A Program to Improve Reach Estimation and Reduce Fall Risk in the Elderly
Abstract
:1. Introduction
2. Mental Representation and Reach Planning
3. Mental Representation in Older Adults
4. Motor Imagery Training
5. General Strategies for Motor Imagery Practice
6. General Mental Practice Guidelines
- Reach for: different everyday objects: cup, newspaper, book
- Reach from: different body positions: seated, standing, leaning (bending) over
- a variety of surfaces: flat, moving upstairs, moving downstairs
- different levels: knee level, waist, overhead, eye-level, and floor
- various angles: midline, right, left, etc.
- different distances to the object/target. Before starting this, determine the individual’s actual
- maximum (arm extended) reach. Then place objects around their maximum reach
- point to assess their estimation.
Sample Instructions
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Robinovich, S.; Feldman, F.; Yang, Y.; Schonnop, R.; Leung, P.M.; Sarraf, T.; Loughlin, M. Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. Lancet 2013, 381, 47–54. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Falls among Older Adults: An Overview. Retrieved 25 February 2014. Available online: http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html (accessed on 15 September 2015).
- Caçola, P.; Roberson, J.; Gabbard, C. Aging in movement representations for sequential finger movements: A comparison between young, middle-aged, and older adults. Brain Cogn. 2013, 82, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Paizis, C.; Skoura, X.; Personnier, P.; Papaxanthis, C. Motor asymmetry attenuation in older adults during imagined arm movements. Frontier Aging Neuro. 2014, 6, 49. [Google Scholar]
- Zapparoli, L.; Invernizzi, P.; Gandola, M.; Verardi, M.; Berlingeri, M.; Sherna, M.; Paulesu, E. Mental images across the adult lifespan: A behavioural and fMRI investigation of motor execution and motor imagery. Exp. Brain Res. 2013, 224, 519–540. [Google Scholar] [CrossRef] [PubMed]
- Gabbard, C. Mental representation for action in the elderly: Implications for movement efficiency and injury risk. J. Appl. Gerontol. 2015, 34, NP202–NP212. [Google Scholar] [CrossRef] [PubMed]
- Noël, M.; Bernard, A.; Luyat, M. The overestimation of performance: A specific bias of aging? Geriatr. Psychol. Neuropsychiatr. Vieil. 2011, 9, 287–294. [Google Scholar] [PubMed]
- Gabbard, C.; Cacola, P.; Cordova, A. Is there an advanced aging effect on the ability to mentally represent action? Arch. Gerontol. Geriatr. 2011, 53, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Decety, J.; Grezes, J. Neural mechanisms subserving the perception of human actions. Trends Cogn. Sci. 1999, 3, 172–178. [Google Scholar] [CrossRef]
- Chabeauti, P.Y.; Assaiante, C.; Vaugoyeau, M. Extreme short-term environmental constraints do not update internal models of action as assessed from motor imagery in adults. Neuroscience 2012, 222, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Munzert, J.; Lorey, B.; Zentgraf, K. Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Res. Rev. 2009, 60, 306–326. [Google Scholar] [CrossRef] [PubMed]
- Wintermute, S. Imagery in cognitive architecture: Representation and control at multiple levels of abstraction. Cogn. Syst. Res. 2012, 19–20, 1–29. [Google Scholar] [CrossRef]
- Bourgeois, J.; Coello, Y. Role of inertial properties of the upper limb on the perception of the boundary of personal space. Psychol. Fr. 2009, 54, 225–239. [Google Scholar]
- Kunz, B.R.; Creem-Regehr, S.H.; Thompson, W.B. Evidence for motor simulation in imagined locomotion. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1458–1471. [Google Scholar] [CrossRef] [PubMed]
- Lorey, B.; Bischoff, M.; Pilgramm, S.; Stark, R.; Munzert, J.; Zentgraf, K. The embodied nature of motor imagery: The influence of posture and perspective. Exp. Brain Res. 2009, 194, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Mulder, T.; Hochstenbach, J.B.H.; Heuvelena, M.J.G.; Otter, A.R. Motor imagery: The relation between age and imagery capacity. Hum. Movement Sci. 2008, 26, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Personnier, P.; Bally, Y.; Papaxanthis, C. Mentally represented motor actions in normal aging III: Electromyographic features of imagined arm movements. Behav. Brain Res. 2010, 206, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Saimpont, A.; Mourey, F.; Manckoundia, P.; Pfitzenmeyer, P.; Pozzo, T. Aging affects the mental simulation/planning of the ‘‘rising from the floor’’ sequence. Arch. Gerontol. Geriatr. 2010, 51, e41–e45. [Google Scholar] [CrossRef] [PubMed]
