Relevance of the Ejaculate Fraction and Dilution Method on Boar Sperm Quality during Processing and Conservation of Seminal Doses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Semen Collection and Seminal Doses Preparation
2.3. Assessment of Sperm Motility
2.4. Assessment of Sperm Morphology
2.5. Assessment of Sperm Viability (Plasma Membrane Integrity)
2.6. Simulation of Vibration Emissions
2.7. Thermo-Resistance Test
2.8. Experimental Design
2.8.1. Experiment 1: Assessment of Dilution Method and/or Ejaculate Fraction on Spermatozoa Parameters during 5 Days of Seminal Doses Refrigeration
2.8.2. Experiment 2: Effect of Seminal Dose Vibration on Sperm Quality Depending on the Ejaculate Fraction Collected and/or Dilution Method Used
2.9. Statistical Analysis
3. Results
3.1. Experiment 1: Assessment of Dilution Method and/or Ejaculate Fraction on Spermatozoa Parameters during 5 Days of Seminal Doses Refrigeration
3.2. Experiment 2: Effect of Seminal Dose Vibration on Sperm Quality Depending on the Ejaculate Fraction Collected and/or Dilution Method Used
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Vázquez, F.; Mellagi, A.; Ulguim, R.; Hernández-Caravaca, I.; Llamas-López, P.; Bortolozzo, F. Post-cervical artificial insemination in porcine: The technique that came to stay. Theriogenology 2019, 129, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Caravaca, I.; Izquierdo-Rico, M.J.; Matas, C.; Carvajal, J.A.; Vieira, L.; Abril, D.; Soriano-Úbeda, C.; Vazquez, F.G. Reproductive performance and backflow study in cervical and post-cervical artificial insemination in sows. Anim. Reprod. Sci. 2012, 136, 14–22. [Google Scholar] [CrossRef]
- Broekhuijse, M.; Gaustad, A.; Guillén, A.B.; Knol, E. Efficient Boar Semen Production and Genetic Contribution: The Impact of Low-Dose Artificial Insemination on Fertility. Reprod. Domest. Anim. 2015, 50, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knox, R.V. Artificial insemination in pigs today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.; Levis, D.; Safranski, T.; Singleton, W. An update on North American boar stud practices. Theriogenology 2008, 70, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, H.; Kvist, U.; Saravia, F.; Wallgren, M.; Johannissono, A.; Sanz, L.; Peña, F.J.; A Martinez, E.; Roca, J.; Vazquez, J.M.; et al. The physiological roles of the boar ejaculate. Biosci. Proc. 2009, 66, 1–21. [Google Scholar] [CrossRef]
- Lavon, U.; Boursnell, J.C. The split ejaculate of the boar: Contributions of the epididymides and seminal vesicles. Reproduction 1975, 42, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López Rodríguez, A.; van Soom, A.; Arsenakis, I.; Maes, D. Boar management and semen handling factors affect the quality of boar extended semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Viring, S.; Einarsson, S. Sperm distribution within the genital tract of naturally inseminated gilts. Nord. Veter. 1981, 33, 145–149. [Google Scholar]
