Serological, Molecular Prevalence and Genotyping of Coxiella burnetii in Dairy Cattle Herds in Northeastern Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Laboratory Analysis
2.3.1. Serological Analysis
2.3.2. Molecular Analysis
2.4. Statistical Analysis
3. Results
3.1. Serological Analysis
3.2. Molecular Analysis
3.3. Sequencing
3.4. Statistical Analysis
3.5. Genotyping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eldin, C.; Mélenotte, C.; Mediannikov, O.; Ghigo, E.; Million, M. From Q fever to Coxiella burnetii infection: A paradigm change. Clin. Microbiol. Rev. 2017, 30, 115–190. [Google Scholar] [CrossRef] [Green Version]
- Agerholm, J.S. Coxiella burnetii associated reproductive disorders in domestic animals—A critical review. Acta Vet. Scand. 2013, 55, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielawska-Drózd, A. ‘Q fever—Selected issues’. Ann. Agric. Environ. Med. 2013, 20, 222–232. [Google Scholar]
- Parker, N.R.; Barralet, J.H.; Bell, A.M. ‘Seminar Q fever’. Lancet 2006, 367, 679–688. [Google Scholar] [CrossRef]
- Alvarez, J.; Perez, A.; Mardones, F.O.; Pérez-Sancho, M.; García-Seco, T.; Pagés, E.; Mirat, F.; Díaz, R.; Carpintero, J.; Domínguez, L. Epidemiological factors associated with the exposure of cattle to Coxiella burnetii in the Madrid region of Spain. Vet. J. 2012, 194, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Van den Brom, R.; Santman-Berends, I.; Luttikholt, S.; Moll, L.; Van Engelen, E.; Vellema, P. Bulk tank milk surveillance as a measure to detect Coxiella burnetii shedding dairy goat herds in the Netherlands between 2009 and 2014. J. Dairy Sci. 2015, 98, 3814–3825. [Google Scholar] [CrossRef]
- Vanderburg, S.; Rubach, M.P.; Halliday, J.E.; Cleaveland, S.; Reddy, E.A.; Crump, J.A. Epidemiology of Coxiella burnetii infection in Africa: A One Health systematic review. PLoS Negl. Trop. Dis. 2014, 8, e2787. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Raoult, D. ‘Q fever’. Vet. Microbiol. 2010, 140, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Van den Brom, R.; Van Engelen, E.; Luttikholt, S.; Moll, L.; Van Maanen, K.; Vellema, P. Coxiella burnetii in bulk tank milk samples from dairy goat and dairy sheep farms in The Netherlands in 2008. Vet. Rec. 2012, 170, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roest, H.I.; Ruuls, R.C.; Tilburg, J.J.; Nabuurs-Franssen, M.H.; Klaassen, C.H.; Vellema, P.; van den Brom, R.; Dercksen, D.; Wouda, W.; Spierenburg, M.A.; et al. Molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands. Emerg. Infect. Dis. 2011, 17, 668–675. [Google Scholar] [CrossRef]
- Loftis, A.D.; Priestley, R.A.; Massung, R.F. Detection of Coxiella burnetii in commercially available raw milk from the United States. Foodborne Pathog. Dis. 2010, 7, 1453–1456. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.R.; Czaplicki, G.; Mainil, J.; Guattéo, R.; Saegerman, C. Q Fever: Current state of knowledge and perspectives of research of a neglected zoonosis. Int. J. Microbiol. 2011, 201, 248418. [Google Scholar] [CrossRef]
- Noden, B.H.; van der Colf, B.E. Neglected tropical diseases of Namibia: Unsolved mysteries. Acta Trop. 2013, 125, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Spitalska, E.; Kocianova, E. Detection of Coxiella burnetii in ticks collected in Slovakia and Hungary. Eur. J. Epidemiol. 2003, 18, 263–266. [Google Scholar] [CrossRef]