- Skoura, X.; Personnier, P.; Vinter, A.; Pozzo, T.; Papaxanthis, C. Decline in motor prediction in elderly subjects: Right versus left arm differences in mentally simulated motor actions. Cortex 2008, 44, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Saimpont, A.; Malouin, F.; Tousignant, B.; Jackson, P. Motor imagery and aging. J. Motor Behav. 2013, 45, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Saimpont, A.; Malouin, F.; Tousignant, B.; Jackson, P.L. Assessing motor Imagery ability in younger and older adults by combining measures of vividness, controllability and timing of motor imagery. Brain Res. 2014, 1597, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Kalicinski, M.; Raab, M. Task requirements and their effects on imagined walking in elderly. Aging Clin. Exp. Res. 2014, 26, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Schott, N. Age-related differences in motor imagery: Working memory as a mediator. Exp. Aging Res. 2012, 38, 559. [Google Scholar] [CrossRef] [PubMed]
- Osstra, K.M.; Vereecke, A.; Jones, K.; Vanderstraeten, G.; Vingerhoets, G. Motor imagery ability in patients with traumatic brain injury. Arch. Phys. Med. Rehab. 2012, 93, 828–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.Y.; Kim, J.S.; Lee, G.C. Effects of motor imagery training on balance and gait abilities in post-stroke patients: A randomized controlled trial. Clin. Rehabil. 2012, 27, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.A.; Fallahpour, M.; Syadi, M.; Gharib, M.; Haghgoo, H. The impact of mental practice on stroke patient’s postural balance. J. Neurol. Sci. 2012, 322, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Malouin, F.; Richards, C.L. Mental practice for relearning locomotor skills. Phys. Ther. 2010, 90, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Heremans, E.; Nieuwboer, A.; Spildooren, J.; De Bondt, S.; D'Hooge, A.M.; Helsen, W.; Feys, P. Cued motor imagery in patients with multiple sclerosis. Neuroscience 2012, 206, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Gentili, R.; Han, C.E.; Schweighofer, N.; Papaxanthis, C. Motor learning without doing: Trial-by-trial improvement in motor performance during mental training. J. Neurophysiol. 2010, 104, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A.; Tolleron, C.; Collet, C. Does motor imagery enhance stretching and flexibility? J. Sport. Sci. 2010, 28, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Taube, W.; Mouthon, M.; Leukel, C.; Hoogewoud, H.M.; Annoni, J.M.; Keller, M. Brain activity during observation and motor imagery of different balance tasks: An fMRI study. Cortex 2015, 64, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, L.; Wang, S.; Xie, B.; Gui, J.; Long, Z.; Yao, L. Behavioral improvements and brain functional alterations by motor imagery training. Brain Res. 2011, 1407, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Wohldmann, E.L.; Healy, A.F.; Bourne, L.E. A mental practice superiority effect: Less retroactive interference and more transfer than physical practice. J. Exp. Psychol. Learn. Mem. Cognit. 2008, 34, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Byblow, W.D.; Steyvers, M.; Levin, O.; Swinnen, S.P. Kinesthetic, but not imagery modulates corticomotor excitability. Exp. Brain Res. 2006, 168, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Voisin, J.I.; Mercier, C.; Jackson, P.L.; Richards, C.L.; Malouin, F. Is Somatosensory excitability more affected by the perspective or modality content of motor imagery? Neurosci. Lett. 2011, 493, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Langhome, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- Schuster, C.R.; Amit, O.; Scheidhauer, A.; Andrews, B.; Ettlin, T. Best practice for motor imagery: A systematic literature review on motor imagery training elements in five different disciplines. BMC Med. 2011, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Gabbard, C.; Fox, A. Using motor imagery therapy to improve movement efficiency and reduce fall injury risk. J. Novel Physiother. 2013, 3, 186–189. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabbard, C.; Robinson, K.; Fox, A. A Program to Improve Reach Estimation and Reduce Fall Risk in the Elderly. Geriatrics 2016, 1, 14. https://doi.org/10.3390/geriatrics1020014
Gabbard C, Robinson K, Fox A. A Program to Improve Reach Estimation and Reduce Fall Risk in the Elderly. Geriatrics. 2016; 1(2):14. https://doi.org/10.3390/geriatrics1020014
Chicago/Turabian StyleGabbard, Carl, Kristyn Robinson, and Ashley Fox. 2016. "A Program to Improve Reach Estimation and Reduce Fall Risk in the Elderly" Geriatrics 1, no. 2: 14. https://doi.org/10.3390/geriatrics1020014
APA StyleGabbard, C., Robinson, K., & Fox, A. (2016). A Program to Improve Reach Estimation and Reduce Fall Risk in the Elderly. Geriatrics, 1(2), 14. https://doi.org/10.3390/geriatrics1020014