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Abstract: In this paper, the development of an eye-tracking-based human–computer interface for
real-time applications is presented. To identify the most appropriate pupil detection algorithm for the
proposed interface, we analyzed the performance of eight algorithms, six of which we developed
based on the most representative pupil center detection techniques. The accuracy of each algorithm
was evaluated for different eye images from four representative databases and for video eye images
using a new testing protocol for a scene image. For all video recordings, we determined the detection
rate within a circular target 50-pixel area placed in different positions in the scene image, cursor
controllability and stability on the user screen, and running time. The experimental results for a set
of 30 subjects show a detection rate over 84% at 50 pixels for all proposed algorithms, and the best
result (91.39%) was obtained with the circular Hough transform approach. Finally, this algorithm
was implemented in the proposed interface to develop an eye typing application based on a virtual
keyboard. The mean typing speed of the subjects who tested the system was higher than 20 characters
per minute.

Keywords: detection rate; eye tracking; human computer interaction; image processing; open source
software; pupil detection algorithms

1. Introduction

The interest in eye detection applications has been considerably increasing [1]. Many eye detection
methods are used in different applications such as neuroscience, psychology [2], assistive technologies
to communicate with disabled patients [3–6], computer gaming, monitoring technologies for driver’s
fatigue (in commercial and public transport) [7–9], in the advertising industry, person identification
based on face recognition and eye (iris) detection [10,11], and in different military applications to help
pilots aim weapons by simply looking at a target.

Eye tracking is the process of measuring either the point of gaze or the motion of an eye relative
to the head. An eye tracker is a device for measuring eye position and eye movement [12–14].
The main eye tracking methods illustrated in the literature are based on a scleral search coil [15,16],
infrared oculography (IROG) [15,17], electro-oculography (EOG) [15,18,19], and video oculography
(VOG) [8,15,16,20,21]. Due to the progress in the field of electronics, gaze direction detection techniques
have been developed in two basic directions: EOG [3] and digital image processing using VOG [4].

Different types of eye tracking systems have been reported in the literature [12,14,17,20–23].
Among these, head-mounted [23] and remote [20,24] eye tracking devices are used in real-time

Sensors 2019, 19, 3630; doi:10.3390/s19163630 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4246-8088
http://www.mdpi.com/1424-8220/19/16/3630?type=check_update&version=1
http://dx.doi.org/10.3390/s19163630
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 3630 2 of 27

applications. One of the most commonly used applications of gaze-controlled interfaces is text entry
using a virtual keyboard [5,25–27].

The increase in computing power has led to diversification of pupil detection algorithms (PDAs).
The pupil detection algorithms presented in the literature can be classified into feature-based and
model-based approaches [28,29].

Feature-based approaches involve detecting and localizing image features related to the position of
the eye pupil. The best shape approximation of the eye pupil image provided by an infrared (IR) video
camera is an ellipse. An ellipse can then be fit to the feature points using several techniques: least-squares
fitting of ellipse (LSFE) [30,31]; voting-based methods, such as circular Hough transform (CHT) [32,33];
and searching-based methods, such as the random sample consensus (RANSAC) paradigm [34,35].

The LSFE algorithm performs the fitting of a conic (ellipse) to a set of data points by minimizing
the sum of square algebraic distances of the feature points to the conic that is represented by the
ellipse coefficients.

The CHT algorithm uses a parameter accumulator. Every edge pixel in the eye image votes for the
parameters of all circles in which it can be a part. Maxima in the accumulator correspond to discovered
circles [32]. Since a circle is completely described by three parameters, the circular Hough transform
requires a three-dimensional (3D) accumulator.

The RANSAC algorithm is an iterative procedure that selects many small but random subsets of
the input data, uses each subset to fit a model, and finds the model that best fits the input set of data
points [34,35]. The algorithm determines the number of feature points (inliers) from the input data set
that better approximates the ellipse model. This set of input points is called the consensus set. After a
certain number of iterations, an ellipse is fit to the largest consensus set. The number of algorithm
iterations can be reduced every time a new largest consensus set (represented by the percentage of
inliers) is detected until the total number of inliers remains constant. Other feature-base approaches
are represented by the projection method algorithm (PROJ) [36–38] and the curvature algorithm [39].

Model-based approaches do not explicitly detect features but rather find the best fitting model,
which can be represented by either a circle or an ellipse, that is consistent with the eye image [29]. In the
case of the Starburst algorithm [28,29], the result of ellipse fitting is improved through a model-based
optimization using a Nelder–Mead Simplex search [29] that does not rely on feature detection. Starburst
is a hybrid algorithm that combine both feature-based and model-based approaches. The algorithm
uses the RANSAC paradigm to determine a set of candidate feature points.

Most studies presented in literature focused on the performance of different types of pupil
detection algorithms on static eye images. Fuhl et al. [40] conducted a comparative study considering
the Starburst [28,29,41], Świrski et al. [35,42], Pupil Labs [43], Sinusoidal Eye-Tracker (SET) [44],
Exclusive Curve Selector (ExCuSe) [45,46], and Ellipse Selector (ElSe) [47] algorithms, but only for
static eye images.

One of the most recent and accurate pupil detection algorithm in pervasive scenarios, Pupil
Reconstructor (PuRe) [48], is based on novel edge segment selection and conditional segment combination
schemes. To improve the detection rate and running time for real-time pervasive eye tracking, a new
version, Pupil Reconstructor with Subsequent Tracking (PuReST), has been proposed [49].

Most of these algorithms are based on the principles mentioned above; the PDA proposed by
Świrski et al. [35] is based on the RANSAC paradigm and ExCuSe, ElSe, PuRe and PuReST algorithms
use the LSFE procedure after edge filtering by applying different morphologic operations.

In none of these studies was the real-time performance of PDAs in a scene image analyzed,
many reporting a detection rate obtained only for raw eye images provided by the video camera.
These studies focused on determining the algorithm accuracy when analyzing static eye images with
low quality acquired in difficult conditions (bad illumination, occlusions from eyelashes, glasses
reflections, etc.). Other algorithms reported in the literature provide a detection rate or an algorithm
running time that are inadequate for real-time applications, as is the case for the algorithm based on
new projection function [36].
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To be used for eye tracking applications, the real-time performance of the PDAs must be
investigated too. The experimental results illustrated in the literature for static eye images show that
the accuracy of each pupil detection algorithm is strongly dependent on the characteristics of the eye
tracking system used for acquiring these images.

In this paper, the development of an eye-tracking-based human–computer interface for real-time
applications is presented. To find the best software solution for the proposed interface, we comparatively
analyzed eight pupil detection algorithms based on the most representative state-of-the-art techniques
for both static eye images and real-time applications using a novel testing protocol for evaluating
the eye tracking system performance in the scene image. Of the eight PDAs analyzed in this study,
we created six: three were developed in previous work in the field of eye detection, based on the
CHT algorithm [50], LSFE method [51], and RANSAC paradigm [52], and the other three are newly
proposed in this paper. The new three PDAs proposed in this study are based on the elliptical
Hough transform (EHT), the new projection function method (PROJ), and the centroid method
(CENT), as outlined in Section 2. The six algorithms proposed by the authors are compared with
two well-known state-of-the-art open source algorithms: the Starburst algorithm [28,29,41] from the
model-based approach category and the ExCuSe algorithm [45,46] from the category of edge filtering,
which is based on oriented histograms calculated via the Angular Integral Projection Function [36].
The coarse pupil center estimation is then refined by ellipse estimation using the LSFE technique.

