Relationship Between Incidence of Knee Pain and Ground Reaction Force During Stepping Motion in Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Participant Characteristics
2.3. Protocol
2.4. GRF in Stepping Motion
2.5. Data Analysis
3. Results
3.1. Comparison of Measures at Baseline and Follow-Up Surveys
3.2. Comparison of Characteristics and GRF at Baseline and Follow-Up Survey Between Groups
3.3. Comparison of Changes in Ground Reaction Force Parameters in the Two Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, A.; Li, H.; Wang, D.; Zhong, J.; Chen, Y.; Lu, H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. eClinicalMedicine 2020, 29–30, 100587. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, F.; Lu, Y. The function of mechanical loading on chondrogenesis. Front. Biosci. (Landmark Ed). 2016, 21, 1222–1232. [Google Scholar] [PubMed]
- Shao, W.; Hou, H.; Han, Q.; Cai, K. Prevalence and risk factors of knee osteoarthritis: A cross-sectional survey in Nanjing, China. Front. Public Health. 2024, 12, 1441408. [Google Scholar] [CrossRef] [PubMed]
- Son, K.M.; Hong, J.I.; Kim, D.H.; Jang, D.G.; Crema, M.D.; Kim, H.A. Absence of pain in subjects with advanced radiographic knee osteoarthritis. BMC Musculoskelet. Disord. 2020, 21, 640. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, T.B.; Marriott, K.A.; Leitch, K.M.; Moyer, R.F.; Lorbergs, A.L.; Walton, D.M.; Willits, K.; Litchfield, R.B.; Getgood, A.; Fowler, P.J.; et al. Association Between Knee Load and Pain: Within-Patient, Between-Knees, Case-Control Study in Patients With Knee Osteoarthritis. Arthritis Care Res. 2019, 71, 647–650. [Google Scholar] [CrossRef]
- Kwon, S.B.; Ro, D.H.; Song, M.K.; Han, H.S.; Lee, M.C.; Kim, H.C. Identifying key gait features associated with the radiological grade of knee osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1755–1760. [Google Scholar] [CrossRef]
- Gustafson, J.A.; Anderton, W.; Sowa, G.A.; Piva, S.R.; Farrokhi, S. Dynamic knee joint stiffness and contralateral knee joint loading during prolonged walking in patients with unilateral knee osteoarthritis. Gait Posture. 2019, 68, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Caldas, R.; Fadel, T.; Buarque, F.; Markert, B. Adaptive predictive systems applied to gait analysis: A systematic review. Gait Posture. 2020, 77, 75–82. [Google Scholar] [CrossRef]
- Costello, K.; Felson, D.; Neogi, T.; Segal, N.; Lewis, C.; Gross, K.; Nevitt, M.; Lewis, C.; Kumar, D. Ground reaction force patterns in knees with and without radiographic osteoarthritis and pain: Descriptive analyses of a large cohort (the Multicenter Osteoarthritis Study). Osteoarthr. Cartil. 2021, 29, 1138–1146. [Google Scholar] [CrossRef]
- Demura, S.; Sohee, S.; Yamaji, S. Sex and age differences of relationships among stepping parameters for evaluating dynamic balance in the elderly. J. Physiol. Anthropol. 2008, 27, 207–215. [Google Scholar] [CrossRef]