- Roca, J.; Parrilla, I.; Bolarin, A.; Martinez, E.A.; Rodriguez-Martinez, H. Will AI in pigs become more efficient? Theriogenology 2016, 86, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, J.; Hovell, G. The collection of boar semen. Vet. Rec. 1959, 71, 665. [Google Scholar]
- García-Vázquez, F.A.; Luongo, C.; Garrappa, G.; Tobón, E.R. Reproductive Biotechnologies Applied to Artificial Insemination in Swine. In Biotechnologies Applied to Animal Reproduction; CRC Press: Boca Raton, FL, USA, 2020; pp. 283–323. [Google Scholar]
- Aneas, S.B.; Gary, B.; Bouvier, B. Collectis® automated boar collection technology. Theriogenology 2008, 70, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, T.; Rekkas, C.; Samartzi, F.; Lymberopoulos, A.; Kousenidis, K.; Dovenski, T. Highlights on Artificial Insemination (AI) Technology in the Pigs. Maced. Veter. Rev. 2014, 37, 5–34. [Google Scholar] [CrossRef] [Green Version]
- Lellbach, C.; Leiding, C.; Rath, D.; Staehr, B. Effects of automated collection methods on semen quality and economic efficiency of boar semen production. Theriogenology 2008, 70, 1389. [Google Scholar] [CrossRef]
- Alkmin, D.V.; Perez-Patiño, C.; Barranco, I.; Parrilla, I.; Vazquez, J.M.; Martinez, E.A.; Rodriguez-Martinez, H.; Roca, J. Boar sperm cryosurvival is better after exposure to seminal plasma from selected fractions than to those from entire ejaculate. Cryobiology 2014, 69, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Rodriguez, M.; Atikuzzaman, M.; Venhoranta, H.; Wright, D.; Rodriguez-Martinez, H. Expression of Immune Regulatory Genes in the Porcine Internal Genital Tract Is Differentially Triggered by Spermatozoa and Seminal Plasma. Int. J. Mol. Sci. 2019, 20, 513. [Google Scholar] [CrossRef] [Green Version]
- Barranco, I.; Padilla, L.; Martinez, C.A.; Alvarez-Rodriguez, M.; Parrilla, I.; Lucas, X.; Ferreira-Dias, G.; Yeste, M.; Rodriguez-Martinez, H.; Roca, J. Seminal Plasma Modulates miRNA Expression by Sow Genital Tract Lining Explants. Biomolecules 2020, 10, 933. [Google Scholar] [CrossRef]
- Dziekońska, A.; Świąder, K.; Koziorowska-Gilun, M.; Mietelska, K.; Zasiadczyk, Ł.; Kordan, W. Effect of boar ejaculate fraction, extender type and time of storage on quality of spermatozoa. Pol. J. Veter. Sci. 2017, 20, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Zasiadczyk, L.; Fraser, L.; Kordan, W.; Wasilewska, K. Individual and seasonal variations in the quality of fractionated boar ejaculates. Theriogenology 2015, 83, 1287–1303. [Google Scholar] [CrossRef]
- Torres, M.A.; Ravagnani, G.M.; Leal, D.F.; Martins, S.M.M.K.; Muro, B.B.D.; Meirelles, F.V.; Papa, F.O.; Dell’’Aqua Junior, J.A.; Alvarenga, M.A.; Moretti, A.S.; et al. Seminal plasma arising from the whole boar sperm-rich fraction increases the stability of sperm membrane after thawing1,2. J. Anim. Sci. 2016, 94, 1906–1912. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.; Henning, H.; Rüdiger, K.; Wallner, U.; Waberski, D. Temperature management during semen processing: Impact on boar sperm quality under laboratory and field conditions. Theriogenology 2013, 80, 990–998. [Google Scholar] [CrossRef]