The real-time performance of each algorithm was evaluated using the head-mounted eye tracking
interface developed by our team on a set of 30 subjects in different lighting conditions, resulting
240 distinct use cases, for a total of 370,182 eye images processed by the system.

This paper shows that the performance of any eye tracking system for real-time applications
depends not only on the algorithm accuracy for raw eye images, but also on other factors, such as cursor
controllability and stability on the user screen, running time, lighting conditions, the type of eye tracker
device, and the user ability in using the system. According to these considerations, the algorithm
based on circular Hough transform is shown to be best for real-time applications developed on the
proposed eye tracking interface. As an application of this system, a low-cost eye typing application
using a virtual keyboard is also presented.

The rest of this paper is organized as follows: Section 2 presents the hardware and software
components of the proposed eye tracking interface, including our newly proposed PDAs, based on
a new binarization procedure. Section 3 presents the experimental results of the analyzed PDAs
obtained on the static eye images from four representative databases and the performance of the
eye tracking interface based on these algorithms on the video eye images captured from a set of
30 subjects in laboratory conditions. The results obtained for each algorithm are comparatively
discussed. In Section 4, a low-cost eye typing application developed on the proposed eye tracking
interface is presented and Section 5 outlines the conclusions.

2. Materials and Methods

2.1. Video Oculography

Video oculography is a technique based on video analysis of eyeball movement using a video
camera in the visible or infrared (IR) spectrum. The advantages of the methods based on the analysis
of infrared eye images provided by video cameras include their versatility and being practically
independent of lighting conditions and individual characteristics of the eye. The main disadvantage of
infrared eye image capturing is that this technique cannot be used outdoors during daytime due to the
ambient infrared illumination [28,29].

Infrared eye tracking applies either the bright-pupil technique (the pupil is clearly demarcated as
a bright region due to the photo reflective nature of the back of the eye [29]) or dark-pupil techniques
(the pupil is the darkest region in the image) [53]. The PDAs presented in this paper use the dark-pupil
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technique and, due to their versatility and robustness, they can be easily adapted for different real-time
applications of the abovementioned areas.

2.2. Hardware System for VOG Signal Acquisition

The head-mounted eye tracking interface used in this study included an infrared video camera
(model CVEHC-30H2, made in Guangdong China (Mainland)) with a resolution of 640 × 480 pixels (px)
mounted on frame glasses immediately underneath the eye (Figure 1), connected to a personal computer
(PC) or laptop for eye pupil image acquisition and processing. The video camera was modified by
replacing the light emitting diodes (LEDs) in visible spectrum with infrared LEDs and placing an IR
filter on its lens. Due to the infrared illumination of the eye, the corneal reflection is strongly present
in the eye images produced by our eye tracking interface. Therefore, detecting the pupil in the eye
images affected by corneal reflection is the main challenge faced by the investigated algorithms.
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Figure 1. Head-mounted eye tracking interface.

2.3. Eye Tracking Algorithm for Real-Time Applications

To integrate gaze detection techniques into human–computer interfaces for real-time applications,
it is necessary to implement widely available, reliable, high speed, and high accuracy pupil detection
algorithms compatible with the hardware used by present-day computers.

The proposed eye tracking interface moves a cursor on the user screen in real-time according to the
user gaze direction. To implement different real-time applications, the user screen is divided into many
cells. Target objects are placed in each cell that can be selected by the user’s gaze direction, according
to their will or need. A target object selection is performed by focusing the user gaze direction in its
selection area for a certain dwell time, established according to the user ability in using the system.
The dwell time must be chosen to avoid the Midas touch problem [14], which is the selection of
unwanted ideograms/objects on the user screen followed by the user’s gaze direction. For real-time
applications, the minimum size of the target object that can be precisely controlled by the user’s gaze
direction must be determined.

The compound eye tracking algorithm used for real-time applications implemented in our
eye tracking system includes the following main procedures, described by Bozomitu et al. [50] in
detail: (1) real-time eye image acquisition, (2) system calibration, (3) real-time pupil center detection,
(4) mapping between raw eye image and scene image, (5) ideograms and/or objects selection,
and (6) algorithm optimization to stabilize the cursor position on the user screen using real-time
filtering and high frequency spikes canceling from the PDA signals.
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The calibration stage is used to determine the mapping function coefficients and the radius of the
eye pupil, required for optimal operation of the quantitative binarization procedure. The coefficients
of the mapping function between the raw eye image and the scene image are obtained during the
calibration process when a set of targets in known position (Mi, i = 1, 2, . . . , 9; Figure 2) are displayed to
the subject and the eye tracker position data are recorded, after a procedure illustrated by Stampe [54].
The radius of the pupil (required in the binarization stage) can be precisely determined, performing
the CHT algorithm for the calibration point M1 placed in the center of the user screen.
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Figure 2. Mapping between eye pupil image and user screen cursor [50] (© 2015 IEEE).

Real-time pupil center detection is achieved in our eye tracking interface on the basis of eight PDAs
(CENT, CHT, EHT, ExCuSe, LSFE, PROJ, RANSAC, and Starburst) to determine the most appropriate
algorithm for real-time application.

The accuracy of the eye tracking system strongly depends on the precision of the calibration stage,
during which the coefficients of the mapping function are determined. The convex shape of the eye
causes nonlinear eye movement. Thus, the mapping function between the raw eye image provided by
the IR video camera and the scene image is a user-dependent nonlinear function. Nonlinear mapping
functions between the raw eye image and the scene image have the advantage of smooth changes in
mapping across the user screen. The most common nonlinear function is biquadratic, introduced by
Sheena and Borah in 1981 [55]. Bozomitu et al. [50] presented the mathematical calculation involved
in the mapping technique in detail. The nonlinearity of the biquadratic mapping function is used to
compensate for the nonlinearity of eye movement, so that the cursor, controlled by the user’s gaze
direction, moves linearly across the screen.

To evaluate the PDA accuracy for real-time eye tracking applications, the mapping rate (MR)
between the raw eye image and the scene image must be known. The MR depends on the calibration
stage accuracy, the type and order of the mapping function used, the resolution of the user screen,
and the user’s eye physiology. The mapping rate is defined as the radius of the circle resulting on
the user screen when a circle with radius of 1 pixel is mapped between the raw eye image (with a
resolution of 640 × 480 pixels) and the scene image (with full high definition (HD) resolution).

Because the performance of any eye tracking interface depends on the calibration procedure quality,
any eye tracking system must use an indicator of the accuracy of the calibration stage. This indicator
can be determined by evaluating the system mapping rate during the calibration stage. Due to the
nonlinearity of the mapping function, the mapping rate parameter must be calculated in different
positions on the user screen. The best positions used to calculate the mapping rate are indicated by the
nine identical quadrants on the user screen illustrated in Figure 3.

To calculate the MR of the proposed system, circles with radii r between 1 to 10 pixels are mapped
between the raw eye image and the scene image, resulting in an irregular geometric shape that can be
approximated by an ellipse or a circle. The radii of these circles in the raw eye image represent the
algorithm accuracy in term of pixel error for any possible direction of the detection error.