- Aitken, I.D.; Bögel, K.; Cračea, E.; Edlinger, E.; Houwers, D.; Krauss, H.; Rady, M.; Řeháček, J.; Schiefer, H.G.; Kazán, J.; et al. Q fever in Europe: Current aspects of aetiology, epidemiology, human infection, diagnosis and therapy. Infection 1987, 15, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Nusinovici, S.; Madouasse, A.; Hoch, T.; Guatteo, R.; Beaudeau, F. Evaluation of Two PCR tests for Coxiella burnetii detection in dairy cattle farms using latent class analysis. PLoS ONE 2015, 10, e0144608. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Kim, E.H.; Lafferty, C.J.; Dubovi, E. Coxiella burnetii in bulk tank milk samples, United States. Emerg. Infect. Dis. 2005, 11, 619–621. [Google Scholar] [CrossRef]
- Muskens, J.; van Engelen, E.; van Maanen, C.; Bartels, C.; Lam, T.J. Prevalence of Coxiella burnetii infection in Dutch dairy herds based on testing bulk tank milk and individual samples by PCR and ELISA. Vet. Rec. 2011, 168, 79. [Google Scholar] [CrossRef]
- Wapenaar, W.; Barkema, H.W.; O’Handley, R.M.; Bartels, C.J. Use of an enzyme-linked immunosorbent assay in bulk milk to estimate the prevalence of Neospora caninum on dairy farms in Prince Edward Island, Canada. Can. Vet. J. 2007, 48, 493. [Google Scholar] [PubMed]
- Pexara, A.; Solomakos, N.; Govaris, A. ‘Q fever and prevalence of Coxiella burnetii in milk’. Trends Food Sci. Technol. 2018, 71, 65–72. [Google Scholar] [CrossRef]
- Guatteo, R.; Beaudeau, F.; Joly, A.; Seegers, H. Coxiella burnetii shedding by dairy cows. Vet. Res. 2007, 38, 849–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nokhodian, Z.; Feizi, A.; Moradi, A.; Yaran, M.; Hoseini, S.G.; Ataei, B.; Hosseini, M. Detection and risk factors of Coxiella burnetii infection in dairy cattle based on bulk tank milk samples in center of Iran. Prev. Vet. Med. 2016, 134, 139–144. [Google Scholar] [CrossRef]
- Arricau-Bouvery, N.; Hauck, Y.; Bejaoui, A.; Frangoulidis, D.; Bodier, C.C.; Souriau, A.; Meyer, H.; Neubauer, H.; Rodolakis, A.; Vergnaud, G. Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. BMC Microbiol. 2006, 26, 38. [Google Scholar] [CrossRef] [Green Version]
- Mioni, M.D.S.R.; Sidi-Boumedine, K.; Morales Dalanezi, F.; Fernandes Joaquim, S.; Denadai, R.; Reis Teixeira, W.S.; Bahia Labruna, M.; Megid, J. New genotypes of Coxiella burnetii circulating in Brazil and Argentina. Pathogens 2020, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glazunova, O.; Roux, V.; Freylikman, O.; Sekeyova, Z.; Fournous, G.; Tyczka, J.; Tokarevich, N.; Kov, E.; Marrie, T.J.; Raoult, D. Coxiella burnetii genotyping. Emerg. Infect. Dis. 2005, 11, 1211–1217. [Google Scholar] [PubMed]
- Kumsa, B.; Socolovschi, C.; Almeras, L.; Raoult, D.; Parola, P. Occurrence and genotyping of Coxiella burnetii in ixodid ticks in Oromia, Ethiopia. Am. J. Trop. Med. Hyg. 2015, 93, 1074–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabaza, A.; Fraga, M.; Corbellini, L.G.; Turner, K.M.E.; Riet-Correa, F.; Eisler, M.C. Molecular prevalence of Coxiella burnetii in bulk-tank milk from bovine dairy herds: Systematic review and meta-analysis. One Health 2021, 12, 100208. [Google Scholar] [CrossRef] [PubMed]
- Amin, W.F.; Ahmed, S.O. Detection of Coxiella burnetii in bovine milk samples using polymerase chain reaction, Assiut. Vet. Med. J. 2009, 55, 23–31. [Google Scholar]
- Agag, S.; Kaidi, R.; Khelef, D. Séroprévalence de la fièvre Q chez les bovins de la région de Bejaïa (Algérie). Rev. Elev. Med. Vet. Pays Trop. 2017, 69, 155–159. [Google Scholar] [CrossRef]
- Abdelhadi, F.Z.; Abdelhadi, S.A.; Niar, A.; Benallou, B.; Meliani, S.; Smail, N.L.; Mahmoud, D. Abortions in cattle on the level of Tiaret area (Algeria). Glob. Vet. 2015, 14, 638–645. [Google Scholar]
