, 46, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroughi, C.K.; Sibley, C.; Coyne, J.T. Pupil size as a measure of within-task learning. Psychophysiology 2017, 54, 1436–1443. [Google Scholar] [CrossRef]
- Termsarasab, P.; Thammongkolchai, T.; Rucker, J.C.; Frucht, S.J. The diagnostic value of saccades in movement disorder patients: A practical guide and review. J. Clin. Mov. Disord. 2015, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Hansraj, R. Pursuit eye movements: A review. S. Afr. Optom. 2008, 67, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Rucker, J.C. Eye movement abnormalities in movement disorders. Clin. Parkinsonism Relat. Disord. 2019, 1, 462. [Google Scholar]
- Kapitaniak, B.; Walczak, M.; Kosobudzki, M.; Jozwiak, Z.; Bortkiewicz, A. Application of eye-tracking in the testing of drivers: A review of research. Int. J. Occup. Med. Environ. Health 2015, 28, 941–954. [Google Scholar] [CrossRef] [Green Version]
- Guestrin, E.D.; Eizenman, M. General theory of remote gaze estimation using the pupil center and corneal reflections. IEEE Trans. Biomed. Eng. 2006, 53, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Bueno, A.P.A.; Sato, J.R.; Hornberger, M. Eye tracking—The overlooked method to measure cognition in neurodegeneration? Neuropsychologia 2019, 133, 107191. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Q.; Lee, S. Gaze and Eye Tracking: Techniques and Applications in ADAS. Sensors 2019, 19, 5540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, D.; Golz, M. Evaluation of PERCLOS based current fatigue monitoring technologies. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; Volume 2010, pp. 4456–4459. [Google Scholar] [CrossRef]
- Jackson, M.L.; Kennedy, G.A.; Clarke, C.; Gullo, M.; Swann, P.; Downey, L.A.; Hayley, A.C.; Pierce, R.J.; Howard, M.E. The utility of automated measures of ocular metrics for detecting driver drowsiness during extended wakefulness. Accid. Anal. Prev. 2016, 87, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Crutcher, M.D.; Calhoun-Haney, R.; Manzanares, C.M.; Lah, J.J.; Levey, A.I.; Zola, S.M. Eye tracking during a visual paired comparison task as a predictor of early dementia. Am. J. Alzheimers Dis. Other Demen. 2009, 24, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagun, D.; Manzanares, C.; Zola, S.M.; Buffalo, E.A.; Agichtein, E. Detecting cognitive impairment by eye movement analysis using automatic classification algorithms. J. Neurosci. Methods 2011, 201, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zola, S.M.; Manzanares, C.M.; Clopton, P.; Lah, J.J.; Levey, A.I. A behavioral task predicts conversion to mild cognitive impairment and Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2013, 28, 179–184. [Google Scholar] [CrossRef]
- Poletti, B.; Carelli, L.; Solca, F.; Lafronza, A.; Pedroli, E.; Faini, A.; Ticozzi, N.; Ciammola, A.; Meriggi, P.; Cipresso, P.; et al. An eye-tracker controlled cognitive battery: Overcoming verbal-motor limitations in ALS. J. Neurol. 2017, 264, 1136–1145. [Google Scholar] [CrossRef]
- Eckstein, M.K.; Guerra-Carrillo, B.; Miller Singley, A.T.; Bunge, S.A. Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Dev. Cogn. Neurosci. 2017, 25, 69–91. [Google Scholar] [CrossRef] [Green Version]