Figure 3a,b present the evaluation of the calibration stage accuracy for two cases, corresponding
to low and high accuracies of the calibration procedure, respectively. These figures show the resulting
curves on the user screen when circles with radii of 3, 5, and 7 pixels in the raw eye image are mapped
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in each quadrant center on the user screen image. Coordinates of the points in the raw image are
obtained by applying the inverse mapping function to the points in the quadrant centers from the
scene image.
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Figure 3. Mapping results on the scene image (user screen) for circles with radii of 3, 5, and 7 pixels in
the raw eye image: (a) low accuracy of the calibration procedure (mapping rate (MR) = 15.96); (b) high
accuracy of the calibration procedure (MR = 8.86).

The shapes resulting on the user screen are not perfectly circular due to the nonlinearity of the
mapping function used and an inaccurate calibration process. For simplicity, in the following analysis,
these shapes are approximated by circles with radii Ri(r), (i = 1, . . . , 9, corresponding to each quadrant,
Q1, Q2, . . . , Q9) depending on mapping circle radius r. The mean value of the mapping rate for each
quadrant in the scene image, MRi, illustrated in Figure 4 for low and high accuracies of the calibration
procedure, were obtained by using the following equation:

MRi = Ri(r)/r, i = 1, 2, . . . , 9, r = 1, 2, . . . , 10 (1)

Thus, the mapping rate of the proposed eye tracking system can be approximated as the mean
value of mapping rates for each quadrant, as follows:

MR = MRi, i = 1, 2, . . . , 9 (2)
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The radius R(r) of the circle that approximate the shape resulted on the user screen when a circle
with radius r is mapped between the raw eye image and the scene image can be approximated by the
following linear function:

R(r) = MR× r (3)
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The MR is calculated for each subject during calibration stage and represents an important indicator
of the calibration stage accuracy. The experimental results for 30 subjects in laboratory conditions
showed that the MR for the propose system varies between 8.86 (the best calibration procedure) to
15.96 (the worst calibration procedure). Values higher than 16 for this parameter resulted in a decrease
in the system accuracy for real-time applications and are not allowed during the calibration stage.
For these situations, the calibration stage was resumed until a value less than 16 was obtained for MR.

The MR is also an important indicator of the expected algorithm accuracy in real-time applications
in terms of target area size in the scene image, which can be precisely controlled by the user’s gaze
direction. Thus, the expected algorithm accuracy in the scene image for real-time applications can be
calculated using Equation (3). According to Equation (3), for an algorithm accuracy of 5 pixels and MR
= 9, a circular target area with a radius of 45 pixels can be precisely controlled on the screen by the
user’s gaze direction. This size of the target object is in agreement with the keypad dimensions of the
virtual keyboard developed by OptiKey [56], which is used in the eye typing applications illustrated in
Section 4.

In Section 3.2, the accuracy of the eye tracking system for real-time applications is evaluated
using a target area with a radius of 50 pixels, placed in each quadrant center (illustrated in yellow
in Figure 3). The size of the target area in the scene image for real-time applications depends on the
PDA performance in terms of accuracy, cursor controllability and stability on the screen, running time,
and the user’s experience in system operation.

2.4. New PDAs for Eye Tracking Applications

Generally, the six PDAs we propose (CENT, CHT, EHT, LSFE, PROJ, RANSAC) include the
following stages: (1) eye image acquisition by using an IR camera, (2) eye image filtering to diminish
the shot noise and line noise, (3) eye image binarization, (4) pupil reconstruction in the eye image,
and (5) pupil center detection using different methods implemented in the analyzed PDAs. All these
PDAs are based on a new adaptive quantitative binarization stage, suitable for real-time applications,
which is described in the following.

2.4.1. New Adaptive Quantitative Binarization Stage

Most of the PDAs reported in the literature are based on the binarization technique, implemented
using different threshold-based selection methods for eye image segmentation with fixed or global/local
adaptive threshold; a detailed study of different binarization techniques has been previously
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reported [57]. After binarization, different artifacts in the eye image may remain, which affect
the pupil detection process. To solve this binarization issue (e.g., salt-and-pepper noise), our six
proposed algorithms use a new binarization procedure based on the adaptive quantitative segmentation
method [58]. The pupil detection is then performed by removing/diminishing the noise artefacts
from the binarized eye image using a technique based on maximum area determination, followed by
pupil reconstruction.

Unlike other algorithms reported in the literature that only determine candidates with pupil
diameter within a certain range, PDAs based on the binarization procedure precisely detect the pupil,
regardless of its size and position in the eye image. This is an important advantage, especially for
real-time eye tracking applications where the pupil position and size may vary.

The new binarization procedure proposed in this paper uses an adaptive quantitative threshold
and is based on the observation that, in the binarized eye image, the ratio between the number of object
pixels (that correspond to the eye pupil) and the background pixels is almost constant for each subject
if a head-mounted eye tracking interface is used. The percentage of the pixels that belong to the pupil
of the total pixels from the eye image is given by the percentile value:

t =
pupil image size
eye image size

× 100 (%) (4)

where eye image size is expressed in pixels2 and pupil image size = πr2
pupil (the pupil being approximated

by a circle of radius rpupil).
In the calibration stage, the pupil radius (rpupil) of each subject is determined using an algorithm

based on the circular Hough transform. By using the determined pupil radius value in Equation (4),
the optimum percentile value t0 is determined for each subject using the system. Therefore, for each
image provided by the video camera, an optimum global threshold value T is determined by the
algorithm using the percentile value t0. Thus, the threshold T indicates the maximum grey level from
the eye image histogram over which t > t0. As a consequence, the performance of the binarization
stage is not influenced by lighting conditions.

2.4.2. Pupil Reconstruction in the Eye Image

The eye image resulted after binarization stage is affected by noise artefacts and corneal reflection.
Pupil reconstruction in the eye image consists in the following techniques: (1) Removing/diminishing
the noise artefacts. This stage is performed for all proposed algorithms except Hough-transform-based
approaches. The noise artefacts due to false object pixels detection, which remain after the binarization
stage, are removed/diminished from the background of the eye image using a technique based on
maximum area determination. After the binarization stage, the CENT, LSFE, PROJ, and RANSAC
algorithms find the connected components in binary eye image and the maximum area determined
object is attributed to the eye pupil. Thus, the accuracy of these algorithms depends on the optimum
choice of the percentile value t0. (2) Morphological reconstruction of the pupil. Many techniques
have been used for pupil reconstruction in eye image processing in the literature: morphological open
operation, which closes small bright gaps in the otherwise dark pupil region without significantly
affecting the pupil’s contour [35] or linear interpolation in the case of Starburst algorithm, used to
eliminate the corneal reflection (indicated in white in Figure 5a,d).

For all proposed algorithms, the morphological reconstruction of the pupil consists of image
dilation, filling the gaps due to corneal reflection and image erosion. The dilation and erosion operation
are both performed using circular structuring elements of the same size. After the binarization stage,
the detected pupil may contain corneal reflection placed inside its area (Figure 5a) or located on its
edge (Figure 5d). The resulted pupil images, after morphological reconstructions for both cases from
Figure 5a,d, are illustrated in Figure 5b,e, respectively. Using this technique, the corneal reflection is
completely eliminated for both cases illustrated in Figure 5a,d, and, as a consequence, the accuracy
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of the pupil center detection significantly increased. The detected eye pupil contours for both cases
analyzed are shown in Figure 5c,f, respectively.
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Figure 5. Pupil reconstruction stages when the corneal reflection is placed inside the pupil area and when
it is located on the pupil edge: (a,d) eye pupil images after the binarization stage; (b,e) morphological
reconstructions by dilation, filling the gaps due to corneal reflection and erosion; and (c,f) pupil
contour detection.