- Hill, K.D.; Bernhardt, J.; McGann, A.M.; Maltese, D.; Berkovits, D. A New Test of Dynamic Standing Balance for Stroke Patients: Reliability, Validity and Comparison with Healthy Elderly. Physiother. Can. 1996, 48, 257–262. [Google Scholar] [CrossRef]
- Shin, S.; Demura, S. The relationship of age and leg strength in the step test with stipulated tempo in the elderly. Arch. Gerontol. Geriatr. 2009, 49, 311–316. [Google Scholar] [CrossRef]
- Takeshima, N.; Kohama, T.; Kusunoki, M.; Okada, S.; Fujita, E.; Oba, Y.; Brechue, W.F. A 20-sec Stepping Test and KINECT(TM) Sensor Provides Objective Quantification of Movement/Balance Dysfunction in Older Individuals. Exp. Aging Res. 2020, 46, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Osuka, Y.; Takeshima, N.; Kojima, N.; Kohama, T.; Fujita, E.; Kusunoki, M.; Kato, Y.; Brechue, W.F.; Sasai, H. Discrimination of Frailty Phenotype by Kinect(TM)-Based Stepping Parameters. JAR Life 2023, 12, 100–104. [Google Scholar] [PubMed]
- Oyama, Y.; Kameoka, M.; Sakaguchi, Y.; Murayama, T.; Ohta, T. Reliability of Evaluation Parameters of Ground Reaction Force in Stepping Motion. Int. J. Hum. Mov. Sports Sci. 2022, 10, 492–500. [Google Scholar] [CrossRef]
- Bjornsen, E.; Berkoff, D.; Blackburn, J.T.; Davis-Wilson, H.; Evans-Pickett, A.; Franz, J.R.; Harkey, M.S.; Horton, W.Z.; Lisee, C.; Luc-Harkey, B.; et al. Sustained Limb-Level Loading: A Ground Reaction Force Phenotype Common to Individuals at High-Risk for and Those with Knee Osteoarthritis. Arthritis Rheumatol. 2024, 76, 566–576. [Google Scholar] [CrossRef]
- Shinohara, T.; Saida, K.; Miyata, K.; Usuda, S. The balance function is associated with frailty in community-dwelling older women. Int. J. Rehabil. Res. 2021, 44, 51–56. [Google Scholar] [CrossRef]
- Takahashi, T.; Ishida, K.; Hirose, D.; Nagano, Y.; Okumiya, K.; Nishinaga, M.; Doi, Y.; Yamamoto, H. Vertical ground reaction force shape is associated with gait parameters, timed up and go, and functional reach in elderly females. J. Rehabil. Med. 2004, 36, 42–45. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Bevers, K.; Vriezekolk, J.E.; Bijlsma, J.W.J.; Ende, C.H.M.v.D.; Broeder, A.A.D. Ultrasonographic predictors for clinical and radiological progression in knee osteoarthritis after 2 years of follow-up. Rheumatology 2015, 54, 2000–2003. [Google Scholar] [CrossRef]
- Simic, M.; Harmer, A.R.; Agaliotis, M.; Nairn, L.; Bridgett, L.; March, L.; Votrubec, M.; Edmonds, J.; Woodward, M.; Day, R.; et al. Clinical risk factors associated with radiographic osteoarthritis progression among people with knee pain: A longitudinal study. Arthritis Res. Ther. 2021, 23, 160. [Google Scholar] [CrossRef]