- Dechicha, A.; Gharbi, S.; Kebbal, S.; Chatagnon, G.; Tainturier, D.; Ouzrout, R.; Guetarni, D. Serological survey of etiological agents associated with abortion in twoAlgerian dairy cattle breeding farms. J. Vet. Med. Anim. Health 2010, 2, 1–5. [Google Scholar]
- Derdour, S.Y.; Hafsi, F.; Azzag, N.; Tennah, S.; Laamari, A.; China, B.; Ghalmi, F. Prevalence of the main infectious causes of abortion in dairy cattle in Algeria. J. Vet. Res. 2017, 61, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Menadi, S.E.; Mura, A.; Santucciu, C.; Ghalmi, F.; Hafsi, F.; Masala, G. Seroprevalence and risk factors of Coxiella burnetii infection in cattle in northeast Algeria. Trop. Anim. Health Prod. 2020, 52, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Lacheheb, A.; Raoult, D. Seroprevalence of Q-fever in Algeria. Clin. Microbiol. Infect. 2009, 15, 167–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrusfield, M. Veterinary Epidemiology, 3rd ed.; Blackwell Science Ltd.: Oxford, UK, 2007; pp. 230–238. [Google Scholar]
- Meunier, J. Ruminant Milk Q Fever LSI Kit, Technical Card; Laboratoire Service International: Lissieu, France, 2008. [Google Scholar]
- Czaplicki, G.; Houtain, J.Y.; Mullender, C.; Porter, S.R.; Humblet, M.F.; Manteca, C.; Saegerman, C. Apparent prevalence of antibodies to Coxiella burnetii (Q fever) in bulk tank milk from dairy herds in southern Belgium. Vet. J. 2012, 192, 529–531. [Google Scholar] [CrossRef]
- Anastácio, S.; Carolino, N.; Sidi-Boumedine, K.; Da Silva, G.J. Q fever dairy herd status determination based on serological and molecular analysis of bulk tank milk. Transbound. Emerg. Dis. 2016, 63, e293–e300. [Google Scholar] [CrossRef] [PubMed]
- Rolain, J.M.; Raoult, D. Molecular detection of Coxiella burnetii in blood and sera during Q fever. QJM 2005, 98, 615–620. [Google Scholar] [CrossRef] [Green Version]
- Di Domenico, M.; Curini, V.; De Massis, F.; Di Provvido, A.; Scacchia, M.; Camma, C. Coxiella burnetii in Central Italy: Novel genotypes are circulating in cattle and goats. Vector-Borne Zoonotic Dis. 2014, 14, 710–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef]
- EFSA. Panel on Animal Health and Welfare (AHAW). Scientific Opinion on Q Fever. EFSA J. 2010, 8, 1–114. Available online: http://www.efsa.europa.eu/en/efsajournal/pub/1595 (accessed on 22 April 2020).
- Szymańska-Czerwińska, M.; Jodełko, A.; Niemczuk, K. Occurrence of Coxiella burnetii in Polish dairy cattle herds based on serological and PCR tests. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101377. [Google Scholar] [CrossRef] [PubMed]
- Agger, J.F.; Paul, S.; Christoffersen, A.B.; Agerholm, J.S. Risk factors for Coxiella burnetii antibodies in bulk tank milk from Danish dairy herds. Acta Vet. Scand. 2013, 55, 80. [Google Scholar] [CrossRef] [Green Version]
- Astobiza, I.; Ruiz-Fons, F.; Pinero, A.; Barandika, J.F.; Hurtado, A.; Garcia-Perez, A.L. Estimation of Coxiella burnetii prevalence in dairy cattle in intensive systems by serological and molecular analyses of bulk-tank milk samples. J. Dairy Sci. 2012, 95, 1632–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Engelen, E.; Schotten, N.; Schimmer, B.; Hautvast, J.L.; van Schaik, G.; van Duijnhoven, Y.T. Prevalence and risk factors for Coxiella burnetii (Q fever) in Dutch dairy cattle herds based on bulk tank milk testing. Prev. Vet. Med. 2014, 117, 103–109. [Google Scholar] [CrossRef]