In the case of PDAs based on Hough transform (CHT and EHT algorithms), the maximum area
object is no longer determined after the binarization stage. After the binarization and morphological
processing stages, the edge detection is performed using the second order derivative of the resulting
image. This is completed by combining smoothing and edge detection with the Laplacian of
Gaussian (LoG) filter. The circular/elliptical Hough transform is then applied to the edge image
to find the geometric shape (circle/ellipse) best fitted to the eye pupil. Thus, unlike other PDAs,
the Hough-transform-based algorithms are less sensitive to the percentile value used in the binarization
stage, and the pupil can be well detected under noise conditions, as is the case for many real-time
applications. CHT and EHT algorithms operate well in nonuniform and variable illumination
conditions, which is an important advantage for real-time applications, as shown in Section 3.

After detecting and reconstructing the pupil in the eye image, its center can be determined using
different techniques implemented in the proposed algorithms. The simplest technique for detecting
the pupil center is based on the centroid method algorithm (CENT), which involves determining the
center of gravity of the pupil shape after binarization and pupil reconstruction stages.

Although very fast, the main drawback of this algorithm is that it is sensitive to different artifacts
that remain after binarization and pupil reconstruction stages. The CENT algorithm does not detect
the contour of the pupil, which may be a disadvantage for some applications. To solve these issues,
we introduce the following two algorithms.

2.4.3. EHT-Based Algorithm for Pupil Center Detection

The new EHT-based algorithm is introduced to solve the limitations of the CHT algorithm for eye
images with the pupil placed at the edge of the sclera, where its shape is elliptical, and for rotated
ellipse-shaped pupils. For these types of eye images, the EHT algorithm uses a five-dimensional (5D)
accumulator, which corresponds to all geometric parameters (xc, yc, a, b, and τ) of an ellipse. Pupil
center detection is more accurate than the CHT algorithm, but it is computationally expensive.

Each pixel in the image space correspond to an ellipse in the Hough space and vice versa. Thus,
all points of the ellipse E in the image are mapped in several ellipses (E1, E2, E3, E4, . . . ) having the
same parameters. The intersection of these ellipses, denoted O in Figure 6, represents the center of the
detected ellipse. Thus, the equation of the resulted ellipse E1 in Figure 6 can be written as:

(x− xi)
2

a2 +
(y− yi)

2

b2 = 1 (5)
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where (xi, yi) represents the coordinates of the ellipse E1 center and a and b are the two axes of the ellipse.
The two symmetrical points A and B on the ellipse E1 in Figure 6 have the coordinates (x0, y01)

and (x0, y02), respectively. The coordinates on the Oy axis of these two points can be expressed as:{
y01 = yi − yo f f set
y02 = yi + yo f f set

(6)
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The offset yoffset on the Oy axis which results using Equation (6) in the ellipse in Equation (5) is:

yo f f set = b×

√
1−

(xi − x0)
2

a2 (7)

Thus, this procedure can be used to detect the coordinates of the resulting ellipse points. The result
of the Hough transform is stored in a table cell of the image size named the Hough accumulator. The
accumulator value is updated for each ellipse generated using the elliptical Hough transform. Thus,
the accumulator terms having the address provided by the points on the Hough ellipses (E1, E2, E3,
E4, . . . ) are increased by one unit. Thus, after a single pass through the image, the address (xc, yc)
of the maximum value stored in the accumulator represents the center O of the detected ellipse E.
To detect the best geometric parameters of the ellipse fitted to the pupil, the maximum value stored in
the accumulator is calculated for a certain number N of (a, b, τ) triplets. The address of the maximum
value stored in the accumulator after N passes through the image represents the coordinates of the
optimum detected center of the ellipse. A high number of (a, b, τ) triplets processed by the algorithm
significantly increases the algorithm accuracy, but increases its running time.

To decrease the EHT algorithm running time to ensure the minimum of 10 frames/s required
for real-time applications, the angle τ of the ellipse has been neglected in the analysis illustrated in
Section 3.2 and a four-dimensional (4D) accumulator was used.

2.4.4. Projection Function Algorithm for Pupil Center Detection

The new simplified projection function method algorithm (PROJ) proposed in this paper determines
the projections of the binarized eye pupil image on the two axes of the coordinate system (Figure 7).
The algorithm is very fast. If the binarized eye pupil image does not contain noise artifacts, the resulting
projection vectors zx and zy on Ox and Oy axes, respectively, have strictly positive values only for the
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indices corresponding to the pupil shape, and values of 0 outside this range (Figure 7). False feature
points detection, which cannot be totally avoided, determines the values different from 0 for projection
vectors indices outside the pupil shape. To avoid the influence of these false pixels that belong to the
background of the image, when computing the center of the pupil, an adaptive threshold value is used
related to the elements of projection vectors to eliminate all false detections.
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The threshold values, Xth and Yth, plotted by a red line in Figure 7, can be written as:
Xth = 1

m ×
m∑

i=1
zxi(zxi > 0)

Yth = 1
n ×

n∑
i=1

zyi(zyi > 0)
(8)

where m and n are numbers of strict positive elements (zxi and zyi ) of projection vectors zx and zy on Ox
and Oy axes, respectively.

Thus, according to Figure 7, the pupil center position (xc, yc) is indicated by the middle range of
the projection vector elements higher than threshold values (Xth and Yth) on both axes of the coordinate
system and can be expressed by: {

xc = (xmin + xmax)/2
yc = (ymin + ymax)/2

(9)

3. Results

3.1. Experimental Results of the Analyzed PDAs on Static Eye Images

The accuracy of the analyzed PDAs on static eye images was tested considering four representative
databases. The first dataset (DB1) consists of 400 infrared eye images with a resolution of
640 × 480 pixels, with eye pupils of different shapes placed on different positions on the sclera
and multiple corneal reflections, captured with the head-mounted eye tracking interface developed
by our team. The second dataset (DB2-CIL) includes 400 infrared eye images with a resolution of
640 × 480 pixels from the publicly available database Casia-Iris-Lamp [59]. The third dataset (DB3-SW)
contains 600 eye images with a resolution of 620 × 460 pixels, highly off axis, with eyelashes as
presented by Świrski et al. [42], obtained as a uniformly random subset of left and right eye videos
from two people. The forth dataset (DB4-ExCuSe dataset XII) contains 524 eye images with a resolution
of 384 × 288 pixels from ExCuSe dataset XII with bad illumination [46]. For all datasets, the reference
for the analysis is the ground truth data, which contain the hand-labelled eye images.
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Since for real-time applications, the determination of the pupil center is of interest, to evaluate the
PDA accuracy, we used the pixel error, calculated as the Euclidean distance between the detected and
the manually labeled center of the eye pupil.

Figure 8a–g present the detection rate depending on pixel error between 1 to 10 pixels for all
studied algorithms determined for all four databases of eye images.
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Figure 8. Detection rate vs. pixel error for all PDAs running on databases (a) DB1, (b) DB2-CIL,
(c) DB3-SW-p1-left, (d) DB3-SW-p1-right, (e) DB3-SW-p2-left, (f) DB3-SW-p2-right, (g) DB4-ExCuSe.

