Effect of Propofol Continuous-Rate Infusion on Intravenous Glucose Tolerance Test in Dogs
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Plasma Glucose Level, Glucose Half-Life Period, and Disappearance Rate
3.2. Plasma Insulin Levels
3.3. Plasma Cholesterol, TG, and FFA Levels
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Ljungqvist, O.; Jonathan, E. Rhoads lecture insulin resistance and enhanced recovery after surgery. J. Parenter. Enter. Nutr. 2012, 36, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Turina, M.; Miller, F.N.; Tucker, C.F.; Polk, H.C. Short-term hyperglycemia in surgical patients and a study of related cellular mechanisms. Ann. Surg. 2006, 243, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Diltoer, M.; Camu, F. Glucose homeostasis and insulin secretion during isoflurane anesthesia in humans. Anesthesiology 1988, 68, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Kitamura, T.; Kawamura, G.; Mori, Y.; Sato, R.; Araki, Y.; Yamada, Y. Glucose use in fasted rats under sevoflurane anesthesia and propofol anesthesia. Anesth. Analg. 2013, 117, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Bochicchio, G.V.; Sung, J.; Joshi, M.; Bochicchio, K.; Johnson, S.B.; Meyer, W.; Scalea, T.M. Persistent hyperglycemia is predictive of outcome in critically ill trauma patients. J. Trauma Acute Care Surg. 2005, 58, 921–924. [Google Scholar] [CrossRef]
- Puskas, F.; Grocott, H.P.; White, W.D.; Mathew, J.P.; Newman, M.F.; Bar-Yosef, S. Intraoperative hyperglycemia and cognitive decline after CABG. Ann. Thorac. Surg. 2007, 84, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Vore, S.J.; Aycock, E.D.; Veldhuis, J.D.; Butler, P.C. Anesthesia rapidly suppresses insulin pulse mass but enhances the orderliness of insulin secretory process. Am. J. Physiol. Endocrinol. MeTab. 2001, 281, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, T.; Ogawa, M.; Kawamura, G.; Sato, K.; Yamada, Y. The effects of sevoflurane and propofol on glucose metabolism under aerobic conditions in fed rats. Anesth. Analg. 2009, 109, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, T.; Kawamura, G.; Ogawa, M.; Yamada, Y. Comparison of the changes in blood glucose levels during anesthetic management using sevoflurane and propofol. Masui. Jpn. J. Anesthesiol. 2009, 58, 81–84. [Google Scholar]
- Tanaka, T.; Nabatame, H.; Tanifuji, Y. Insulin secretion and glucose utilization are impaired under general anesthesia with sevoflurane as well as isoflurane in a concentration-independent manner. J. Anesth. 2005, 19, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.N. Toward physiological understanding of glucose tolerance: Minimal-model approach. Diabetes 1989, 38, 1512–1527. [Google Scholar] [CrossRef] [PubMed]
