First Isolation and Molecular Typing of Pathogenic and Intermediate Leptospira Species from Urine of Symptomatic Dogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Animals and Study Groups
2.3. Sample Collection
2.4. Microscopic Agglutination Test (MAT)
2.5. Culture Conditions
2.6. Molecular Detection of Leptospira spp. by Multiplex qPCR
2.7. Amplification of rrs and secY Genes
2.8. Multi Locus Sequence Types (MLST)
2.9. Purification, Sequencing, and Phylogenetic Analysis
2.10. Whole Genome Sequencing
2.11. Statistical Analysis
3. Results
3.1. Animal Classification and Clinical Symptoms
3.2. Microscopic Agglutination Test (MAT)
3.3. Molecular Results, Characterization and Sequencing of the Isolated Strains of Leptospira
3.4. Phylogenetic Analysis Based on rrs Sequences
3.5. Whole Genome Phylogenetic Analysis of dog4 DNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haake, D.A.; Levett, P.N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar] [CrossRef] [Green Version]
- Ellis, W.A. Animal leptospirosis. Curr. Top. Microbiol. Immunol. 2015, 387, 99–137. [Google Scholar] [CrossRef]
- Picardeau, M. Virulence of the zoonotic agent of leptospirosis: Still terra incognita? Nat. Rev. Microbiol. 2017, 15, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.T.; Schiettekatte, O.; Goarant, C.; Neela, V.K.; Bernet, E.; Thibeaux, R.; Ismail, N.; Khalid, M.K.N.M.; Amran, F.; Masuzawa, T.; et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl. Trop. Dis. 2019, 13, e0007270. [Google Scholar] [CrossRef] [Green Version]
- Guglielmini, J.; Bourhy, P.; Schiettekatte, O.; Zinini, F.; Brisse, S.; Picardeau, M. Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance. PLoS Negl. Trop. Dis. 2019, 13, e0007374. [Google Scholar] [CrossRef] [PubMed]
- Thayaparan, S.; Robertson, I.D.; Fairuz, A.; Suut, L.; Abdullah, M.T. Leptospirosis, an emerging zoonotic disease in Malaysia. Malays. J. Pathol. 2013, 35, 123–132. [Google Scholar] [PubMed]
- El-Tras, W.F.; Bruce, M.; Holt, H.R.; Eltholth, M.M.; Merien, F. Update on the status of leptospirosis in New Zealand. Acta Trop. 2018, 188, 161–167. [Google Scholar] [CrossRef]
- Adler, B. History of leptospirosis and leptospira. Curr. Top. Microbiol. Immunol. 2015, 387, 1–9. [Google Scholar] [CrossRef]
- Boey, K.; Shiokawa, K.; Rajeev, S. Leptospira infection in rats: A literature review of global prevalence and distribution. PLoS Negl. Trop. Dis. 2019, 13, e0007499. [Google Scholar] [CrossRef]
- Masuzawa, T.; Saito, M.; Nakao, R.; Nikaido, Y.; Matsumoto, M.; Ogawa, M.; Yokoyama, M.; Hidaka, Y.; Tomita, J.; Sakakibara, K.; et al. Molecular and phenotypic characterization of Leptospira johnsonii sp. nov., Leptospira ellinghausenii sp. nov. and Leptospira ryugenii sp. nov. isolated from soil and water in Japan. Microbiol. Immunol. 2019, 63, 89–99. [Google Scholar] [CrossRef]
- Goarant, C.; Girault, D.; Thibeaux, R.; Soupé-Gilbert, M.E. Isolation and Culture of Leptospira from Clinical and Environmental Samples. Methods Mol. Biol. 2020, 2134, 1–9. [Google Scholar] [CrossRef]
- Goldstein, R.E.; Lin, R.C.; Langston, C.E.; Scrivani, P.V.; Erb, H.N.; Barr, S.C. Influence of Infecting Serogroup on Clinical Features of Leptospirosis in Dogs. J. Vet. Intern. Med. 2006, 20, 489–494. [Google Scholar] [CrossRef]
- Levett, P.N. Leptospirosis. Clin. Microbiol. Rev. 2001, 14, 296–326. [Google Scholar] [CrossRef] [Green Version]
- Ayral, F.C.; Bicout, D.J.; Pereira, H.; Artois, M.; Kodjo, A. Short report: Distribution of Leptospira serogroups in cattle herds and dogs in France. Am. J. Trop. Med. Hyg. 2014, 91, 756–759. [Google Scholar] [CrossRef] [Green Version]