Table 1 illustrates the mean values (d), standard deviations (σd) of the pixel error, and the detection
rate at five pixels (DR5), obtained by running each analyzed PDA on all four databases of eye images.
The detection rate at five pixels represents the percentage of the eye pupil images for which the pixel
error is lower than five pixels.

Table 1. Performances of the PDAs for static eye images from all four databases.

PDA CENT CHT EHT ExCuSe LSFE PROJ RANSAC Starburst

DB1
(400 images)

d(px) 2.96 2.99 5.35 7.94 3.01 2.98 3.61 19.61
σd (px) 2.48 2.42 23.10 21.44 2.54 2.36 2.90 35.12

DR5 (%) 84.50 88.25 86.50 71.25 85.50 83.50 75.50 51.75

DB2 -CIL
(400 images)

d(px) 3.00 3.01 4.18 8.61 3.23 3.12 3.04 5.32
σd (px) 2.35 3.04 10.17 16.72 2.34 2.31 2.25 4.86

DR5 (%) 89.50 90.75 91.00 70.75 86.50 89.25 87.25 64.75

DB3 -SW-p1-left
(150 images)

d(px) 3.66 14.78 3.41 3.08 3.74 3.79 9.61 21.85
σd (px) 1.72 7.28 2.57 5.31 1.87 1.69 5.97 31.10

DR5 (%) 78.66 15.33 78.66 91.33 75.33 86.00 28.66 25.33

DB3 -SW-p1-right
(150 images)

d(px) 76.31 55.51 61.86 30.21 74.25 76.97 63.56 27.56
σd (px) 88.95 81.27 88.48 64.63 87.19 88.56 88.27 26.53

DR5 (%) 45.33 12.66 45.33 60.00 44.00 38.00 12.66 12.66

DB3 -SW-p2-left
(150 images)

d(px) 8.87 15.10 8.72 2.10 8.70 9.05 15.26 7.91
σd (px) 32.51 7.75 31.99 2.45 32.51 32.53 32.42 9.74

DR5 (%) 89.33 16.00 81.33 95.33 90.66 82.66 40.00 46.66

DB3 -SW-p2-right
(150 images)

d(px) 3.97 15.99 4.75 1.87 4.04 4.22 30.20 6.60
σd (px) 34.10 8.07 32.33 1.68 33.39 34.01 87.95 6.45

DR5 (%) 96.66 14.00 92.00 97.33 97.33 96.66 45.33 60.00
DB4 -ExCuSe -

set XII
(524 images)

d(px) 32.72 5.35 4.46 6.80 31.16 32.82 23.81 8.69
σd (px) 76.70 10.00 10.90 15.69 72.87 76.37 60.10 23.40

DR5 (%) 71.56 83.77 80.34 77.48 71.94 70.61 67.93 63.54

For the DB1 and DB4-ExCuSe databases, the best results for DR5 were produced by the CHT
algorithm; for DB2-CIL, the best results were produced by both EHT and CHT algorithms; and for the
DB3-SW database, the best results were produced by the ExCuSe algorithm.

For the DB1 and DB2-CIL databases, the lowest values of the DR5 were produced by Starburst
and ExCuSe algorithms due to multiple corneal reflections present in these eye image datasets. For the
DB3-SW database, the lowest results were produced by CHT, RANSAC, and Starburst algorithms
due to the rotated ellipse shape of the pupil and its obstruction by eyelids and eyelashes, specific
to these images. For the DB4-ExCuSe database, the lowest value of the DR5 was produced by the
Starburst algorithm.

The CENT, EHT, ExCuSe, LSFE, and PROJ algorithms provided good results for static raw eye
images (DR5 ≥ 70%) for all databases, except for the DB3-SW-p1-right database.

For the eye images from the Świrski dataset DB3-SW-p1-right, a low detection rate was obtained
for all PDAs (DR5 ≤ 60%). These types of eye images are not suitable for real-time eye tracking
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applications due to these images being highly off axis and the pupil being covered with eyelids and
eyelashes. This problem was solved by Świrski [35], where a detection rate over 87% on DB3-SW
dataset (600 images) within an error threshold of five pixels is reported.

Although the CHT algorithm shows a low detection rate for DB3-SW database, it provides the
highest detection rate for DB1, DB2-CIL, and DB4-ExCuSe databases and is the only algorithm of those
tested that provides σd ≤ 10 pixels for all datasets, except for the Świrski DB3-SW-p1-right dataset.
The highest detection rate for most databases, the lower dispersion rate, and the high noise immunity
for different lighting conditions make this algorithm an important candidate for real-time applications.
The low detection rate of the CHT algorithm for DB3-SW database can be increased significantly using
the new EHT algorithm proposed in this paper, which can better detect the rotated ellipse shape of the
pupil, as shown by the results in Table 1. To evaluate the maximum performance of the EHT algorithm
for static eye image, a 5D accumulator was used. Due to the significant increase in running time,
for real-time applications, this algorithm uses only a 4D accumulator, as shown in Section 2.4.3.

The EHT algorithm is the only one of those tested that provides a DR5 ≥ 75% among all datasets,
except for the Świrski DB3-SW-p1-right dataset.

Figure 9 illustrates some typical detection errors specific to the analyzed PDAs.
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CHT algorithm operates properly. Even for elliptical-shaped pupils, situations occur when the EHT-

based algorithms fail, as shown by the experimental results illustrated in Figure 11. This explains the 

better results produced by the CHT algorithm on the DB1, DB2-CIL and DB4-ExCuSe databases. 

Figure 9. Typical detection errors of analyzed PDAs: (a) CHT, detection error due to elliptical shape
of the pupil; (b) EHT, canceling the error introduce by CHT algorithm; (c,d) RANSAC, two different
runnings on the same eye image with corneal reflection; (e) ExCuSe, loss of detection in an image
affected by corneal reflection and occluded by eyelashes; and (f) PROJ and (g) LSFE, images sensitive to
binarization stage (noisy eye image or pupil with occlusions). Legend: Green line—ideal pupil contour
and center; red line—detected pupil contour and center.

Due to noisy eye images, there are many situations where the EHT based algorithm detects an
ellipse rather than a circle. This case is illustrated in Figure 10 when the EHT algorithms fails and
the CHT algorithm operates properly. Even for elliptical-shaped pupils, situations occur when the
EHT-based algorithms fail, as shown by the experimental results illustrated in Figure 11. This explains
the better results produced by the CHT algorithm on the DB1, DB2-CIL and DB4-ExCuSe databases.
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The different results illustrated in Figure 8 and Table 1 show that the performance of each algorithm
is strongly dependent on the type and particularities of the eye tracker device used for capturing the
eye images from each database. Thus, the choice of the most appropriate pupil detection algorithm for
a certain application depends on the type of eye tracking interface used to acquire the eye images.

To evaluate the performance of these algorithms for real-time eye tracking applications, many
other factors may be considered. In Section 3.2, the performance of these algorithms for real-time
applications are investigated, evaluating the accuracy of each algorithm in the scene image, cursor
controllability and stability on the user screen, and running time.

3.2. Experimental Results of the Proposed Eye Tracking Interface for the Video Eye Images

In this section, the real-time performance of the proposed head-mounted eye tracking interface
is analyzed. The subjects who tested the system in laboratory conditions were 30 students from the
Faculty of Electronics, Telecommunications, and Information Technology from “Gheorghe Asachi”
Technical University and Faculty of Medical Bioengineering from “Grigore T. Popa” University of
Medicine and Pharmacy in Iaşi, Romania.