- Muraki, S.; Akune, T.; Oka, H.; Ishimoto, Y.; Nagata, K.; Yoshida, M.; Tokimura, F.; Nakamura, K.; Kawaguchi, H.; Yoshimura, N. Incidence and risk factors for radiographic knee osteoarthritis and knee pain in Japanese men and women: A longitudinal population-based cohort study. Arthritis Rheum. 2012, 64, 1447–1456. [Google Scholar] [CrossRef]
- Glass, N.; Torner, J.; Law, L.F.; Wang, K.; Yang, T.; Nevitt, M.; Felson, D.; Lewis, C.; Segal, N. The relationship between quadriceps muscle weakness and worsening of knee pain in the MOST cohort: A 5-year longitudinal study. Osteoarthr. Cartil. 2013, 21, 1154–1159. [Google Scholar] [CrossRef]
- Segal, N.A.; Nilges, J.M.; Oo, W.M. Sex differences in osteoarthritis prevalence, pain perception, physical function and therapeutics. Osteoarthr. Cartil. 2024, 32, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Burnfield, J. Gait Analysis: Normal and Pathological Function; SLACK Incorporated: West Deptford, NJ, USA, 1992. [Google Scholar]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef]
- Brisson, N.M.; Wiebenga, E.G.; Stratford, P.W.; Beattie, K.A.; Totterman, S.; Tamez-Peña, J.G.; Callaghan, J.P.; Adachi, J.D.; Maly, M.R. Baseline knee adduction moment interacts with body mass index to predict loss of medial tibial cartilage volume over 2.5 years in knee Osteoarthritis. J. Orthop. Res. 2017, 35, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Leung, K.L.; Huang, C.; Huang, X.; Su, S.; Chung, R.C.; Fu, S.N. Higher knee flexion moment during walking is associated with a lower risk of knee pain developing among the elderly after 24 months. Eur. J. Phys. Rehabil. Med. 2023, 59, 386–395. [Google Scholar] [CrossRef]
- Kim, H.K.; Dai, X.; Lu, S.H.; Lu, T.W.; Chou, L.S. Discriminating features of ground reaction forces in overweight old and young adults during walking using functional principal component analysis. Gait Posture. 2022, 94, 166–172. [Google Scholar] [CrossRef]
- Yamagata, M.; Taniguchi, M.; Tateuchi, H.; Kobayashi, M.; Ichihashi, N. The effects of knee pain on knee contact force and external knee adduction moment in patients with knee osteoarthritis. J. Biomech. 2021, 123, 110538. [Google Scholar] [CrossRef] [PubMed]
- Baniasad, M.; Martin, R.; Crevoisier, X.; Pichonnaz, C.; Becce, F.; Aminian, K. Knee adduction moment decomposition: Toward better clinical decision-making. Front. Bioeng. Biotechnol. 2022, 10, 1017711. [Google Scholar] [CrossRef]
- Barela, A.M.; de Freitas, P.B.; Celestino, M.L.; Camargo, M.R.; Barela, J.A. Ground reaction forces during level ground walking with body weight unloading. Braz. J. Phys. Ther. 2014, 18, 572–579. [Google Scholar] [CrossRef]
- Toda, H.; Nagano, A.; Luo, Z. Age and gender differences in the control of vertical ground reaction force by the hip, knee and ankle joints. J. Phys. Ther. Sci. 2015, 27, 1833–1838. [Google Scholar] [CrossRef]