- Schuller, S.; Francey, T.; Hartmann, K.; Hugonnard, M.; Kohn, B.; Nally, J.E.; Sykes, J. European consensus statement on leptospirosis in dogs and cats. J. Small Anim. Pract. 2015, 56, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Ellis, W.A. Control of canine leptospirosis in Europe: Time for a change? Vet. Rec. 2010, 167, 602–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jull, D.J.; Heath, K.R. The evaluation of a combined L. canicola and L. icterohaemorrhagiae vaccine on hamsters and dogs. J. Small Anim. Pract. 1961, 1, 245–258. [Google Scholar] [CrossRef]
- Piredda, I.; Ponti, M.N.; Piras, A.; Palmas, B.; Pintore, P.; Pedditzi, A.; Chisu, V. New Insights on Leptospira Infections in a Canine Population from North Sardinia, Italy: A Sero-Epidemiological Study. Biology 2021, 10, 507. [Google Scholar] [CrossRef] [PubMed]
- Hartman, E.G.; van Houten, M.; van der Donk, J.A.; Frik, J.F. Determination of specific anti-leptospiral immunoglobulins M and G in sera of experimentally infected dogs by solid-phase enzyme-linked immunosorbent assay. Vet. Immunol. Immunopathol. 1984, 7, 43–51. [Google Scholar] [CrossRef]
- Guedes, I.B.; de Souza Rocha, K.; Negrão, M.P.; de Souza, G.O.; de Paula Castro, J.F.; Cavalini, M.B.; de Souza Filho, A.F.; Neto, M.S.D.; Aizawa, J.; de Moraes, C.C.G.; et al. Leptospira transport medium (LTM): A practical tool for leptospires isolation. J. Microbiol. Methods 2020, 175, 105995. [Google Scholar] [CrossRef]
- Stoddard, R.A.; Gee, J.E.; Wilkins, P.P.; McCaustland, K.; Hoffmaster, A.R. Detection of pathogenic Leptospira spp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn. Microbiol. Infect. Dis. 2009, 64, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Bedir, O.; Kilic, A.; Atabek, E.; Kuskucu, A.M.; Turhan, V.; Basustaoglu, A.C. Simultaneous detection and differentiation of pathogenic and nonpathogenic Leptospira spp. by multiplex real-time PCR (TaqMan) assay. Pol. J. Microbiol. 2010, 59, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.N.; Shah, S.; Ahmad, F.M.H. Laboratory diagnosis of leptospirosis. J. Postgrad. Med. 2005, 51, 195–200. [Google Scholar]
- Boonsilp, S.; Thaipadungpanit, J.; Amornchai, P.; Wuthiekanun, V.; Bailey, M.S.; Holden, M.T.G.; Zhang, C.; Jiang, X.; Koizumi, N.; Taylor, K.; et al. A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species. PLoS Negl. Trop. Dis. 2013, 7, e1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002, 2–3. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. Available online: https://journal.embnet.org/index.php/embnetjournal/article/view/200 (accessed on 30 November 2021). [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi and Glenn Tesler, QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [CrossRef] [PubMed]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [Green Version]
- Beghini, F.; McIver, L.J.; Blanco-Míguez, A.; Dubois, L.; Asnicar, F.; Maharjan, S.; Mailyan, A.; Manghi, P.; Scholz, M.; Thomas, A.M.; et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 2021, 10, e65088. [Google Scholar] [CrossRef]