The inclusion criterion were the following: (1) students from the two faculties mentioned above
who wanted to participate voluntarily in testing the eye tracking interface, (2) healthy subjects without
any ocular disorder, (3) students who agreed to be trained on how to use the system, and (4) the ability
to answer questions regarding the system usage.

Participants were informed about the system’s operation and anonymity of the data collected
in the experimental session. They were asked to keep their head in a stable position and look at the
user screen placed at a distance of approximately 60 cm. The real-time testing scenario illustrated in
Figure 12a involved moving the cursor by eye tracking over an imposed course on the user screen with
full HD resolution while maintaining the cursor position as stable as possible in a circular target area
within a radius of 50 pixels (illustrated in yellow in Figure 12a) placed in the center of each quadrant
for a certain dwell time before moving to the next quadrant. Figure 12b presents the signals provided
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by the PDA for one recording during system testing, represented by the cursor coordinates on both
axes according to the cursor movement tracking on the user screen.
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Figure 12. Real-time testing scenario: (a) cursor movement tracking on the user screen and (b) signals
provided by the PDA on both axes of the coordinate system.

Thus, the detected points on the user screen, corresponding to each quadrant, are known. Since
the performance of any eye tracking system used for real-time application is influenced to some degree
by the subjectivity of the users, its accuracy must be appreciated on a large set of subjects using
statistical methods. The eight algorithms were tested on a set of subjects described above, resulting in
30 video recordings of the eye movement for each PDA (for a total of 240 use cases recorded). All 240
use cases involved a total of 370,182 eye images processed.

To evaluate the performance of all studied PDAs in the scene image, we calculated the Euclidean
distance (d) between the detected cursor position in a quadrant on the user screen and the center of the
target circle placed in that quadrant for each frame provided by the IR video camera.

For real-time applications, the detection rate (DR) is the percentage of all points from a quadrant
(which are related to the quadrant) on the user screen for which their Euclidean distance calculated from
the center of the quadrant to the detected cursor position is lower than the radius of the target circle.

A similar parameter, cluster detection rate (CDR), can be calculated related to the Euclidean
distance for cluster evaluation (dc) where dc represents the Euclidean distance between the detected
cursor position in a quadrant on the user screen and the center of the cluster points in that quadrant.
The coordinates of the cluster center are given by the mean value of the coordinates of the quadrant
points on both axes of the coordinate system.

The cluster dispersion rate (CDIR) is the percentage of the detected points on the user screen
for which their Euclidean distance for cluster evaluation is higher than the radius of the target circle.
For percentage values: CDIR = 100–CDR.

For each subject s (s = 1, . . . , 30) who tested the system, the following parameters were determined
in the scene image: the mean value (ds) and the standard deviation (σs) of the Euclidean distance,
the detection rate at 50 pixels (sDR50), and the cluster dispersion rate at 50 pixels (sCDIR50).

In Figure 13a–h, the results obtained for each subject are plotted for each PDA.
In Table 2 we synthetize the results obtained for each tested PDA by determining the overall mean

value (d) and the standard deviation (σ) of the Euclidean distance, and the DR at 50 pixels (DR50).

Table 2. Mean value and standard deviation of the Euclidean distance and DR50 for all tested PDAs in
the scene image.

PDA
(30 Records/PDA) CENT CHT EHT ExCuSe LSFE PROJ RANSAC Starburst

d(px) 29.90 25.87 27.67 33.72 30.34 30.13 33.31 44.76
σ (px) 20.34 17.60 18.88 48.72 19.85 20.94 23.52 31.05

DR50 (%) 90.28 91.39 88.86 85.32 87.10 86.95 84.46 66.86
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For each tested PDA, Table 3 presents the overall mean value (dc) and standard deviation (σc) of
the Euclidean distance for cluster evaluation, and the CDIR at 50 pixels (CDIR50).

Table 3. Mean value and standard deviation of the Euclidean distance for cluster evaluation and
CDIR50 for all tested PDAs in the scene image.

PDA
(30 Records/PDA) CENT CHT EHT ExCuSe LSFE PROJ RANSAC Starburst

dc(px) 19.37 18.65 21.35 25.29 19.98 20.70 21.52 28.90
σc (px) 17.99 14.28 14.99 42.95 16.81 16.32 19.83 25.37

CDIR50 (%) 4.64 4.07 5.35 8.02 5.20 5.95 6.97 13.03
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Figure 13. Experimental results obtained on the video eye images for the (a) CENT, (b) CHT, (c) EHT,
(d) ExCuSe, (e) LSFE, (f) PROJ, (g) RANSAC, and (h) Starburst algorithms.

Table 4 lists the algorithm running time for each tested PDA. These values were determined using
a computer with I7 7700 K Intel processor at 4.2 GHz, with 8 Gb RAM, and SSD.

Table 4. Running time of all tested algorithms.

PDA CENT CHT EHT ExCuSe LSFE PROJ RANSAC Starburst

Running time (s) 0.011 0.0541 0.0904 0.094 0.0121 0.0124 0.0193 0.0189

Figure 14a,b present the detection rate and the cluster detection rate, respectively, depending on a
circular target with radius between 10 to 100 pixels obtained for all studied PDAs for a real-time scenario.
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studied algorithms for real-time applications.

The results presented in Figure 14a indicate the positioning precision of the cursor on a circular
target area with radii between 10 to 100 pixels. The results presented in Table 2 and Figure 14a show a
detection rate at 50 pixels between 84.46% and 91.39% for CENT, CHT, EHT, ExCuSe, LSFE, PROJ,
and RANSAC algorithms. The Starburst algorithm produced a lower detection rate of 66.86%.

The results in Table 3 and Figure 14b represent an indicator of the cursor stability, signifying
the user’s ability to easily maintain the cursor in the same position on the screen to perform an
ideogram selection.

Although the ExCuSe algorithm has a DR50 of 85.32%, it has a high dispersion rate (CDIR50 = 8.02%) and
a longer running time (0.094 s), which means low controllability of the algorithm for real-time applications.

According to Tables 2 and 3, the best results were obtained using the CHT algorithm,
which provided the highest detection rate at 50 pixels (91.39%) and the lowest cluster dispersion
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rate (4.07%). Also, the CHT algorithm provided the lowest values for mean Euclidean distance and
standard deviation of the Euclidean distance for real-time applications.

These results show that the proposed eye tracking interface based on the CHT algorithm is
highly accurate, provides reliable controllability, and user-friendly, and thus can be a valid solution for
different types of real-time applications, like communication over the Internet, text entry using a virtual
keyboard (as illustrated in Section 4), computer gaming, virtual reality, and assistive technologies for
communications with disabled patients [6].