- Isaacowitz, D.M.; Livingstone, K.M.; Harris, J.A.; Marcotte, S.L. Mobile eye tracking reveals little evidence for age differences in attentional selection for mood regulation. Emotion 2015, 15, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Mardanbegi, D.; Killick, R.; Xia, B.; Wilcockson, T.; Gellersen, H.; Sawyer, P.; Crawford, T.J. Effect of aging on post-saccadic oscillations. Vis. Res. 2018, 143, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Molitor, R.J.; Ko, P.C.; Ally, B.A. Eye movements in Alzheimer’s disease. J. Alzheimers Dis. 2015, 44, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakashima, Y.; Morita, K.; Ishii, Y.; Shouji, Y.; Uchimura, N. Characteristics of exploratory eye movements in elderly people: Possibility of early diagnosis of dementia. Psychogeriatrics 2010, 10, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Woodruff-Pak, D.S.; Papka, M.; Romano, S.; Li, Y.T. Eyeblink classical conditioning in Alzheimer’s disease and cerebrovascular dementia. Neurobiol. Aging 1996, 17, 505–512. [Google Scholar] [CrossRef]
- Zaccara, G.; Gangemi, P.F.; Muscas, G.C.; Paganini, M.; Pallanti, S.; Parigi, A.; Messori, A.; Arnetoli, G. Smooth-pursuit eye movements: Alterations in Alzheimer’s disease. J. Neurol. Sci. 1992, 112, 81–89. [Google Scholar] [CrossRef]
- Shafiq-Antonacci, R.; Maruff, P.; Masters, C.; Currie, J. Spectrum of saccade system function in Alzheimer disease. Arch. Neurol. 2003, 60, 1272–1278. [Google Scholar] [CrossRef] [Green Version]
- Viskontas, I.V.; Boxer, A.L.; Fesenko, J.; Matlin, A.; Heuer, H.W.; Mirsky, J.; Miller, B.L. Visual search patterns in semantic dementia show paradoxical facilitation of binding processes. Neuropsychologia 2011, 49, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Crawford, T.J.; Higham, S.; Renvoize, T.; Patel, J.; Dale, M.; Suriya, A.; Tetley, S. Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer’s disease. Biol. Psychiatry 2005, 57, 1052–1060. [Google Scholar] [CrossRef]
- Kim, E.J.; Lee, B.H.; Seo, S.W.; Moon, S.Y.; Jung, D.S.; Park, K.H.; Heilman, K.M.; Na, D.L. Attentional distractibility by optokinetic stimulation in Alzheimer disease. Neurology 2007, 69, 1105–1112. [Google Scholar] [CrossRef]
- Fotiou, D.F.; Stergiou, V.; Tsiptsios, D.; Lithari, C.; Nakou, M.; Karlovasitou, A. Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: Evaluation with pupillometry. Int. J. Psychophysiol. 2009, 73, 143–149. [Google Scholar] [CrossRef]
- Prettyman, R.; Bitsios, P.; Szabadi, E. Altered pupillary size and darkness and light reflexes in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 1997, 62, 665–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavisic, I.M.; Firth, N.C.; Parsons, S.; Rego, D.M.; Shakespeare, T.J.; Yong, K.X.X.; Slattery, C.F.; Paterson, R.W.; Foulkes, A.J.M.; Macpherson, K.; et al. Eyetracking Metrics in Young Onset Alzheimer’s Disease: A Window into Cognitive Visual Functions. Front. Neurol. 2017, 8, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrell, J.R.; Hornberger, M.; Carpenter, R.H.; Kiernan, M.C.; Hodges, J.R. Saccadic abnormalities in frontotemporal dementia. Neurology 2012, 78, 1816–1823. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, P.D.; Nicholas, J.M.; Downey, L.E.; Golden, H.L.; Clark, C.N.; Pires, C.; Agustus, J.L.; Mummery, C.J.; Schott, J.M.; Rohrer, J.D.; et al. A physiological signature of sound meaning in dementia. Cortex 2016, 77, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, A.V.; Race, D.; Kim, K.; Hillis, A.E. The eyes reveal uncertainty about object distinctions in semantic variant primary progressive aphasia. Cortex 2018, 103, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, M.; Menke, R.A.; Sharma, R.; Berna, C.M.; Hicks, S.L.; Kennard, C.; Talbot, K.; Turner, M.R. Eye-tracking in amyotrophic lateral sclerosis: A longitudinal study of saccadic and cognitive tasks. Amyotroph. Lateral Scler. Frontotemporal. Degener. 2015, 17, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.; Krimly, A.; Bauer, L.; Schulenburg, S.; Bohm, S.; Aho-Ozhan, H.E.A.; Uttner, I.; Gorges, M.; Kassubek, J.; Pinkhardt, E.H.; et al. A first approach to a neuropsychological screening tool using eye-tracking for bedside cognitive testing based on the Edinburgh Cognitive and Behavioural ALS Screen. Amyotroph. Lateral Scler. Frontotemporal. Degener. 2017, 18, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Wong, O.W.; Chan, A.Y.; Wong, A.; Lau, C.K.; Yeung, J.H.; Mok, V.C.; Lam, L.C.; Chan, S. Eye movement parameters and cognitive functions in Parkinson’s disease patients without dementia. Parkinsonism Relat. Disord. 2018, 52, 43–48. [Google Scholar] [CrossRef]