- Johnson, L.A.; Weitze, K.F.; Fiser, P.; Maxwell, W.M.C. Storage of boar semen. Anim. Reprod. Sci. 2000, 62, 143–172. [Google Scholar] [CrossRef]
- López Rodríguez, A.; Rijsselaere, T.; Vyt, P.; van Soom, A.; Maes, D. Effect of Dilution Temperature on Boar Semen Quality. Reprod. Domest. Anim. 2012, 47, e63–e66. [Google Scholar]
- Schulze, M.; Ammon, C.; Schaefer, J.; Luther, A.-M.; Jung, M.; Waberski, D. Impact of different dilution techniques on boar sperm quality and sperm distribution of the extended ejaculate. Anim. Reprod. Sci. 2017, 182, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Centurion, F.; Vazquez, J.M.; Calvete, J.; Roca, J.; Sanz, L.; Parrilla, I.; Garcia, E.M.; Martinez, E.A. Influence of Porcine Spermadhesins on the Susceptibility of Boar Spermatozoa to High Dilution1. Biol. Reprod. 2003, 69, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Nitsche-Melkus, E.; Jakop, U.; Jung, M.; Waberski, D. New trends in production management in European pig AI centers. Theriogenology 2019, 137, 88–92. [Google Scholar] [CrossRef]
- Schulze, M.; Jakop, U.; Jung, M.; Cabezón, F. Influences on thermo-resistance of boar spermatozoa. Theriogenology 2019, 127, 15–20. [Google Scholar] [CrossRef]
- Milovanov, V. Artificial Insemination of Live Stock (Iskustvennoe Osemenenie s. h. Zivotnyh); Seljhozgiz: Moscow, Russia, 1934; p. 96. [Google Scholar]
- Perez-Patiño, C.; Barranco, I.; Parrilla, I.; Valero, M.L.; Martinez, E.A.; Rodriguez-Martinez, H.; Roca, J. Characterization of the porcine seminal plasma proteome comparing ejaculate portions. J. Proteom. 2016, 142, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Patiño, C.; Parrilla, I.; Barranco, I.; Vergara-Barberán, M.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M.; Rodriguez-Martínez, H.; Martínez, E.A.; Roca, J. New In-Depth Analytical Approach of the Porcine Seminal Plasma Proteome Reveals Potential Fertility Biomarkers. J. Proteome Res. 2018, 17, 1065–1076. [Google Scholar] [CrossRef] [Green Version]
- Luongo, C.; Garrappa, G.; Llamas-López, P.J.; Rodríguez-Tobón, E.; López-Úbeda, R.; Abril-Sánchez, S.; García-Vázquez, F.A. Effect of boar seminal dose type (cervical compared with post-cervical insemination) on cooling curve, sperm quality and storage time. Anim. Reprod. Sci. 2020, 212, 106236. [Google Scholar] [CrossRef]
- Paschoal, A.F.; Luther, A.-M.; Jakop, U.; Schulze, M.; Bortolozzo, F.P.; Waberski, D. Factors influencing the response of spermatozoa to agitation stress: Implications for transport of extended boar semen. Theriogenology 2021, 175, 54–60. [Google Scholar] [CrossRef]