- Brunetto, M.A.; Sá, F.C.; Nogueira, S.P.; Gomes Mde, O.; Pinarel, A.G.; Jeremias, J.T.; de Paula, F.J.; Carciofi, A.C. The intravenous glucose tolerance and postprandial glucose tests may present different responses in the evaluation of obese dogs. Br. J. Nutr. 2011, 106, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.T. Propofol infusion syndrome. Rev. Bras. Anestesiol. 2007, 57, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Bray, R.J. Propofol infusion syndrome in children. Paediatr. Anaesth. 1998, 8, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Armoni, M.; Harel, C.; Bar-Yoseph, F.; Milo, S.; Karnieli, E. Free fatty acids repress the GLUT4 gene expression in cardiac muscle via novel response elements. J. Biol. Chem. 2005, 41, 34786–34795. [Google Scholar] [CrossRef] [PubMed]
- Van Epps-Fung, M.; Williford, J.; Wells, A.; Hardy, R.W. Fatty acid-induced insulin resistance in adipocytes. Endocrinology 1997, 138, 4338–4345. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, W.; Zhen, Q.; Gao, R.; Du, T.; Xiao, X.; Wang, Z.; Ge, Q.; Hu, J.; Ye, P.; et al. Impaired adipogenesis in adipose tissue associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet. Life Sci. 2015, 137, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Yamada, J.; Sugimoto, Y.; Noma, T. Involvement of adrenaline in diazepam-induced hyperglycemia in mice. Life Sci. 2000, 66, 1213–1221. [Google Scholar] [CrossRef]
- Fagerholm, V.; Haaparanta, M.; Scheinin, M. α2-adrenoceptor regulation of blood glucose homeostasis. Basic Clin. Pharmacol. Toxicol. 2011, 108, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Pandit, M.; Burke, J.; Gustafson, A.; Minocha, A.; Peiris, A. Drug-induced disorders of glucose tolerance. Ann. Int. Med. 1993, 118, 529–539. [Google Scholar] [CrossRef] [PubMed]
Group A | Group S | Group 0.2 P | Group 0.4 P | |
---|---|---|---|---|
Plasma Glucose Levels (mmol/L) | ||||
Pre | 5.42 ± 0.52 | 5.54 ± 0.26 | 5.31 ± 0.31 | 5.49 ± 0.26 |
0 min | 5.46 ± 0.25 | 5.31 ± 0.48 | 5.49 ± 0.45 | 5.53 ± 0.35 |
1 min | 19.7 ± 1.56 | 24.0 ± 3.01 * | 23.5 ± 2.59 † | 23.5 ± 1.53 ‡ |
5 min | 16.7 ± 1.44 | 18.7 ± 2.18 | 17.9 ± 1.77 | 18.1 ± 1.37 |
20 min | 10.0 ± 1.33 | 13.9 ± 1.75 * | 12.8 ± 1.69 † | 13.2 ± 1.56 ‡ |
60 min | 5.33 ± 0.34 | 8.72 ± 1.77 * | 7.23 ± 1.80 | 7.45 ± 1.97 |
90 min | 4.48 ± 1.83 | 6.66 ± 1.30 | 5.87 ± 1.30 | 6.48 ± 1.27 |
AUC (×103) | ||||
12.1 ± 1.47 | 18.0 ± 3.07 * | 16.0 ± 2.88 † | 16.5 ± 2.56 ‡ | |
KG (%/min) | ||||
3.41 ± 0.82 | 1.91 ± 0.23 * | 2.07 ± 0.36 † | 2.20 ± 0.42 ‡ | |
T1/2 (min) | ||||
21.2 ± 4.31 | 36.7 ± 4.43 * | 34.3 ± 5.97 † | 32.5 ± 5.91 ‡ |
Group A | Group S | Group 0.2 P | Group 0.4 P | |
---|---|---|---|---|
Plasma Insulin Levels (µIU/mL) | ||||
Pre | 4.76 ± 1.15 | 4.22 ± 1.70 | 4.05 ± 2.98 | 4.69 ± 2.11 |
0 min | 4.57 ± 2.00 | 0.65 ± 0.46 | 2.33 ± 1.53 | 2.29 ± 1.23 |
1 min | 55.0 ± 23.9 | 25.0 ± 14.7 | 51.4 ± 19.8 | 53.8 ± 34.3 |
5 min | 36.1 ± 11.7 | 14.7 ± 5.60 *,†† | 30.5 ± 10.4 | 32.5 ± 14.1 |
20 min | 21.8 ± 7.31 | 12.7 ± 7.42 § | 28.4 ± 15.0 | 26.8 ± 10.3 |
60 min | 2.74 ± 1.24 | 10.6 ± 5.38 *,†† | 9.04 ± 5.94 | 9.63 ± 4.41 |
90 min | 3.34 ± 1.59 | 7.06 ± 5.46 | 6.01 ± 5.27 | 7.45 ± 4.24 |
AUC (×103) | ||||