- Rottach, K.G.; Riley, D.E.; DiScenna, A.O.; Zivotofsky, A.Z.; Leigh, R.J. Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes. Ann. Neurol. 1996, 39, 368–377. [Google Scholar] [CrossRef]
- Ranchet, M.; Orlosky, J.; Morgan, J.; Qadir, S.; Akinwuntan, A.E.; Devos, H. Pupillary response to cognitive workload during saccadic tasks in Parkinson’s disease. Behav. Brain Res. 2017, 327, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Norton, D.J.; Nguyen, V.A.; Lewis, M.F.; Reynolds, G.O.; Somers, D.C.; Cronin-Golomb, A. Visuospatial Attention to Single and Multiple Objects Is Independently Impaired in Parkinson’s Disease. PLoS ONE 2016, 11, e0150013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, D.I.; Jankovic, J.; McCrary, J.A., 3rd. Neuro-ophthalmic findings in progressive supranuclear palsy. J. Clin. Neuroophthalmol. 1992, 12, 104–109. [Google Scholar] [PubMed]
- Anderson, T.; Luxon, L.; Quinn, N.; Daniel, S.; David Marsden, C.; Bronstein, A. Oculomotor function in multiple system atrophy: Clinical and laboratory features in 30 patients. Mov. Disord. 2008, 23, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Van Middendorp, J.J.; Watkins, F.; Park, C.; Landymore, H. Eye-tracking computer systems for inpatients with tetraplegia: Findings from a feasibility study. Spinal Cord 2015, 53, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Upshaw, J.N.; Leitner, D.W.; Rutherford, B.J.; Miller, H.B.D.; Libben, M.R. Allocentric Versus Egocentric Neglect in Stroke Patients: A Pilot Study Investigating the Assessment of Neglect Subtypes and Their Impacts on Functional Outcome Using Eye Tracking. J. Int. Neuropsychol. Soc. 2019, 25, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Perry, C.M.; Fritz, S.L.; Fridriksson, J.; Herter, T.M. Eye Movements Interfere with Limb Motor Control in Stroke Survivors. Neurorehabil. Neural Repair 2018, 32, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Prévost, C.; Milleville-Pennel, I.; Hoc, J.-M.; Pothier, J.; Charron, C. Driving assessment of brain injured patients. Ann. Phys. Rehabil. Med. 2011, 54, e218–e219. [Google Scholar] [CrossRef] [Green Version]
- Snegireva, N.; Derman, W.; Patricios, J.; Welman, K.E. Eye tracking technology in sports-related concussion: A systematic review and meta-analysis. Physiol. Meas. 2018, 39, 12TR01. [Google Scholar] [CrossRef]
- Yousef, A.; Devereux, M.; Gourraud, P.A.; Jonzzon, S.; Suleiman, L.; Waubant, E.; Green, A.; Graves, J.S. Subclinical Saccadic Eye Movement Dysfunction in Pediatric Multiple Sclerosis. J. Child Neurol. 2019, 34, 38–43. [Google Scholar] [CrossRef]
- Saavedra, S.; Joshi, A.; Woollacott, M.; van Donkelaar, P. Eye hand coordination in children with cerebral palsy. Exp. Brain Res. 2009, 192, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Black, A.A.; Wood, J.M. Effect of glaucoma on eye movement patterns and laboratory-based hazard detection ability. PLoS ONE 2017, 12, e0178876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glen, F.C.; Smith, N.D.; Crabb, D.P. Impact of superior and inferior visual field loss on hazard detection in a computer-based driving test. Br. J. Ophthalmol. 2015, 99, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Institute, UMTRI. Driving Simulator. Available online: http://www.umtri.umich.edu/what-we-offer/driving-simulator (accessed on 4 June 2020).
