Impairment of the Functional Status and Decrease in Albumin in Frail Older People After a COVID-19 Outbreak: A Descriptive Study in a Long-Term Care Facility in Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Baseline Characteristics
3.2. Frailty and Functional Limitation
3.3. Physiological Fuction
4. Discussion
4.1. Frailty and Functional Limitation
4.2. Physiological Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Med. Sci. 2001, 56A, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Proietti, M.; Cesari, M. Frailty: What Is It? Adv. Exp. Med. Biol. 2020, 1216, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tabue-Teguo, M.; Simo, N.; Harmand, M.G.C.; Cesari, M.; Avila-Funes, J.A.; Féart, C.; Amiéva, H.; Dartigues, J.F. Frailty in elderly: A brief review. Geriatr. Psychol. Neuropsychiatr. Vieil. 2017, 15, 127–137. [Google Scholar] [CrossRef]
- Doody, P.; Lord, J.M.; Greig, C.A.; Whittaker, A.C. Frailty: Pathophysiology, Theoretical and Operational Definition(s), Impact, Prevalence, Management and Prevention, in an Increasingly Economically Developed and Ageing World. Gerontology 2023, 69, 927–945. [Google Scholar] [CrossRef]
- Espinoza, S.E.; Quiben, M.; Hazuda, H.P. Distinguishing Comorbidity, Disability, and Frailty. Curr. Geriatr. Rep. 2018, 7, 201. [Google Scholar] [CrossRef]
- Holland, C.; Garner, I.; Simpson, J.; Eccles, F.; Pardo, E.N.; Marr, C.; Varey, S. Impacts of COVID-19 lockdowns on frailty and wellbeing in older people and those living with long-term conditions. Adv. Clin. Exp. Med. 2021, 30, 1111–1114. [Google Scholar] [CrossRef]
- Salini, S.; Russo, A.; De Matteis, G.; Piccioni, A.; Della Polla, D.; Carbone, L.; Barillaro, C.; Landi, F.; Franceschi, F.; Covino, M. Frailty in Elderly Patients with Covid-19: A Narrative Review. Gerontol. Geriatr. Med. 2022, 8, 1–7. [Google Scholar] [CrossRef]
- Hussien, H.; Nastasa, A.; Apetrii, M.; Nistor, I.; Petrovic, M.; Covic, A. Different aspects of frailty and COVID-19: Points to consider in the current pandemic and future ones. BMC Geriatr. 2021, 21, 389. [Google Scholar] [CrossRef]
- De Smet, R.; Mellaerts, B.; Vandewinckele, H.; Lybeert, P.; Frans, E.; Ombelet, S.; Lemahieu, W.; Symons, R.; Ho, E.; Frans, J.; et al. Frailty and Mortality in Hospitalized Older Adults With COVID-19: Retrospective Observational Study. J. Am. Med. Dir. Assoc. 2020, 21, 928. [Google Scholar] [CrossRef]
- Templeton, G. A Two-Step Approach for Transforming Continuous Variables to Normal: Implications and Recommendations for IS Research. Commun. Assoc. Inf. Syst. 2011, 28, 4. [Google Scholar] [CrossRef]
- Maltese, G.; Corsonello, A.; Di Rosa, M.; Soraci, L.; Vitale, C.; Corica, F.; Lattanzio, F. Frailty and COVID-19: A Systematic Scoping Review. J. Clin. Med. 2020, 9, 2106. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Motwani, Y.; Brook, J.; Martin, E.; Seligman, B.; Schaenman, J. Predictors of COVID-19 outcomes: Interplay of frailty, comorbidity, and age in COVID-19 prognosis. Medicine 2022, 101, e32343. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, J.; Carter, B.; Vilches-Moraga, A.; Quinn, T.J.; Braude, P.; Verduri, A.; Pearce, L.; Stechman, M.; Short, R.; Price, A.; et al. The effect of frailty on survival in patients with COVID-19 (COPE): A multicentre, European, observational cohort study. Lancet. Public Health 2020, 5, e444–e451. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.C.; Zarcone, C.; Tassistro, E.; Rebora, P.; Rossi, E.; Luppi, F.; Foti, G.; Squillace, N.; Lettino, M.; Strepparava, M.G.; et al. Frailty and long-COVID: Is COVID-19 responsible for a transition in frailty status among older adults who survived hospitalization for COVID-19? Aging Clin. Exp. Res. 2023, 35, 455–461. [Google Scholar] [CrossRef]
- Griffith, L.E.; McMillan, J.; Hogan, D.B.; Pourfarzaneh, S.; Anderson, L.N.; Kirkland, S.; Basta, N.E.; van den Heuvel, E.; Raina, P. Frailty and the impacts of the COVID-19 pandemic on community-living middle-aged and older adults: An analysis of data from the Canadian Longitudinal Study on Aging (CLSA). Age Ageing 2022, 51, afac289. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Abbott, A.; Beesoon, S.; Bowker, S.L.; Zuege, D.J.; Thanh, N.X. A population-based assessment of avoidable hospitalizations and resource use of non-vaccinated patients with COVID-19. Can. J. Public Health 2023, 114, 547–554. [Google Scholar] [CrossRef]
- Chen, L.K. COVID-19 vaccination and frailty in older adults. Arch. Gerontol. Geriatr. 2021, 96, 104487. [Google Scholar] [CrossRef]
- Saul, H.; Gursul, D.; Antonelli, M.; Steves, C. Frail older people and those in deprived areas remain at risk from covid-19, even after vaccination. BMJ 2022, 378, o1313. [Google Scholar] [CrossRef]
- Kountouras, J.; Tzitiridou-Chatzopoulou, M.; Papaefthymiou, A.; Chatzopoulos, D.; Doulberis, M. COVID-19 mRNA Vaccine Effectiveness against Elderly Frail People. Medicina 2023, 59, 202. [Google Scholar] [CrossRef]
- Rolland, Y.; Cesari, M.; Morley, J.E.; Merchant, R.; Vellas, B. COVID19 Vaccination in Frail People. Lots of Hope and Some Questions. J. Nutr. Health Aging 2021, 25, 146. [Google Scholar] [CrossRef]
- Wanhella, K.J.; Fernandez-Patron, C. Biomarkers of ageing and frailty may predict COVID-19 severity. Ageing Res. Rev. 2022, 73, 101513. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.A.R.; da Costa, R.S.; Monteiro, J.M.; Alves, J.A.R.; Spinassé, C.M.; Pupim, C.T.; Tieppo, A.; Morelato, R.L. Association of inflammatory and coagulation biomarkers with mortality in patients aged 60 years or older and hospitalized with COVID-19. Geriatr. Gerontol. Aging 2022, 16, 1–5. [Google Scholar] [CrossRef]
- Chu, W.; Lynskey, N.; Iain-Ross, J.; Pell, J.P.; Sattar, N.; Ho, F.K.; Welsh, P.; Celis-Morales, C.; Petermann-Rocha, F. Identifying the Biomarker Profile of Pre-Frail and Frail People: A Cross-Sectional Analysis from UK Biobank. Int. J. Environ. Res. Public Health 2023, 20, 2421. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, M.; Yang, S.; Wang, J.; Jia, W.; Cao, W.; Han, K.; He, Y. Higher Normal Levels of Triglyceride and Low and High-Density Lipoprotein Cholesterol Might Have a Protective Effect Against Activities of Daily Living Disability Within Chinese Female Centenarians: A Cross-Sectional, Complete Sample Study. Clin. Interv. Aging 2020, 15, 225–237. [Google Scholar] [CrossRef]