1.26 ± 0.24 | 1.13 ± 0.46 | 1.69 ± 0.57 | 1.74 ± 0.36 | |
Insulinogenic Index | ||||
0.21 ± 0.09 | 0.06 ± 0.01 *,§ | 0.21 ± 0.14 | 0.19 ± 0.09 |
Group A | Group S | Group 0.2 P | Group 0.4 P | |
---|---|---|---|---|
Plasma Cholesterol Levels (mmol/L) | ||||
Pre | 3.78 ± 1.00 | 3.72 ± 0.84 | 3.27 ± 1.28 | 3.72 ± 0.87 |
0 min | 3.54 ± 0.95 | 3.26 ± 0.69 | 3.07 ± 1.20 | 3.42 ± 0.80 |
1 min | 3.26 ± 0.85 | 2.94 ± 0.66 | 2.78 ± 1.12 | 3.11 ± 0.79 |
5 min | 3.28 ± 0.87 | 2.97 ± 0.69 | 2.85 ± 1.15 | 3.18 ± 0.80 |
20 min | 3.44 ± 0.93 | 3.02 ± 0.70 | 2.96 ± 1.19 | 3.33 ± 0.84 |
60 min | 3.48 ± 0.88 | 3.02 ± 0.69 | 2.95 ± 1.19 | 3.35 ± 0.87 |
90 min | 3.10 ± 1.58 | 2.92 ± 0.68 | 2.90 ± 1.15 | 3.51 ± 0.76 |
Group A | Group S | Group 0.2 P | Group 0.4 P | |
---|---|---|---|---|
Plasma Triglyceride Levels (mmol/L) | ||||
Pre | 0.40 ± 0.30 | 0.16 ± 0.06 | 0.23 ± 0.04 | 0.25 ± 0.17 |
0 min | 0.39 ± 0.30 | 0.21 ± 0.07 | 0.86 ± 0.20 ‡,§ | 1.07 ± 0.29 †,†† |
1 min | 0.35 ± 0.31 | 0.19 ± 0.06 | 0.85 ± 0.18 ‡,§ | 0.85 ± 0.26 †,†† |
5 min | 0.38 ± 0.32 | 0.18 ± 0.06 * | 0.77 ± 0.18 ‡,§ | 0.80 ± 0.25 †,†† |
20 min | 0.31 ± 0.30 | 0.19 ± 0.05 | 0.71 ± 0.22 ‡,§ | 0.78 ± 0.27 †,†† |
60 min | 0.23 ± 0.20 | 0.19 ± 0.05 | 0.61 ± 0.16 ‡,§ | 0.92 ± 0.34 †,††,¶ |
90 min | 0.26 ± 0.26 | 0.17 ± 0.06 | 0.53 ± 0.14 ‡,§ | 0.88 ± 0.20 †,††,¶ |
AUC | ||||
29.5 ± 18.9 | 19.5 ± 5.90 | 66.7 ± 11.9 ‡,§ | 89.9 ± 25.3 †,†† |
Time Point | Group A | Group S | Group 0.2 P | Group 0.4 P |
---|---|---|---|---|
Plasma Free Fatty Acid Levels (mEq/L) | ||||
Pre | 0.70 ± 0.23 | 0.61 ± 0.18 | 0.71 ± 0.19 | 0.69 ± 0.13 |
0 min | 0.72 ± 0.19 | 0.24 ± 0.13 | 0.58 ± 0.16 | 0.88 ± 0.18 |
1 min | 0.70 ± 0.10 | 0.24 ± 0.10 | 0.60 ± 0.17 | 1.26 ± 0.51 † |
5 min | 0.54 ± 0.11 | 0.25 ± 0.10 | 0.75 ± 0.20 | 1.41 ± 0.54 † |
20 min | 0.17 ± 0.06 | 0.13 ± 0.08 | 0.34 ± 0.13 | 0.96 ± 0.50 † |
60 min | 0.43 ± 0.14 | 0.05 ± 0.03 | 0.21 ± 0.10 | 0.52 ± 0.17 |
90 min | 0.57 ± 0.27 | 0.06 ± 0.08 | 0.28 ± 0.18 | 0.65 ± 0.14 |
AUC | ||||
43.9 ± 11.6 * | 10.0 ± 5.97 | 34.4 ± 11.4 § | 81.3 ± 24.0 †,††,¶ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeda, K.; Iwasaki, M.; Itou, Y.; Iwai, S.; Okano, S. Effect of Propofol Continuous-Rate Infusion on Intravenous Glucose Tolerance Test in Dogs. Vet. Sci. 2018, 5, 43. https://doi.org/10.3390/vetsci5020043
Maeda K, Iwasaki M, Itou Y, Iwai S, Okano S. Effect of Propofol Continuous-Rate Infusion on Intravenous Glucose Tolerance Test in Dogs. Veterinary Sciences. 2018; 5(2):43. https://doi.org/10.3390/vetsci5020043
Chicago/Turabian StyleMaeda, Kenichi, Munehiro Iwasaki, Yuki Itou, Satomi Iwai, and Shozo Okano. 2018. "Effect of Propofol Continuous-Rate Infusion on Intravenous Glucose Tolerance Test in Dogs" Veterinary Sciences 5, no. 2: 43. https://doi.org/10.3390/vetsci5020043
APA StyleMaeda, K., Iwasaki, M., Itou, Y., Iwai, S., & Okano, S. (2018). Effect of Propofol Continuous-Rate Infusion on Intravenous Glucose Tolerance Test in Dogs. Veterinary Sciences, 5(2), 43. https://doi.org/10.3390/vetsci5020043