- Schulze, M.; Bortfeldt, R.; Schäfer, J.; Jung, M.; Fuchs-Kittowski, F. Effect of vibration emissions during shipping of artificial insemination doses on boar semen quality. Anim. Reprod. Sci. 2018, 192, 328–334. [Google Scholar] [CrossRef] [PubMed]
- García-Vázquez, F.A.; Hernández-Caravaca, I.; Matás, C.; Soriano-Úbeda, C.; Abril-Sánchez, S.; Izquierdo-Rico, M.J. Morphological study of boar sperm during their passage through the female genital tract. J. Reprod. Dev. 2015, 61, 407–413. [Google Scholar] [CrossRef]
- Campbell, R.C.; Dott, H.M.; Glover, T.D. Nigrosin eosin as a stain for differentiating live and dead spermatozoa. J. Agric. Sci. 1956, 48, 1–8. [Google Scholar] [CrossRef]
- Weitze, K.F.; Le Thi, X.; Waberski, D. Influence of seminal plasma and extender on the quality of highly diluted boar semen. Reprod. Domest. Anim. 2011, 46, 97–98. [Google Scholar]
- Luther, A.-M.; Waberski, D. In vitro aging of boar spermatozoa: Role of sperm proximity and seminal plasma. Andrology 2019, 7, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Žaja, I.Ž.; Samardžija, M.; Vince, S.; Vilić, M.; Majić-Balić, I.; Đuričić, D.; Milinković-Tur, S. Differences in seminal plasma and spermatozoa antioxidative systems and seminal plasma lipid and protein levels among boar breeds and hybrid genetic traits. Anim. Reprod. Sci. 2016, 170, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Han, Q.; Ma, C.; Wang, Y.; Zhang, P.; Li, C.; Cheng, X.; Xu, H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front. Cell Dev. Biol. 2021, 9, 1845. [Google Scholar] [CrossRef]
- Huang, S.; Kuo, Y.; Lee, Y.; Tsou, H.; Lin, E.; Ju, C.; Lee, W. Association of heat shock protein 70 with semen quality in boars. Anim. Reprod. Sci. 2000, 63, 231–240. [Google Scholar] [CrossRef]
- Moein-Vaziri, N.; Phillips, I.; Smith, S.; Almiňana, C.; Maside, C.; A Gil, M.; Roca, J.; A Martinez, E.; Holt, W.V.; Pockley, A.; et al. Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity. Reproduction 2014, 147, 719–732. [Google Scholar] [CrossRef] [Green Version]
- Calle-Guisado, V.; Bragado, M.; García-Marín, L.; González-Fernández, L. HSP90 maintains boar spermatozoa motility and mitochondrial membrane potential during heat stress. Anim. Reprod. Sci. 2017, 187, 13–19. [Google Scholar] [CrossRef]
- Schulze, M.; Rüdiger, K.; Waberski, D. Rotation of Boar Semen Doses During Storage Affects Sperm Quality. Reprod. Domest. Anim. 2015, 50, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Barranco, I.; Padilla, L.; Pérez-Patiño, C.; Vazquez, J.M.; Martínez, E.A.; Rodriguez-Martinez, H.; Roca, J.; Parrilla, I. Seminal Plasma Cytokines Are Predictive of the Outcome of Boar Sperm Preservation. Front. Veter. Sci. 2019, 6, 436. [Google Scholar] [CrossRef] [PubMed]