3.3. Discussion

According to experimentally obtained results, some conclusions regarding the operation of the
eye tracking system for real-time applications were drawn. Pupil detection algorithm based on least
squares fitting of an ellipse is numerically stable, very fast, and precise. LSFE is the most commonly
used principle in the pupil detection algorithms reported in the literature [39,45,47–49]. The eye
pupil is approximated by an ellipse using a mathematical model of the ellipse, which determines the
high stability of the cursor on the user screen. The precision of the algorithm is dependent on the
performance of the binarization stage. It is influenced by the physiological parameters of the eye,
dilation and contraction of the pupil depending on the illumination condition, and the angle of the
gaze direction. The main disadvantage is in the case of outlier points, the detected ellipse may not
be the best geometrical model of the eye pupil. This situation may occur in the case of noisy frames
and nonuniform or fluctuating lighting conditions, when the feature input points provided by the
LSFE algorithm are not best fitted to the pupil ellipse (Figure 9g). These situations, which can create
significant errors in pupil center coordinate detection, have been significantly improved using the new
binarization technique, proposed here.

The RANSAC paradigm-based algorithm provides high accuracy and moderate running time.
Due to the classification of pixels on the pupil contour for inliers and outliers, the algorithm performs
well with noisy frames and nonuniform lighting conditions. The RANSAC algorithm is based on
randomly detecting the largest consensus set to draw an ellipse that better fits the eye pupil. Thus,
the algorithm can produce different results regarding the coordinates of the detected pupil center
for identical conditions of the algorithm running on the same eye images, as shown in Figure 9c,d.
This produces a noise overlap on the signals provided by the PDA, resulting in cursor instability on
the user screen, which makes this algorithm unsuitable for real-time applications.

Pupil detection algorithm using the circular Hough transform can operate in difficult lighting
conditions, tolerates gaps in feature boundary descriptions, and best detects the pupil center in noisy
frames. It is a robust algorithm that is based on detecting the circle that best approximates the pupil
in the binarized eye image. The higher stability of the cursor on the user screen is due to the lowest
dispersion rate for real-time applications (CDIR50 = 4.07%), which confirms the results obtained with
the static eye images from all four datasets tested, for which σd ≤ 10 pixels was achieved. The main
drawback of this algorithm is that it always approximates the pupil image with a circle, but this is
not always true. Due to the filming angle, when the pupil is placed at the edges of the sclera (left,
right, top, bottom), the pupil image is no longer circular, so that the geometric shape, which better
approximates the pupil in this case, is an ellipse. For this reason, since this algorithm always detects
circles, it creates errors when detecting the pupil center, as shown in Figure 9a. Thus, the error of the
pupil detected center depends on the pupil position on the sclera.

The elliptical Hough-transform-based algorithm is highly accurate for static eye images, can detect
the elliptical shape of the pupil (Figure 9b), but the algorithm running time is significantly longer for
real-time applications because the mathematical description of an ellipse requires five parameters
compared to only three in the case of circle description. The experimental results showed that the
performance of the EHT algorithm is worse than that of the CHT algorithm for different databases
containing eye images with a circular pupil shape. This can be explained by both algorithms detecting
the pupil center in noisy eye images. Thus, under these conditions, the EHT algorithm can detect



Sensors 2019, 19, 3630 20 of 27

elliptical shapes rather than circular shapes in the noisy eye image, which does not represent the eye
pupil, as shown in Figures 10a and 11. The EHT algorithm performs better than CHT algorithm for
databases including eye images with a rotated ellipse shape of the pupil, as is the case for the DB3-SW
Świrski database. These images are highly off axis due to the filming angle, which is not the case for
the eye images provided by the eye tracking interface proposed in this paper. However, the main
drawback of the EHT algorithm is that for increased accuracy, this algorithm requires a longer running
time, which is not suitable for real-time applications. Increasing computation power will increase the
attractiveness of this algorithm, but it will increase the price of the system.

Algorithms based on the projection method and centroid detection provide high real-time accuracy
if no artifacts appear in the eye image. Both algorithms also provide high controllability and very fast
running time. The precision of both algorithms is dependent on the performance of the binarization
stage (Figure 9f). The accuracy of the projection method algorithm is dependent on the threshold values
used for the two axes of the coordinate system. A low threshold value increases the algorithm accuracy,
but decreases the noise immunity; high values for these parameters increase the noise immunity of
the algorithm, but decrease its accuracy. Thus, a trade-off between accuracy and noise immunity for
the projection method algorithm must be considered for real-time applications. The centroid method
algorithm does not detect the contour of the pupil and its accuracy decreases if artefacts appear after
the binarization procedure. We noticed a variation in the detected pupil center position between
consecutive frames due to the random geometric shape of the maximum area detected by the algorithm
as a result of the binarization stage.

The Starburst algorithm provides lower accuracy, lower controllability, and its operation is severely
influenced by noisy frames and nonuniform lighting conditions. The pupil is approximated by an ellipse
using randomly determined features points, which causes a high dispersion rate; this significantly
affects the stability of the cursor on the user screen. The algorithm accuracy is dependent on the
running time.

The ExCuSe algorithm is highly accurate, but has a long running time and high dispersion rate
due to loss of detection on certain frames affected by the corneal reflection (Figure 9e). The eye tracking
system based on this algorithm requires more user experience.

The best results produced by the CHT algorithm for real-time applications can be explained
by some important features of the proposed eye tracing interface. The filming angle of the video
camera was chosen to avoid the rotated ellipse shape of the pupil, which significantly improves the
algorithm accuracy (DR50 = 91.39%). The CHT algorithm provides highest noise immunity, the lowest
dispersion rate, and a reasonable running time. Given these properties, pupil detection using CHT is a
technique suitable for algorithms that rely on binarization of the eye image. All these factors indicate
that the CHT algorithm is the most user-friendly for real-time applications running on our designed
eye tracking interface.

The major challenge in the research and development of new eye tracking applications is
implementing new systems capable of operating properly both indoors and outdoors [60]. Future eye
tracking systems will use new technologies and sensors that better mimic biological sensing and the
eye structure. For example, the silicon retina has high potential for high speed eye tracking to provide
robust detections in ambient light conditions [61]. As shown in Majaranta et al. [14], the pixels in the
silicon retina are able to asynchronously respond to relative changes in intensity. This enables fast and
robust detection of movement and tracking of objects in varying light conditions where traditional
video- and IR-based eye tracking systems typically fail.

4. Implementing an Eye Typing Application Using the Proposed Interface

To test the real-time performance of the proposed eye tracking interface for a real case scenario,
in this section, we present an eye typing application using a virtual keyboard. The layout of the virtual
keyboard is important for real-time applications [25]. In our application, we used an open source
QWERTY virtual keyboard, developed by OptiKey from GitHub [56], as illustrated in Figure 15a.
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This keyboard provides support for dwell selection time and its layout allows the use of one keystroke
per character (KSPC). Since our main purpose was to test the performance of the pupil detection
algorithm (number of keystrokes in a time unit), the autocorrect function was not used. The size of
keypads used by this keyboard is larger than 50 pixels, which represents the radius of the circular
target objects used in our system design, illustrated in Section 3.2. The software solution used by the
proposed eye tracking interface for implementing an eye typing application uses the CHT algorithm
for pupil center detection, which proved to be the best for real-time applications, according to the tests
results in Section 3.2.

The eye typing application was tested on the same set of 30 subjects, described in the previous
section. Although all subjects were beginners in eye typing, they had some experience using the eye
tracking interface gained when testing the system accuracy, as shown in Section 3.2.
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Figure 15. (a) Cursor movement tracking on the virtual keyboard developed by OptiKey [56] and
(b) signals provided by the PDA on both axes of the coordinate system during typing a sentence.