- Obaidat, M.M.; Kersh, G.J. Prevalence and risk factors of Coxiella burnetii antibodies in Bulk Milk from cattle, sheep, and goats in Jordan. J. Food Prot. 2017, 80, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Mccaughey, C.; Murray, L.J.; Mckenna, J.P.; Menzies, F.D.; Mccullough, S.J.; O’neill, H.J.; Wyatt, D.E.; Cardwell, C.R.; Coyle, P.V. Coxiella burnetii (Q fever) seroprevalence in cattle. Epidemiol. Infect. 2010, 138, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, E.D.; Kirby, M.; Collins, D.M.; Sayers, R.; Mee, J.F.; Clegg, T. Prevalence of Coxiella burnetii (Q fever) antibodies in bovine serum and bulk-milk samples. Epidemiol. Infect. 2011, 139, 1413–1417. [Google Scholar] [CrossRef] [Green Version]
- Barkallah, M.; Gharbi, Y.; Hassena, A.B.; Slima, A.B.; Mallek, Z.; Gautier, M.; Greub, G.; Gdoura, R.; Fendri, I. Survey of infectious etiologies of bovine abortion during mid- to late gestation in dairy herds. PLoS ONE 2014, 9, e91549. [Google Scholar]
- Eldin, C.; Angelakis, E.; Renvoisé, A.; Raoult, D. Coxiella burnetii DNA, but not viable bacteria, in dairy products in France. Am. J. Trop. Med. Hyg. 2013, 88, 765–769. [Google Scholar] [CrossRef] [Green Version]
- Klee, S.R.; Tyczka, J.; Ellerbrok, H.; Franz, T.; Linke, S.; Baljer, G.; Appel, B. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiol. 2006, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Boroduske, A.; Trofimova, J.; Kibilds, J.; Papule, U.; Sergejeva, M.; Rodze, I.; Grantina-Ievina, L. Coxiella burnetii (Q fever) infection in dairy cattle and associated risk factors in Latvia. Epidemiol. Infect. 2017, 145, 2011–2019. [Google Scholar] [CrossRef] [Green Version]
- Rodolakis, A.; Berri, M.; Hechard, C.; Caudron, C.; Souriau, A.; Bodier, C.C.; Blanchard, B.; Camuset, P.; Devillechaise, P.; Natorp, J.C.; et al. Comparison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds. J. Dairy Sci. 2007, 90, 5352–5360. [Google Scholar] [CrossRef]
- Garcia-Ispierto, I.; López-Helguera, I.; Tutusaus, J.; Serrano, B.; Monleón, E.; Badiola, J.J.; López-Gatius, F. Coxiella burnetii shedding during the peripartum period and subsequent fertility in dairy cattle. Reprod. Domest. Anim. 2013, 48, 441–446. [Google Scholar] [CrossRef]
- Parisi, A.; Fraccalvieri, R.; Cafiero, M.; Miccolupo, A.; Padalino, I.; Montagna, C.; Capuano, F.; Sottili, R. Diagnosis of Coxiella burnetii-related abortion in Italian domestic ruminants using single-tube nested PCR. Vet. Microbiol. 2006, 118, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Clemente, L.; Barahona, M.J.; Andrade, M.F.; Botelho, A. Diagnosis by PCR of Coxiella burnetii in aborted fetuses of domestic ruminants in Portugal. Vet. Rec. 2009, 164, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.Y.; Andersen, A.M.N.; Mølbak, K.; Hjøllund, N.H.; Kantsø, B.; Krogfelt, K.A.; Henriksen, T.B. No excess risk of adverse pregnancy outcomes among women with serological markers of previous infection with Coxiella burnetii: Evidence from the Danish National Birth Cohort. BMC Infect. Dis. 2013, 13, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.S.; Tilburg, J.J.; Botelho, A.; Barahona, M.J.; Núncio, M.S.; Nabuurs-Franssen, M.H.; Klaassen, C.H. Genotypic diversity of clinical Coxiella burnetii isolates from Portugal based on MST and MLVA typing. Int. J. Med. Microbiol. 2012, 302, 253–256. [Google Scholar] [CrossRef]