- Formiga, F.; Ferrer, A.; Chivite, D.; Pinto, X.; Cuerpo, S.; Pujol, R. Serum high-density lipoprotein cholesterol levels, their relationship with baseline functional and cognitive status, and their utility in predicting mortality in nonagenarians. Geriatr. Gerontol. Int. 2011, 11, 358–364. [Google Scholar] [CrossRef]
- You, L.; Bai, C.; Wang, S.; Yu, X.; Wang, T.; Lu, M.; Tan, C.; Guan, Y. The Prevalence and Factors That Impact Frailty in Inflammatory Bowel Disease Patients Hospitalized in a Tertiary Hospital in China. Dig. Dis. 2023, 41, 396–404. [Google Scholar] [CrossRef]
- Soysal, P.; Stubbs, B.; Lucato, P.; Luchini, C.; Solmi, M.; Peluso, R.; Sergi, G.; Isik, A.T.; Manzato, E.; Maggi, S.; et al. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res. Rev. 2016, 31, 1–8. [Google Scholar] [CrossRef]
- Hammami, S.; Ghzaiel, I.; Hammouda, S.; Sakly, N.; Hammami, M.; Zarrouk, A. Evaluation of pro-inflammatory cytokines in frail Tunisian older adults. PLoS ONE 2020, 15, e0242152. [Google Scholar] [CrossRef]
- Xue, Q.L. The Frailty Syndrome: Definition and Natural History. Clin. Geriatr. Med. 2011, 27, 1–15. [Google Scholar] [CrossRef]
Parameters | Group | Females | Males |
---|---|---|---|
Sex | 20 (100%) | 16 (80%) | 4 (20%) |
Morbidity | |||
Arterial Hypertension | 16 (80%) | 12 (75%) | 4 (25%) |
Diabetes Mellitus type II | 8 (40%) | 6 (75%) | 2 (25%) |
Alzheimer’s disease | 6 (30%) | 6 (100%) | - |
Stroke Sequel | 5 (25%) | 2 (40%) | 3 (60%) |
Heart disease | 3 (15%) | 3 (100%) | - |
Chronic Obstructive Pulmonary Disease | 3 (15%) | 2 (67%) | 1 (33%) |
Level of disability (%) | 18 (72%) | 14 (80%) | 4 (20%) |
Physical | 6 (30%) | 3 (21%) | 3 (75%) |
Cognitive | 5 (25%) | 5 (36%) | - |
Physical and cognitive | 7 (35%) | 6 (43%) | 1 (25%) |
Cognitive impairment (Peiffer) | |||
Normal | 3 (15%) | 1 (15%) | 2 (50%) |
Mild | 5 (25%) | 5 (25%) | - |
Moderate | 3 (15%) | 2 (15%) | 1 (25%) |
Severe | 9 (45%) | 8 (45%) | 1 (25%) |
Vaccination | |||
1st dose | 20 (100%) | 16 (100%) | 4 (100%) |
CoronaVac (Sinovac) | 20 (100%) | 16 (100%) | 4 (100%) |
2nd dose | 20 (100%) | 16 (100%) | 4 (100%) |
CoronaVac (Sinovac) | 20 (100%) | 16 (100%) | 4 (100%) |
3rd dose | 19 (95%) | 16 (100%) | 3 (75%) |
ChAdOx1 nCoV-19 (AstraZeneca) | 11 (58%) | 9 (56%) | 2 (67%) |
BNT162b2 (Pfizer-BioNtech) | 7 (37%) | 6 (38%) | 1 (33%) |
CoronaVac (Sinovac) | 1 (5%) | 1 (7%) | - |
4th dose | 18 (90%) | 15 (94%) | 3 (75%) |
BNT162b2 (Pfizer-BioNtech) | 18 (100%) | 15 (100%) | 3 (100%) |
Pre-Infection | Post-Infection | |
---|---|---|
Mean ± SEM | Mean ± SEM | |
Physical frailty | ||
Age (years) | 84 ± 2.42 | - |
Years of residence | 5 ± 0.72 | - |
Body weight | 56.11 ± 2.87 | 55.83 ± 2.96 |
BMI | 23.13 ± 1.03 | 23 ± 4.64 |
Calf circumference | 29.94 ± 1.12 | 29.42 ± 1.02 |
Functionality (ADL) | ||
Barthel Scale/Index (BI) | ||
Total | 44 ± 7.04 | 33 ± 7.85 * |
Feeding | 7 ± 0.84 | 6 ± 1.02 |
Bathing | 2 ± 0.53 | 1 ± 0.51 |
Dressing | 3 ± 0.91 | 3 ± 0.92 |
Grooming | 2 ± 0.57 | 1 ± 0.41 * |
Bowel control | 7 ± 0.98 | 5 ± 1.03 * |
Bladder control | 6 ± 1.02 | 4 ± 1.04 * |
Toilet use | 3 ± 0.99 | 3 ± 0.99 |