- Peña, F.; Johannisson, A.; Wallgren, M.; Martinez, H.R. Antioxidant supplementation of boar spermatozoa from different fractions of the ejaculate improves cryopreservation: Changes in sperm membrane lipid architecture. Zygote 2004, 12, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Otero, Y.; Fernández-López, P.; Gil-Caballero, S.; Fernandez-Fuertes, B.; Bonet, S.; Barranco, I.; Yeste, M. 1H Nuclear Magnetic Resonance of Pig Seminal Plasma Reveals Intra-Ejaculate Variation in Metabolites. Biomolecules 2020, 10, 906. [Google Scholar] [CrossRef] [PubMed]
- Barranco, I.; Tvarijonaviciute, A.; Perez-Patiño, C.; Parrilla, I.; Ceron, J.J.; Martinez, E.A.; Rodriguez-Martinez, H.; Roca, J. High total antioxidant capacity of the porcine seminal plasma (SP-TAC) relates to sperm survival and fertility. Sci. Rep. 2015, 5, 18538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number of Boars | RF + ES | RF + SE | TF + ES | TF + SE |
---|---|---|---|---|
Boar 1 | 1-RF-ES | 1-RF-SE | 1-TF-ES | 1-TF-SE |
Boar 2 | 2-RF-ES | 2-RF-SE | 2-TF-ES | 2-TF-SE |
Boar 3 | 3-RF-ES | 3-RF-SE | 3-TF-ES | 3-TF-SE |
Boar 4 | 4-RF-ES | 4-RF-SE | 4-TF-ES | 4-TF-SE |
Boar 5 | 5-RF-ES | 5-RF-SE | 5-TF-ES | 5-TF-SE |
Boar 6 | 6-RF-ES | 6-RF-SE | 6-TF-ES | 6-TF-SE |
RF | TF | |||
---|---|---|---|---|
Parameter | ES | SE | ES | SE |
Total Motility (%) | 88.6 ± 1.2 a | 89.8 ± 1.2 ab | 93.2 ± 1.3 c | 91.8 ± 1.2 bc |
Rapid (%) | 51.9 ± 5.1 a | 53.4 ± 5.1 a | 61.0 ± 5.2 b | 58.8 ± 5.1 b |
Intermediate (%) | 19.3 ± 3.3 | 19.3 ± 3.3 | 20.7 ± 3.3 | 19.4 ± 3.2 |
Slow (%) | 17.3 ± 1.6 a | 16.9 ± 1.6 a | 11.5 ± 1.6 b | 13.4 ± 1.6 b |
Progressive Motility (%) | 61.2 ± 3.8 a | 62.4 ± 3.8 a | 72.6 ± 3.9 b | 69.6 ± 3.8 b |
Non-Progressive Motility (%) | 27.4 ± 3.0 a | 27.4 ± 3.0 a | 20.6 ± 3.0 b | 22.1 ± 3.0 b |
Normal Morphology (%) | 93.4.8 ± 0.7 | 93.2 ± 0.7 | 93.9 ± 0.4 | 94.3 ± 0.5 |
Viability (%) | 96.5 ± 0.5 | 96.1 ± 0.5 | 95.8 ± 0.5 | 95.8 ± 0.4 |
RF | TF | |||
---|---|---|---|---|
Parameter | ES | SE | ES | SE |
Total Motility (%) | 37.9 ± 6.6 | 41.1 ± 6.3 | 41.5 ± 4.8 | 40.3 ± 3.0 |
Rapid (%) | 12.0 ± 3.0 | 14.2 ± 3.5 | 14.5 ± 2.0 | 15.3 ± 2.2 |
Intermediate (%) | 7.2 ± 1.6 | 8.5 ± 1.4 | 8.0 ± 0.9 | 7.1 ± 1.0 |
Slow (%) | 18.6 ± 2.8 | 18.3 ± 2.1 | 18.9 ± 3.4 | 17.8 ± 1.2 |
Progressive Motility (%) | 16.2 ± 3.7 | 19.1 ± 3.9 | 19.7 ± 2.0 | 19.4 ± 2.1 |
Non-Progressive Motility (%) | 21.6 ± 3.3 | 21.9 ± 2.5 | 21.7 ± 3.4 | 20.8 ± 1.6 |
Normal Morphology (%) | 94.1 ± 0.7 | 95.0 ± 0.5 | 94.1 ± 0.7 | 93.3 ± 0.7 |
Viability (%) | 92.6 ± 1.2 ab | 94.3 ± 1.0 a | 90.0 ± 1.5 ab | 89.5 ± 0.2 b |
RF-ES | RF-SE | TF-ES | TF-SE | |||||
---|---|---|---|---|---|---|---|---|
Parameter | V | NV | V | NV | V | NV | V | NV |
Total Motility (%) | 82.9 ± 4.5 | 86.6 ± 2.7 | 82.4 ± 3.6 | 88.3 ± 3.1 | 86.6 ± 1.7 | 90.4 ± 3.0 | 83.9 ± 3.6 | 86.5 ± 1.1 |
Rapid (%) | 44.8 ± 4.9 | 52.9 ± 4.0 | 45.3 ± 4.9 | 55.2 ± 4.8 | 50.5 ± 3.4 | 60.3 ± 7.0 | 48.0 ± 5.0 | 61.0 ± 7.8 |
Intermediate (%) | 19.0 ± 2.4 | 16.9 ± 2.0 | 18.1 ± 1.7 | 16.8 ± 2.3 | 19.5 ± 3.1 | 17.3 ± 2.9 | 18.9 ± 3.3 | 15.9 ± 3.0 |