Each subject typed five sentences using their gaze direction. Each block of five sentences contained
an average of 135 characters. The chosen sentences represent Romanian translation of the Phrase
Set proposed by MacKenzie and Soukoreff [62]. The subjects’ task consisted of typing the required
sentences as fast and accurately as possible using only small letters. The dwell time was set to
1000 ms. The calibration stage was performed for each sentence from a block of five. To avoid fatigue,
a five-minute break between the sentences was given. Because the participants are beginners in
using the eye tracking system, they were provided one practice phrase (about 25 characters) prior to
data collection [25]. Below is an example of a block with five sentences used to test the eye typing
application: (1) my watch fell in the water, (2) prevailing wind from the east, (3) never too rich and
never too thin, (4) breathing is difficult, and (5) I can see the rings on Saturn [62].

Figure 15a plots an example of the cursor movement tracking on the virtual keyboard layout for
one record during system testing; Figure 15b represents the signals provided by the PDA on both axes
of the coordinate system for the same record.

According to the taxonomy proposed by MacKenzie and Soukoreff [63], the following statistical
indicators were calculated: total error rate (TER), not corrected error rate (NCER), and corrected error
rate (CER). These parameters are calculated using the following equations, respectively [63]:

Total Error Rate =
INF + IF

C + INF + IF
× 100 (%) (10)

Not Corrected Error Rate =
INF

C + INF + IF
× 100 (%) (11)

Corrected Error Rate =
IF

C + INF + IF
× 100 (%) (12)
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where C is the number of correct inputs, IF is the number of errors made and corrected, and INF is the
number of errors but not corrected [63].

For all subjects, the typing speed (characters/min) and the MR defined in Section 2 were calculated.
For all 30 subjects, the interest parameters were calculated for each typed sentence, as well as the mean
values for each block of five sentences. Figure 16 plots the mean value and standard deviation of the
typing speed and TER for each subject who tested the system.
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Table 5 lists the overall mean value and the standard deviation of all considered parameters
recorded during the test session.

Table 5. Testing results obtained for the propose eye tracking interface used in eye typing application.

Statistical Indicators Typing Speed
(Characters/Min) TER (%) NCER (%) CER (%) MR

Overall mean value 20.74 3.55 0.60 2.95 11.13
Standard deviation 2.08 2.91 1.22 2.20 1.05

All subjects who tested the proposed eye tracking interface for the eye typing application were
able to perform the calibration stage and accomplished 100% of their tasks. Of the 30 subjects who
tested the application, three (10%) made only one mistake that was corrected, and one subject (3.33%)
made one mistake that was not corrected. The greatest number of errors made during application
testing was recorded by a single subject who made 19 errors, of which 14 were corrected and five
were not. Many errors occurred due to inaccurate calibration at the beginning of the test session.
To avoid the system being imprecisely calibrated, the eye tracking system proposed in this paper uses
a calibration indicator, which is represented by the mapping rate parameter, calculated during the
calibration stage. If the mapping rate is higher than a certain threshold, then the system failed to
perform an accurate calibration procedure required for eye typing application, and, as a consequence,
the subject must repeat the calibration stage. From practical experience, this threshold was set to 16.
During the test session, only one subject needed to repeat the calibration stage. The best calibration
procedure quality for a sentence was obtained for MR = 8.86 and the worst quality that was accepted
was obtained for MR = 15.96, as shown in Figures 3 and 4.

The experimental results with 30 novice subjects who used a constant dwell time of 1000 ms have
shown a mean typing speed of about 20 characters per minute, which it is in line with the observations
presented in Majaranta et. al. [64]. Taking into account that all 30 subjects have succeeded to use the
system after a short training period, fulfilling their tasks, shows that the proposed system can be a
valid solution for real-time eye tracking applications.
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The typing speed of the proposed eye tracking interface can be significantly increased through
more user training, by decreasing the dwell time value or by using different word and letter prediction
techniques, as it is shown in [26] and [27].

At the end of the test session, the participants completed the System Usability Scale (SUS)
questionnaire to determine the performance of the eye tracking interface based on CHT algorithm.
Each item’s score contribution ranges from zero to four (with four being the most positive response).
The SUS score is calculated according to the procedure previously illustrated [65].

The 10 statements on the SUS are as follows [65]:

(S1) I think that I would like to use this eye tracking interface frequently.
(S2) I found the eye tracking interface unnecessarily complex.
(S3) I thought the eye tracking interface was easy to use.
(S4) I think that I would need the support of a technical person to be able to use this eye tracking interface.
(S5) I found the various functions in this eye tracking interface were well integrated.
(S6) I thought there was too much inconsistency in this eye tracking interface.
(S7) I would imagine that most people would learn to use this eye tracking interface very quickly.
(S8) I found the eye tracking interface cumbersome to use.
(S9) I felt very confident using the eye tracking interface.
(S10) I needed to learn a lot of things before I could get going with this eye tracking interface.

Figure 17 provides the result of the SUS questionnaire score obtained for each item. Regarding
the system usability, four subjects provided the maximum SUS score. The lowest score was 67.5.
The overall mean score was 89.50, with a standard deviation of 6.87. Many subjects had difficulty
using the system without training and getting accustomed to the head-mounted eye tracking interface
because the subjects did not have prior experience with this type of system.
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Figure 17. System Usability Scale (SUS) score of each item of the questionnaire.

To improve this situation, the subjects received a practice phrase before starting the experiment.
The average value of 89.50 indicates the good performance of the eye tracking system according to the
scoring system established in specialty literature [66].

5. Conclusions

In this study, we developed an eye tracking-based human–computer interface for real-time
applications. The most suitable algorithm for the eye tracking interface was determined by analyzing
the performance of different PDAs on static and video eye images.
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To evaluate the algorithm accuracy for video eye images, we proposed a new method to determine
the mapping rate between the raw eye image and the scene image. Using this method and knowing
the algorithm accuracy for static eye images, we determined the algorithm accuracy expected for
real-time applications as the minimum size of the target area on the user screen, which can be precisely
controlled by the user’s gaze direction. We showed that the high precision of a PDA on static eye
images does not guarantee high performance for video eye images. To ensure high performance for
real-time applications, other parameters, like cursor controllability and stability on the user screen and
algorithm running time, were also considered.

Experimental sessions involved testing the eye tracking interface that uses all eight PDAs on a set
of 30 subjects in laboratory conditions using a new testing protocol developed using scene images
for different real-time operating scenarios and lighting conditions. The resulting 240 use cases were
statistically processed.

The experimental results obtained by the proposed PDAs (CENT, CHT, EHT, LSFE, PROJ,
and RANSAC) produced detection rates between 84.46% and 91.39% in the scene image for a target
area radius of 50 pixels on the user screen. The best results in term of accuracy and cursor controllability
and stability on the user screen were achieved using the CHT-based algorithm, which was the most
user-friendly for the developed interface.

The performance of the proposed low-cost eye tracking interface based on the CHT algorithm
was evaluated on an eye typing application using an on-screen virtual keyboard. The mean typing
speed obtained from a set of 30 subjects was 20.74 characters/min with a mean total error rate of 3.55%.

Considering the low price, high accuracy for variable and non-uniform lighting conditions, and the
results of the SUS questionnaire, the proposed eye tracking interface can be a valuable solution for
different types of real-time applications. Depending on the application type and the device used,
a trade-off between accuracy, controllability, running time, noise sensitivity, and performance of the
PDA in nonuniform lighting conditions must be considered in any eye tracking system design.
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