- Asnicar, F.; Thomas, A.M.; Beghini, F.; Mengoni, C.; Manara, S.; Manghi, P.; Zhu, Q.; Bolzan, M.; Cumbo, F.; May, U.; et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 2020, 11, 2500. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Rojas, P.; Monahan, A.M.; Schuller, S.; Miller, I.S.; Markey, B.K.; Nally, J.E. Detection and quantification of leptospires in urine of dogs: A maintenance host for the zoonotic disease leptospirosis. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Budihal, S.V.; Perwez, K. Leptospirosis diagnosis: Competancy of various laboratory tests. J. Clin. Diagn. Res. 2014, 8, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Delaude, A.; Rodriguez-Campos, S.; Dreyfus, A.; Counotte, M.J.; Francey, T.; Schweighauser, A.; Lettry, S.; Schuller, S. Canine leptospirosis in Switzerland-A prospective cross-sectional study examining seroprevalence, risk factors and urinary shedding of pathogenic leptospires. Prev. Vet. Med. 2017, 141, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balboni, A.; Zamagni, S.; Bertasio, C.; Boniotti, M.B.; Troìa, R.; Battilani, M.; Dondi, F. Identification of Serogroups Australis and Icterohaemorrhagiae in Two Dogs with a Severe Form of Acute Leptospirosis in Italy. Pathogens 2020, 9, 351. [Google Scholar] [CrossRef]
- Miotto, B.A.; Guilloux, A.G.A.; Tozzi, B.F.; Moreno, L.Z.; Da Hora, A.S.; Dias, R.A.; Heinemann, M.B.; Moreno, A.M.; de Souza Filho, A.F.; Lilenbaum, W.; et al. Prospective study of canine leptospirosis in shelter and stray dog populations: Identification of chronic carriers and different Leptospira species infecting dogs. PLoS ONE 2018, 13, e0200384. [Google Scholar] [CrossRef] [Green Version]
- Sykes, J.E.; Hartmann, K.; Lunn, K.F.; Moore, G.E.; Stoddard, R.A.; Goldstein, R.E. 2010 ACVIM small animal consensus statement on leptospirosis: Diagnosis, epidemiology, treatment, and prevention. J. Vet. Intern. Med. 2011, 25, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, M.; Umapathy, B.L.; Navaneeth, B.V. An evaluation of dark field microscopy, culture and commercial serological kits in the diagnosis of leptospirosis. Indian J. Med. Microbiol. 2015, 33, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Ayral, F.; Djelouadji, Z.; Raton, V.; Zilber, A.L.; Gasqui, P.; Faure, E.; Baurier, F.; Vourc’h, G.; Kodjo, A.; Combes, B. Hedgehogs and mustelid species: Major carriers of pathogenic Leptospira, a survey in 28 animal species in France (20122015). PLoS ONE 2016, 11, e0162549. [Google Scholar] [CrossRef]
- Altheimer, K.; Jongwattanapisan, P.; Luengyosluechakul, S.; Pusoonthornthum, R.; Prapasarakul, N.; Kurilung, A.; Broens, E.M.; Wagenaar, J.A.; Goris, M.G.A.; Ahmed, A.A.; et al. Leptospira infection and shedding in dogs in Thailand. BMC Vet. Res. 2020, 16, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levett, P.N.; Morey, R.E.; Galloway, R.L.; Steigerwalt, A.G. Leptospira broomii sp. nov., isolated from humans with leptospirosis. Int. J. Syst. Evol. Microbiol. 2006, 56 Pt 3, 671–673. [Google Scholar] [CrossRef] [PubMed]
Health State | Total Dogs | N. Dogs (Place) | Sex | Age | ||
---|---|---|---|---|---|---|
♂ | ♀ | ≤2 | >2 | |||
Asymptomatic | 150 | 108 (Sassari) 18 (Alghero) 15 (Porto Torres) 6 (Sorso) 3 (Ploaghe) | 78 | 72 | 62 | 88 |
Symptomatic | 25 | 20 (Sassari) 3 (Alghero) 2 (Porto Torres) | 15 | 10 | 8 | 17 |
Total | 175 | 93 | 82 | 70 | 105 |
Dog | Gender | Age (Months) | Habitat | Vaccination Status | Clinical Signs | MAT Titers (1st Sampling) | rt-PCR (lipL32 Gene) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Brat. | Grippo. | Pomona | Ictero. | Copen. | |||||||
1 | Male | 15 | Urban | <6 months | Fever, anorexia, weight lose | 1:400 | 1:400 | 1:400 | - | 1:200 | Pos |
2 | Male | 18 | Urban | <6 months | Icterus, anorexia, weight loss | 1:400 | - | 1:200 | - | 1:800 | Pos |
3 | Female | 18 | Urban | <6 months | Fever, anorexia | 1:400 | - | - | - | - | Pos |
4 | Female | 28 | Urban | <6 months | Prostration, vomiting | 1:800 | - | 1:200 | - | 1:1600 | Pos |