Transfers | 6 ± 1.10 | 5 ± 1.17 |
Mobility | 6 ± 1.37 | 5 ± 1.30 |
Stairs | 2 ± 0.57 | 2 ± 0.53 |
Katz | 4 ±0.47 | 4 ± 0.51 |
Cognitive impairment | ||
Mini mental | 14 ± 1.78 | 15 ± 0.79 |
Parameter | Reference | Pre-Infection | Post-Infection | Change |
---|---|---|---|---|
Hematology | ||||
Hematocrit, % | 35.0–47.0 | 38.17 ± 4.930 | 36.37 ± 4.841 | +1.8 |
Hemoglobin, g/dL | 13.0–17.5 | 12.92 ± 1.844 | 12.17 ± 1.763 | −0.8 |
WBC, 10 × 103 uL | 4.00–12.00 | 8.578 ± 2.852 | 8.120 ± 2.492 | −0.458 |
PLT, 10 × 103 uL | 150–450 | 215.89 ± 139.13 | 238.00 ± 74.40 | +22.11 |
VHS, mm/h | <20 | 31.62 ± 22.13 | 35.36 ± 32.82 | +35.36 |
NLR | 0.107–3.19 | 3.594 ± 3.847 | 3.627 ± 3.129 | +33.0 |
PLR | 46.79–218.01 | 126.7 ± 132.1 | 148.9 ± 90.93 | +22.2 |
Lipid profile | ||||
Total cholesterol, mg/dL | <200 | 149.2 ± 34.58 | 145.3 ± 44.68 | −3.9 |
HDL cholesterol, mg/dL | ≥60 | 48.08 ± 12.60 | 45.82 ± 14.10 | −2.26 |
LDL cholesterol, mg/dL | <100 | 79.11 ± 32.50 | 74.48 ± 35.55 | −4.62 |
VLDL cholesterol, mg/dL | <30 | 27.97 ± 27.38 | 24.96 ± 16.79 | −3.01 |
Triglycerides, mg/dL | <150 | 96.01 ± 43.33 | 106.9 ± 53.34 | +10.89 |
Biochemistry | ||||
Glucose, mg/dL | 70–99 | 101.9 ± 22.10 | 109.3 ± 34.78 | +7.4 |
Creatinine, mg/dL | 0.60–1.20 | 0.83 ± 0.28 | 0.78 ± 0.25 | −0.04 |
MDRD4, mL/min/1.73 m2 | >60 | 83.80 ± 40.30 | 81.44 ± 27.41 | −5.36 |
Urea, mg/dL | 8–25 | 47.78 ± 20.96 | 41.14 ± 16.71 | −6.64 |
Alkaline Phosphatase U/L | 45–115 | 124.3 ± 48.70 | 162.6 ± 39.31 | +38.3 |
Uric Acid, mg/dL | 2.3–6.6 | 4.398 ± 2.545 | 3.920 ± 1.363 | −0.478 |
Albumin, g/dL | 3.5–5.0 | 4.213 ± 0.1727 | 3.417 ± 0.7441 * | −0.796 |
Sodium, mEq/L | 135–145 | 140.4 ± 3.524 | 139.5 ± 2.841 | −0.9 |
Potassium, mEq/L | 3.5–5.0 | 4.441 ± 0.5161 | 4.313 ± 0.3681 | −0.128 |
Chlorine, mEq/L | 100–108 | 99.19 ± 4.334 | 101.2 ± 2.868 | +2.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Mariqueo, L.; Lagos, A.A.; Giménez-Llort, L.; Oyarzo, N.G. Impairment of the Functional Status and Decrease in Albumin in Frail Older People After a COVID-19 Outbreak: A Descriptive Study in a Long-Term Care Facility in Chile. Geriatrics 2025, 10, 1. https://doi.org/10.3390/geriatrics10010001
Castillo-Mariqueo L, Lagos AA, Giménez-Llort L, Oyarzo NG. Impairment of the Functional Status and Decrease in Albumin in Frail Older People After a COVID-19 Outbreak: A Descriptive Study in a Long-Term Care Facility in Chile. Geriatrics. 2025; 10(1):1. https://doi.org/10.3390/geriatrics10010001
Chicago/Turabian StyleCastillo-Mariqueo, Lidia, Alejandro Aedo Lagos, Lydia Giménez-Llort, and Neftalí Guzmán Oyarzo. 2025. "Impairment of the Functional Status and Decrease in Albumin in Frail Older People After a COVID-19 Outbreak: A Descriptive Study in a Long-Term Care Facility in Chile" Geriatrics 10, no. 1: 1. https://doi.org/10.3390/geriatrics10010001
APA StyleCastillo-Mariqueo, L., Lagos, A. A., Giménez-Llort, L., & Oyarzo, N. G. (2025). Impairment of the Functional Status and Decrease in Albumin in Frail Older People After a COVID-19 Outbreak: A Descriptive Study in a Long-Term Care Facility in Chile. Geriatrics, 10(1), 1. https://doi.org/10.3390/geriatrics10010001