- Gilmer, G.; Crasta, N.; Tanaka, M.J. The Effect of Sex Hormones on Joint Ligament Properties: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2025, 53, 2738–2748. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar] [PubMed]
- Nakamura, N.; Takeuchi, R.; Sawaguchi, T.; Ishikawa, H.; Saito, T.; Goldhahn, S. Cross-cultural adaptation and validation of the Japanese Knee Injury and Osteoarthritis Outcome Score (KOOS). J. Orthop. Sci. 2011, 16, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Oyama, Y.; Watanabe, C.; Koyama, K. Age-Related Changes in Dynamic Balance Ability in the Stepping Test and Force-Generating Capacity of the Lower Limb Muscles. J. Aging Phys. Act. 2025, 1, 1–6, in press. [Google Scholar] [CrossRef]
Parameters | Baseline Mean ± SD | Follow-Up Mean ± SD | p Value | ES (Cohen’s d) | |
---|---|---|---|---|---|
Mechanical parameters | Mshaped | 0.83 ± 0.06 | 0.85 ± 0.07 | 0.20 | 0.34 |
F1 | 98.7 ± 6.2 | 96.6 ± 4.9 | 0.16 | 0.38 | |
F2 | 78.3 ± 4.7 | 79.1 ± 5.6 | 0.59 | 0.14 | |
F3 | 91.4 ± 4.4 | 89.7 ± 3.5 | 0.12 | 0.42 | |
AS-Mshaped | 2.7 ± 2.5 | 2.8 ± 1.9 | 0.60 | 0.05 | |
AS-F1 | 3.9 ± 2.8 | 4.8 ± 2.8 | 0.25 | 0.31 | |
AS-F2 | 4.0 ± 3.3 | 4.5 ± 3.3 | 0.64 | 0.15 | |
AS-F3 | 3.5 ± 2.8 | 5.4 ± 3.6 | 0.03 * | 0.59 | |
Temporal parameters | T1 | 1.11 ± 0.12 | 0.86 ± 0.07 | <0.001 * | 2.61 |
T2 | 1.11 ± 0.12 | 0.86 ± 0.07 | <0.001 * | 2.50 | |
T3 | 1.11 ± 0.12 | 0.86 ± 0.07 | <0.001 * | 2.63 | |
AS-T1 | 0.50 ± 0.37 | 0.41 ± 0.39 | 0.34 | 0.24 | |
AS-T2 | 0.57 ± 0.59 | 0.80 ± 1.82 | 0.06 | 0.17 | |
AS-T3 | 0.44 ± 0.48 | 0.35 ± 0.26 | 0.49 | 0.23 |
Parameters | NP Group (n = 20) Mean ± SD | KP Group (n = 9) Mean ± SD | p Value | ES (Cohen’s d) | |
---|---|---|---|---|---|
Characteristics | Age (years) | 63.2 ± 6.7 | 64.2 ± 3.8 | 0.67 | 0.17 |
Sex (male/female) | 11/9 | 0/9 | 0.01 * | 0.52 | |
Height (cm) | 161.5 ± 8.5 | 152.4 ± 2.3 | <0.001 * | 1.25 | |
Weight (kg) | 63.6 ± 14.7 | 59.9 ± 12.2 | 0.52 | 0.26 | |
BMI | 24.2 ± 4.2 | 25.7 ± 4.6 | 0.40 | 0.35 | |
Mechanical parameters | Mshaped | 0.82 ± 0.06 | 0.84 ± 0.07 | 0.44 | 0.32 |
F1 | 99.9 ± 5.7 | 96.1 ± 6.7 | 0.13 | 0.63 | |
F2 | 78.5 ± 4.5 | 78.1 ± 5.3 | 0.59 | 0.08 | |
F3 | 91.9 ± 4.2 | 90.1 ± 4.7 | 0.33 | 0.40 | |
AS-Mshaped | 2.8 ± 2.6 | 2.7 ± 2.4 | 1.00 | 0.04 | |
AS-F1 | 3.7 ± 2.8 | 4.4 ± 2.9 | 0.53 | 0.25 | |
AS-F2 | 4.0 ± 3.1 | 4.1 ± 3.8 | 0.99 | 0.007 | |
AS-F3 | 3.1 ± 2.1 | 4.2 ± 4.0 | 0.46 | 0.39 | |
Temporal parameters | T1 | 1.12 ± 0.13 | 1.09 ± 0.09 | 0.50 | 0.27 |
T2 | 1.12 ± 0.13 | 1.09 ± 0.09 | 0.56 | 0.24 | |
T3 | 1.12 ± 0.13 | 1.09 ± 0.09 | 0.45 | 0.31 | |
AS-T1 | 0.46 ± 0.37 | 0.60 ± 0.39 | 0.38 | 0.36 | |
AS-T2 | 0.62 ± 0.69 | 0.48 ± 0.26 | 0.74 | 0.23 | |
AS-T3 | 0.50 ± 0.55 | 0.31 ± 0.22 | 0.49 | 0.40 |
Parameters | NP Group (n = 20) Mean ± SD | KP Group (n = 9) Mean ± SD | p Value | ES (Cohen’s d) | |
---|---|---|---|---|---|
Characteristics | Age (years) | 63.2 ± 6.7 | 64.2 ± 3.8 | 0.67 | 0.17 |