5 | Male | 30 | Rural | >6 months | Gingival lesions jaundice, haemorrhagic disorders, hyperoxia | 1:3200 | 1:800 | 1:100 | - | 1:200 | Pos |
6 | Male | 40 | Rural | >6 months | None | 1:400 | - | - | - | - | Pos |
7 | Male | 48 | Rural | >6 months | None | - | - | - | 1:400 | 1:400 | Pos |
8 | Male | 32 | Rural | >6 months | None | 1:200 | - | - | - | - | Neg |
9 | Female | 36 | Rural | >6 months | None | - | - | - | - | 1:100 | Neg |
10 | Female | 32 | Rural | >6 months | None | 1:200 | - | - | - | - | Neg |
11 | Female | 18 | Urban | <6 months | None | - | 1:100 | - | - | - | Neg |
12 | Female | 30 | Urban | >6 months | None | - | - | - | 1:200 | - | Neg |
13 | Female | 26 | Urban | >6 months | None | 1:200 | - | - | - | - | Neg |
14 | Female | 20 | Urban | >6 months | None | 1:200 | - | - | - | - | Neg |
15 | Female | 30 | Urban | <6 months | None | 1:100 | - | - | - | 1:200 | Neg |
16 | Male | 18 | Urban | >6 months | None | - | - | - | 1:100 | - | Neg |
17 | Male | 48 | Urban | >6 months | None | - | - | - | 1:100 | - | Neg |
N° Dog | Serological Titer—Sampling 1st/2nd | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Brat. | Pomona | Copen. | Ictero. | Grippo. | ||||||
1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | |
1 | 1:400 | 1:400 | 1:400 | <1:100 | 1:200 | 1:1600 | 1:400 | <1:100 | ||
2 | 1:400 | 1:800 | 1:200 | 1:200 | 1:800 | 1:800 | ||||
3 | 1:400 | 1:1600 | ||||||||
4 | 1:800 | 1:100 | 1:200 | <1:100 | 1:1600 | 1:100 | ||||
5 | 1:3200 | 1:100 | 1:200 | 1:800 | ||||||
6 | 1:400 | 1:400 | ||||||||
7 | 1:400 | 1:400 | 1:400 | 1:1600 | ||||||
8 | 1:200 | <1:100 | ||||||||
9 | 1:100 | 1:100 | ||||||||
10 | 1:200 | 1:100 | ||||||||
11 | 1:100 | 1:100 | ||||||||
12 | 1:200 | 1:100 | ||||||||
13 | 1:200 | 1:100 | ||||||||
14 | 1:200 | <1:100 | ||||||||
15 | 1:100 | 1:100 | 1:200 | 1:200 | ||||||
16 | 1:100 | 1:100 | ||||||||
17 | 1:100 | 1:200 |
Dog | Source | Characterization of Leptospira Isolates | ||
---|---|---|---|---|
rrs PCR | secY PCR | MLST (species) | ||
1 | kidney | L. interrogans | L. interrogans | ST 198 (L. interrogans Australis) |
2 | urine | L. inadai | L. interrogans | ST 17 (L. interrogans Copenhageni) |
3 | urine | L. saintgironsiae | No amplification | No amplification |
4 | urine | L. interrogans | L. interrogans | ST 17 (L. interrogans Copenhageni) |
5 | urine | L. interrogans | L. interrogans | ST 24 (L. interrogans Bratislava) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piredda, I.; Bertoldi, L.; Benvenuto, G.; Palmas, B.; Pedditzi, A.; Pintore, P.; Chisu, V. First Isolation and Molecular Typing of Pathogenic and Intermediate Leptospira Species from Urine of Symptomatic Dogs. Vet. Sci. 2021, 8, 304. https://doi.org/10.3390/vetsci8120304
Piredda I, Bertoldi L, Benvenuto G, Palmas B, Pedditzi A, Pintore P, Chisu V. First Isolation and Molecular Typing of Pathogenic and Intermediate Leptospira Species from Urine of Symptomatic Dogs. Veterinary Sciences. 2021; 8(12):304. https://doi.org/10.3390/vetsci8120304
Chicago/Turabian StylePiredda, Ivana, Loris Bertoldi, Giuseppe Benvenuto, Bruna Palmas, Aureliana Pedditzi, Pierangela Pintore, and Valentina Chisu. 2021. "First Isolation and Molecular Typing of Pathogenic and Intermediate Leptospira Species from Urine of Symptomatic Dogs" Veterinary Sciences 8, no. 12: 304. https://doi.org/10.3390/vetsci8120304
APA StylePiredda, I., Bertoldi, L., Benvenuto, G., Palmas, B., Pedditzi, A., Pintore, P., & Chisu, V. (2021). First Isolation and Molecular Typing of Pathogenic and Intermediate Leptospira Species from Urine of Symptomatic Dogs. Veterinary Sciences, 8(12), 304. https://doi.org/10.3390/vetsci8120304