- Hornstra, H.M.; Priestley, R.A.; Georgia, S.M.; Kachur, S.; Birdsell, D.N.; Hilsabeck, R.; Gates, L.T.; Samuel, J.E.; Heinzen, R.A.; Kersh, G.J.; et al. Rapid typing of Coxiella burnetii. PLoS ONE 2011, 6, e26201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galiero, A.; Fratini, F.; Cammà, C.; Di Domenico, M.; Curini, V.; Baronti, I.; Turchi, B.; Cerri, D. Occurrence of Coxiella burnetii in goat and ewe unpasteurized cheeses: Screening and genotyping. Int. J. Food Microbiol. 2016, 237, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Chochlakis, D.; Santos, A.S.; Giadinis, N.D.; Papadopoulos, D.; Boubaris, L.; Kalaitzakis, E.; Psaroulaki, A.; Kritas, S.K.; Petridou, E.I. Genotyping of Coxiella burnetii in sheep and goat abortion samples. BMC Microbiol. 2018, 18, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Domenico, M.; Curini, V.; Di Lollo, V.; Massimini, M.; Di Gialleonardo, L.; Franco, A.; Caprioli, A.; Battisti, A.; Cammà, C. Genetic diversity of Coxiella burnetii in domestic ruminants in central Italy. BMC Vet. Res. 2018, 14, 171. [Google Scholar] [CrossRef] [Green Version]
- Rahal, M.; Tahir, D.; Eldin, C.; Bitam, I.; Raoult, D.; Parola, P. Genotyping of Coxiella burnetii detected in placental tissues from aborted dairy cattle in the north of Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2018, 57, 50–54. [Google Scholar] [CrossRef] [PubMed]
Test | ELISA | Total | ||
---|---|---|---|---|
Positive | negative | 18 | ||
PCR | positive | 10 | 8 | |
negative total | 64 74 | 118 126 | 182 200 | |
Cohen’s kappa: 0.0849 (95% CI: 0.0–0.189) | ||||
Mc Nemar test: 9.06−11 |
Identification Code | Farm Code | Type of Sample | Cycle Threshold Value | Intergenic Spacer | MST Genotype | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cox 2 | Cox 5 | Cox 18 | Cox 20 | Cox 22 | Cox 37 | Cox 51 | Cox 56 | Cox 57 | Cox 61 | |||||
1 | Farm 1 | Whole blood | 31.6 | NA | NA | NA | NA | 5 | NA | NA | 12 | 3 | NA | NI |
2 | Farm 1 | Whole blood | 31.5 | 3 | 5 | 1 | NA | 5 | NA | NA | 12 | 3 | NA | MST32 |
3 | Farm 2 | Whole blood | 30.8 | 3 | 5 | 5 | NA | 5 | NA | NA | NA | NA | 5 | New |
4 | Farm 2 | Whole blood | 30.2 | 3 | 5 | 5 | NA | 5 | 1 | NA | NA | 6 | 5 | New |
5 | Farm 3 | Whole blood | 32.3 | NA | 5 | 1 | NA | 5 | 4 | NA | NA | 3 | NA | MST32 |
6 | Farm 3 | Whole blood | 32.2 | NA | 5 | 1 | NA | 5 | 4 | NA | 12 | 3 | NA | MST32 |
7 | Farm 4 | Whole blood | 26 | 3 | 5 | 1 | 6 | 5 | 4 | 5 | 12 | 3 | 2 | MST32 |
8 | Farm 5 | BMT | 32.7 | 3 | NA | NA | NA | 5 | 4 | NA | NA | NA | NA | NI |
9 | Farm 6 | BMT | 34.9 | 3 | NA | NA | NA | 5 | 4 | NA | NA | NA | NA | NI |
10 | Farm 7 | BMT | 28.2 | 3 | 5 | 1 | 6 | 5 | 4 | 5 | 4 | 3 | 2 | MST12 |
11 | Farm 8 | BMT | 28.3 | 3 | 5 | 1 | 6 | 5 | 4 | 5 | 4 | 3 | 2 | MST12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menadi, S.E.; Chisu, V.; Santucciu, C.; Di Domenico, M.; Curini, V.; Masala, G. Serological, Molecular Prevalence and Genotyping of Coxiella burnetii in Dairy Cattle Herds in Northeastern Algeria. Vet. Sci. 2022, 9, 40. https://doi.org/10.3390/vetsci9020040
Menadi SE, Chisu V, Santucciu C, Di Domenico M, Curini V, Masala G. Serological, Molecular Prevalence and Genotyping of Coxiella burnetii in Dairy Cattle Herds in Northeastern Algeria. Veterinary Sciences. 2022; 9(2):40. https://doi.org/10.3390/vetsci9020040
Chicago/Turabian StyleMenadi, Salah Eddine, Valentina Chisu, Cinzia Santucciu, Marco Di Domenico, Valentina Curini, and Giovanna Masala. 2022. "Serological, Molecular Prevalence and Genotyping of Coxiella burnetii in Dairy Cattle Herds in Northeastern Algeria" Veterinary Sciences 9, no. 2: 40. https://doi.org/10.3390/vetsci9020040
APA StyleMenadi, S. E., Chisu, V., Santucciu, C., Di Domenico, M., Curini, V., & Masala, G. (2022). Serological, Molecular Prevalence and Genotyping of Coxiella burnetii in Dairy Cattle Herds in Northeastern Algeria. Veterinary Sciences, 9(2), 40. https://doi.org/10.3390/vetsci9020040