Sex (male/female) | 11/9 | 0/9 | 0.01 * | 0.52 | |
Height (cm) | 161.5 ± 8.5 | 152.4 ± 2.3 | <0.001 * | 1.25 | |
Weight (kg) | 63.6 ± 15.0 | 59.6 ± 12.7 | 0.49 | 0.28 | |
BMI | 24.2 ± 4.3 | 25.5 ± 4.8 | 0.46 | 0.30 | |
Mechanical parameters | Mshaped | 0.83 ± 0.07 | 0.89 ± 0.04 | 0.03 * | 0.95 |
F1 | 98.0 ± 5.0 | 93.5 ± 3.0 | 0.01 * | 0.99 | |
F2 | 78.0 ± 5.6 | 81.5 ± 5.0 | 0.13 | 0.64 | |
F3 | 90.0 ± 3.7 | 88.9 ± 3.2 | 0.45 | 0.31 | |
AS-Mshaped | 2.9 ± 2.2 | 2.3 ± 1.2 | 0.44 | 0.32 | |
AS-F1 | 4.3 ± 2.3 | 5.8 ± 3.8 | 0.19 | 0.54 | |
AS-F2 | 3.8 ± 3.2 | 6.1 ± 2.9 | 0.05 | 0.74 | |
AS-F3 | 4.9 ± 3.7 | 6.5 ± 3.3 | 0.28 | 0.45 | |
Temporal parameters | T1 | 0.87 ± 0.07 | 0.83 ± 0.07 | 0.20 | 0.53 |
T2 | 0.88 ± 0.07 | 0.83 ± 0.07 | 0.14 | 0.60 | |
T3 | 0.87 ± 0.07 | 0.83 ± 0.07 | 0.21 | 0.52 | |
AS-T1 | 0.39 ± 0.32 | 0.46 ± 0.53 | 0.72 | 0.18 | |
AS-T2 | 0.94 ± 2.17 | 0.48 ± 0.54 | 0.33 | 0.25 | |
AS-T3 | 0.33 ± 0.25 | 0.39 ± 0.29 | 0.57 | 0.23 |
Parameters | NP Group (n = 20) Mean ± SD | KP Group (n = 9) Mean ± SD | p Value | ES (Cohen’s d) | |
---|---|---|---|---|---|
Mechanical parameters | ΔMshaped | −0.01 ± 0.05 | −0.05 ± 0.05 | 0.07 | 0.77 |
ΔF1 | 1.90 ± 5.06 | 2.57 ± 8.46 | 0.79 | 0.11 | |
ΔF2 | 0.47 ± 5.23 | −3.41 ± 5.76 | 0.08 | 0.72 | |
ΔF3 | 1.87 ± 3.55 | 1.20 ± 6.67 | 0.73 | 0.14 | |
ΔAS-Mshaped | −0.18 ± 3.14 | 0.36 ± 2.57 | 0.66 | 0.18 | |
ΔAS-F1 | −0.64 ± 3.61 | −1.38 ± 5.09 | 0.66 | 0.18 | |
ΔAS-F2 | 0.22 ± 4.87 | −2.05 ± 5.15 | 0.26 | 0.46 | |
ΔAS-F3 | −1.80 ± 4.12 | −2.29 ± 4.60 | 0.78 | 0.12 | |
Temporal parameters | ΔT1 | 0.25 ± 0.11 | 0.26 ± 0.10 | 0.81 | 0.09 |
ΔT2 | 0.25 ± 0.11 | 0.26 ± 0.10 | 0.64 | 0.09 | |
ΔT3 | 0.25 ± 0.11 | 0.25 ± 0.10 | 0.91 | 0.01 | |
ΔAS-T1 | 0.07 ± 0.48 | 0.13 ± 0.38 | 0.75 | 0.13 | |
ΔAS-T2 | −0.32 ± 2.35 | −0.01 ± 0.57 | 0.74 | 0.16 | |
ΔAS-T3 | 0.17 ± 0.68 | −0.07 ± 0.39 | 0.42 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyama, Y.; Ishikawa, K.; Murayama, T.; Ohta, T. Relationship Between Incidence of Knee Pain and Ground Reaction Force During Stepping Motion in Older Adults. Geriatrics 2025, 10, 126. https://doi.org/10.3390/geriatrics10050126
Oyama Y, Ishikawa K, Murayama T, Ohta T. Relationship Between Incidence of Knee Pain and Ground Reaction Force During Stepping Motion in Older Adults. Geriatrics. 2025; 10(5):126. https://doi.org/10.3390/geriatrics10050126
Chicago/Turabian StyleOyama, Yusuke, Koki Ishikawa, Toshio Murayama, and Tamaki Ohta. 2025. "Relationship Between Incidence of Knee Pain and Ground Reaction Force During Stepping Motion in Older Adults" Geriatrics 10, no. 5: 126. https://doi.org/10.3390/geriatrics10050126
APA StyleOyama, Y., Ishikawa, K., Murayama, T., & Ohta, T. (2025). Relationship Between Incidence of Knee Pain and Ground Reaction Force During Stepping Motion in Older Adults. Geriatrics, 10(5), 126. https://doi.org/10.3390/geriatrics10050126