- Taylor, T.; Pradhan, A.K.; Divekar, G.; Romoser, M.; Muttart, J.; Gomez, R.; Pollatsek, A.; Fisher, D.L. The view from the road: The contribution of on-road glance-monitoring technologies to understanding driver behavior. Accid. Anal. Prev. 2013, 58, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Romer, D.; Lee, Y.C.; McDonald, C.C.; Winston, F.K. Adolescence, attention allocation, and driving safety. J. Adolesc. Health 2014, 54, S6–S15. [Google Scholar] [CrossRef] [Green Version]
- Horswill, M.S.; Marrington, S.A.; McCullough, C.M.; Wood, J.; Pachana, N.A.; McWilliam, J.; Raikos, M.K. The hazard perception ability of older drivers. J. Gerontol. B Psychol. Sci. Soc. Sci. 2008, 63, P212–P218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Smith, M.R.; Witt, G.J. Identification of real-time diagnostic measures of visual distraction with an automatic eye-tracking system. Hum. Factors 2006, 48, 805–821. [Google Scholar] [CrossRef]
- Robbins, C.; Chapman, P. How does drivers’ visual search change as a function of experience? A systematic review and meta-analysis. Accid. Anal. Prev. 2019, 132, 105266. [Google Scholar] [CrossRef]
- Alberti, C.; Shahar, A.; Crundall, D. Are experienced drivers more likely than novice drivers to benefit from driving simulation with a wide field of view? Transp. Res. 2014, 27, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Underwood, G.; Crundall, D.; Chapman, P. Selective searching while driving: The role of experience in hazard detection and general surveillance. Ergonomics 2002, 45, 1–12. [Google Scholar] [CrossRef]
- Klauer, S.G.; Guo, F.; Simons-Morton, B.G.; Ouimet, M.C.; Lee, S.E.; Dingus, T.A. Distracted driving and risk of road crashes among novice and experienced drivers. N. Engl. J. Med. 2014, 370, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.Q.; Lee, S. A Comprehensive Survey of Driving Monitoring and Assistance Systems. Sensors (Basel) 2019, 19, 2574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerezuela, G.P.; Tejero, P.; Choliz, M.; Chisvert, M.; Monteagudo, M.J. Wertheim’s hypothesis on ‘highway hypnosis’: Empirical evidence from a study on motorway and conventional road driving. Accid. Anal. Prev. 2004, 36, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, S.; Obinata, G.; Palmer, E.; Chaparro, A. Estimation of mental workload using saccadic eye movements in a free-viewing task. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; Volume 2011, pp. 4523–4529. [Google Scholar] [CrossRef]
- Ho, G.; Scialfa, C.T.; Caird, J.K.; Graw, T. Visual search for traffic signs: The effects of clutter, luminance, and aging. Hum. Factors 2001, 43, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Boyle, L.N. Age-related differences in visual scanning at median-divided highway intersections in rural areas. Accid. Anal. Prev. 2009, 41, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Pollatsek, A.; Romoser, M.R.; Fisher, D.L. Identifying and Remediating Failures of Selective Attention in Older Drivers. Curr. Dir. Psychol. Sci. 2012, 21, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunishige, M.; Fukuda, H.; Iida, T.; Kawabata, N.; Ishizuki, C.; HIyaguchi, M. Spatial navigation ability and gaze switching in older drivers: A driving simulator study. Hong Kong J. Occup. Ther. 2019, 32, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Wood, J.M.; Black, A.A. Blur, eye movements and performance on a driving visual recognition slide test. Ophthalmic Physiol. Opt. 2015, 35, 522–529. [Google Scholar] [CrossRef] [Green Version]