Slow (%) | 19.0 ± 1.5 | 16.7 ± 1.4 | 19.0 ± 1.5 | 16.2 ± 1.7 | 16.4 ± 1.8 | 12.6 ± 1.9 | 16.9 ± 2.1 | 14.0 ± 2.3 |
Progressive Motility (%) | 53.9 ± 5.1 | 59.7 ± 3.5 | 53.0 ± 4.7 | 63.7 ± 4.2 | 61.4 ± 2.9 | 70.7 ± 5.5 | 59.0 ± 5.5 | 69.6 ± 6.2 |
Non-Progressive Motility (%) | 28.9 ± 1.4 | 26.8 ± 2.3 | 29.3 ± 1.5 | 24.6 ± 2.3 | 25.1 ± 2.2 | 19.6 ± 2.8 | 24.8 ± 2.5 | 21.4 ± 3.8 |
Normal Morphology (%) | 93.3 ± 1.0 | 92.6 ± 0.8 | 92.8 ± 1.0 | 92.8 ± 1.7 | 93.3 ± 0.5 | 92.6 ± 1.1 | 93.0 ± 0.9 | 93.1 ± 1.1 |
Viability (%) | 94.3 ± 1.2 abc | 95.6 ± 0.6 c | 92.1 ± 1.3 abc | 95.3 ± 1.1 bc | 90.1 ± 1.5 ab* | 95.3 ± 0.9 bc | 89.9 ± 1.2 a** | 96.0 ± 1.1 c |
RF-ES | RF-SE | TF-ES | TF-SE | |||||
---|---|---|---|---|---|---|---|---|
Parameter | V | NV | V | NV | V | NV | V | NV |
Total Motility (%) | 39.5 ± 9.2 | 37.9 ± 6.6 | 39.7 ± 7.5 | 41.1 ± 6.3 | 33.3 ± 4.3 | 41.5 ± 4.8 | 38.3 ± 3.4 | 40.3 ± 3.0 |
Rapid (%) | 15.3 ± 4.7 | 12.0 ± 3.0 | 12.2 ± 3.3 | 14.2 ± 3.5 | 12.9 ± 2.3 | 14.5 ± 2.0 | 12.9 ± 2.2 | 15.3 ± 2.2 |
Intermediate (%) | 7.6 ± 1.9 | 7.2 ± 1.6 | 7.6 ± 1.3 | 8.5 ± 1.4 | 5.4 ± 1.1 | 8.0 ± 0.9 | 7.1 ± 0.7 | 7.1 ± 1.0 |
Slow (%) | 16.5 ± 2.8 | 18.6 ± 2.8 | 19.8 ± 3.4 | 18.3 ± 2.1 | 14.9 ± 1.2 | 18.9 ± 3.4 | 18.3 ± 0.8 | 17.8 ± 1.2 |
Progressive Motility (%) | 19.3 ± 5.6 | 16.2 ± 3.7 | 16.7 ± 3.8 | 19.1 ± 3.9 | 16.4 ± 2.9 | 19.7 ± 2.0 | 17.4 ± 2.6 | 19.4 ± 2.1 |
Non-Progressive Motility (%) | 20.2 ± 3.6 | 21.6 ± 3.3 | 22.9 ± 3.9 | 21.9 ± 2.5 | 16.8 ± 1.6 | 21.7 ± 3.4 | 20.9 ± 1.1 | 20.8 ± 1.6 |
Normal Morphology (%) | 94.5 ± 0.6 | 94.1 ± 0.7 | 94.0 ± 0.9 | 95.0 ± 0.5 | 93.3 ± 1.1 | 94.1 ± 0.7 | 90.8 ± 1.2 | 93.3 ± 0.7 |
Viability (%) | 91.5 ± 1.0 abc | 92.6 ± 1.2 bc | 89.6 ± 0.9 abc* | 94.3 ± 1.0 c | 86.0 ± 2.1 ab | 90.0 ± 1.5 abc | 85.1 ± 2.7 a | 89.5 ± 0.2 abc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastián-Abad, B.; Llamas-López, P.J.; García-Vázquez, F.A. Relevance of the Ejaculate Fraction and Dilution Method on Boar Sperm Quality during Processing and Conservation of Seminal Doses. Vet. Sci. 2021, 8, 292. https://doi.org/10.3390/vetsci8120292
Sebastián-Abad B, Llamas-López PJ, García-Vázquez FA. Relevance of the Ejaculate Fraction and Dilution Method on Boar Sperm Quality during Processing and Conservation of Seminal Doses. Veterinary Sciences. 2021; 8(12):292. https://doi.org/10.3390/vetsci8120292
Chicago/Turabian StyleSebastián-Abad, Blanca, Pedro José Llamas-López, and Francisco Alberto García-Vázquez. 2021. "Relevance of the Ejaculate Fraction and Dilution Method on Boar Sperm Quality during Processing and Conservation of Seminal Doses" Veterinary Sciences 8, no. 12: 292. https://doi.org/10.3390/vetsci8120292
APA StyleSebastián-Abad, B., Llamas-López, P. J., & García-Vázquez, F. A. (2021). Relevance of the Ejaculate Fraction and Dilution Method on Boar Sperm Quality during Processing and Conservation of Seminal Doses. Veterinary Sciences, 8(12), 292. https://doi.org/10.3390/vetsci8120292