- Borowsky, A.; Shinar, D.; Oron-Gilad, T. Age, skill, and hazard perception in driving. Accid. Anal. Prev. 2010, 42, 1240–1249. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.C.; Xia, J.C.; He, J.; Foster, J.; Falkmer, T.; Lee, H. Towards unpacking older drivers’ visual-motor coordination: A gaze-based integrated driving assessment. Accid. Anal. Prev. 2018, 113, 85–96. [Google Scholar] [CrossRef]
- Romoser, M.R.; Fisher, D.L. The effect of active versus passive training strategies on improving older drivers’ scanning in intersections. Hum. Factors 2009, 51, 652–668. [Google Scholar] [CrossRef]
- Roe, C.M.; Barco, P.P.; Head, D.M.; Ghoshal, N.; Selsor, N.; Babulal, G.M.; Fierberg, R.; Vernon, E.K.; Shulman, N.; Johnson, A.; et al. Amyloid Imaging, Cerebrospinal Fluid Biomarkers Predict Driving Performance Among Cognitively Normal Individuals. Alzheimer Dis. Assoc. Disord. 2017, 31, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Roe, C.M.; Babulal, G.M.; Head, D.M.; Stout, S.H.; Vernon, E.K.; Ghoshal, N.; Garland, B.; Barco, P.P.; Williams, M.M.; Johnson, A.; et al. Preclinical Alzheimer’s disease and longitudinal driving decline. Alzheimers Dement. (N. Y.) 2017, 3, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Caird, J.K.; Edwards, C.J.; Creaser, J.I.; Horrey, W.J. Older driver failures of attention at intersections: Using change blindness methods to assess turn decision accuracy. Hum. Factors 2005, 47, 235–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Underwood, G.; Humphrey, K.; van Loon, E. Decisions about objects in real-world scenes are influenced by visual saliency before and during their inspection. Vis. Res. 2011, 51, 2031–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowsky, A.; Oron-Gilad, T.; Meir, A.; Parmet, Y. Drivers’ perception of vulnerable road users: A hazard perception approach. Accid. Anal. Prev. 2012, 44, 160–166. [Google Scholar] [CrossRef]
- Horrey, W.J.; Lesch, M.F.; Garabet, A.; Simmons, L.; Maikala, R. Distraction and task engagement: How interesting and boring information impact driving performance and subjective and physiological responses. Appl. Ergon. 2017, 58, 342–348. [Google Scholar] [CrossRef]
- Dukic, T.; Ahlstrom, C.; Patten, C.; Kettwich, C.; Kircher, K. Effects of electronic billboards on driver distraction. Traffic Inj. Prev. 2013, 14, 469–476. [Google Scholar] [CrossRef]
- Kircher, K.; Ahlstrom, C. Evaluation of methods for the assessment of attention while driving. Accid. Anal. Prev. 2018, 114, 40–47. [Google Scholar] [CrossRef]
- Bozomitu, R.G.; Pasarica, A.; Tarniceriu, D.; Rotariu, C. Development of an Eye Tracking-Based Human-Computer Interface for Real-Time Applications. Sensors 2019, 19, 3630. [Google Scholar] [CrossRef] [Green Version]
- Harbluk, J.L.; Noy, Y.I.; Trbovich, P.L.; Eizenman, M. An on-road assessment of cognitive distraction: Impacts on drivers’ visual behavior and braking performance. Accid. Anal. Prev. 2007, 39, 372–379. [Google Scholar] [CrossRef]
- Moharrer, M.; Wang, S.; Davis, J.D.; Ott, B.R.; Luo, G. Driving Safety of Cognitively-Impaired Drivers Based on Near Collisions in Naturalistic Driving. J. Alzheimers Dis. Rep. 2020, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carr, D.B.; Grover, P. The Role of Eye Tracking Technology in Assessing Older Driver Safety. Geriatrics 2020, 5, 36. https://doi.org/10.3390/geriatrics5020036
Carr DB, Grover P. The Role of Eye Tracking Technology in Assessing Older Driver Safety. Geriatrics. 2020; 5(2):36. https://doi.org/10.3390/geriatrics5020036
Chicago/Turabian StyleCarr, David B., and Prateek Grover. 2020. "The Role of Eye Tracking Technology in Assessing Older Driver Safety" Geriatrics 5, no. 2: 36. https://doi.org/10.3390/geriatrics5020036
APA StyleCarr, D. B., & Grover, P. (2020). The Role of Eye Tracking Technology in Assessing Older Driver Safety. Geriatrics, 5(2), 36. https://doi.org/10.3390/geriatrics5020036