Grape Pomace as a Replacement for Soybean Hulls in Corn Silage-Based Diets for Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, Treatments, and Management
2.2. Rumen Content Collections and In Situ Degradability
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Feed Intake, Milk Production, and Milk Composition
3.2. Ruminal Fermentation Parameters
3.3. In Situ Degradability of Protein Sources
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FEFAC. Feed & Food 2024; European Feed Manufacturers’ Federation: Brussels, Belgium, 2025; 23p. [Google Scholar]
- INE. Estatísticas Agrícolas 2024. Available online: https://www.ine.pt/xurl/pub/66302566 (accessed on 19 November 2025).
- FEFAC. Circular Feed, Optimised Nutrient Recovery Through Animal Nutrition; European Feed Manufacturers’ Federation: Brussels, Belgium, 2022; 26p. [Google Scholar]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- FEDNA. Tables on the Composition and Nutritional Value of Raw Materials for the Production of Compound Animal Feeds, 4th ed.; IMPROTALIA S.L.: Madrid, Spain, 2021. [Google Scholar]
- Fraga, M.J.; Pérez de Ayala, P.; Carabaño, R.; de Blas, J.C. Effect of type of fiber on the rate of passage and on the contribution of soft feces to nutrient intake of finishing rabbits. J. Anim. Sci. 1991, 69, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Klinger, A.C.K.; Toledo, G.S.P.d.; Silva, L.P.d.; Maschke, F.; Chimainski, M.; Siqueira, L. Bagaço de uva como ingrediente alternativo no arraçoamento de coelhos em crescimento. Ciênc. Rural 2013, 43, 1654–1659. [Google Scholar] [CrossRef][Green Version]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape pomace as a promising antimicrobial alternative in feed: A critical review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef]
- Khiaosa-ard, R.; Mahmood, M.; Mickdam, E.; Pacífico, C.; Meixner, J.; Traintinger, L.-S. Winery by-products as a feed source with functional properties: Dose–response effect of grape pomace, grape seed meal, and grape seed extract on rumen microbial community and their fermentation activity in RUSITEC. J. Anim. Sci. Biotechnol. 2023, 14, 92. [Google Scholar] [CrossRef]
- Li, Y.; Shi, C.; Deng, J.; Qiu, X.; Zhang, S.; Wang, H.; Qin, X.; He, Y.; Cao, B.; Su, H. Effects of grape pomace on growth performance, nitrogen metabolism, antioxidants, and microbial diversity in Angus bulls. Antioxidants 2024, 13, 412. [Google Scholar] [CrossRef]
- Teng, M.; Li, Y.; Qi, J.; Wu, W.; Sun, X.; Gao, C.; Zhang, X.; Mamtimin, T.; Wan, J. Effects of grape pomace complete pellet feed on growth performance, fatty acid composition, and rumen fungal composition in beef cattle. Animals 2025, 15, 930. [Google Scholar] [CrossRef]
- Kara, K.; Öztaş, M.A. The effect of dietary fermented grape pomace supplementation on in vitro total gas and methane production, digestibility, and rumen fermentation. Fermentation 2023, 9, 741. [Google Scholar] [CrossRef]
- Akter, A.; Li, X.; Grey, E.; Wang, S.C.; Kebreab, E. Grape pomace supplementation reduced methane emissions and improved milk quality in lactating dairy cows. J. Dairy Sci. 2025, 108, 2468–2480. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, K.; Hosseinian, F.; Rod, M. The market potential of grape waste alternatives. J. Food Res. 2014, 3, 91–106. [Google Scholar] [CrossRef]
- Ørskov, E.R.; DeB Hovell, F.D.; Mould, F. The use of the nylon bag technique for the evaluation of feedstuffs. Trop. Anim. Prod. 1980, 5, 195–213. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.; Van Soest, P. The detergent system of analysis. In The Analysis of Dietary Fiber in Food; James, W., Teander, O., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1981; pp. 123–158. [Google Scholar]
- Salomonsson, A.C.; Theander, O.; Westerlund, E. Chemical characterization of some swedish cereal whole meal and bran fractions. Swed. J. Agric. Res. 1984, 14, 111–117. [Google Scholar]
- The Commission of the European Communities. Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union 2009, 54, 1–130. [Google Scholar]
- ISO 6491:1998; Animal Feeding Stuffs—Determination of Phosphorus Content—Spectrometric Method. International Organization for Standardization: Geneva, Switzerland, 1998.
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.L.; Smith, W.B.; Rouquette, F.M.; Tedeschi, L.O. Forages and pastures symposium: An update on in vitro and in situ experimental techniques for approximation of ruminal fiber degradation. J. Anim. Sci. 2023, 101, skad097. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- 26. National Academies of Sciences, Engineering, Medicine. Nutrient Requirements of Dairy Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2021; 502p. [Google Scholar] [CrossRef]
- Arnous, A.; Meyer, A.S. Quantitative prediction of cell wall polysaccharide composition in grape (Vitis vinifera L.) and apple (Malus domestica) skins from acid hydrolysis monosaccharide profiles. J. Agric. Food Chem. 2009, 57, 3611–3619. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity—A review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Tayengwa, T.; Chikwanha, O.C.; Raffrenato, E.; Dugan, M.E.R.; Mutsvangwa, T.; Mapiye, C. Comparative effects of feeding citrus pulp and grape pomace on nutrient digestibility and utilization in steers. Animal 2021, 15, 100020. [Google Scholar] [CrossRef] [PubMed]
- Alipour, D.; Rouzbehan, Y. Effects of ensiling grape pomace and addition of polyethylene glycol on in vitro gas production and microbial biomass yield. Anim. Feed. Sci. Technol. 2007, 137, 138–149. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Capozzolo, M.C.; Lencioni, P.; Cabral, C.; Wattiaux, M.A. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. J. Dairy Sci. 2016, 99, 4476–4486. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef]
- Kraus, T.E.; Dahlgren, R.A.; Zasoski, R.J. Tannins in nutrient dynamics of forest ecosystems-a review. Plant Soil 2003, 256, 41–66. [Google Scholar] [CrossRef]
- Silanikove, N.; Perevolotsky, A.; Provenza, F.D. Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Anim. Feed. Sci. Technol. 2001, 91, 69–81. [Google Scholar] [CrossRef]
- Rira, M.; Morgavi, D.P.; Popova, M.; Maxin, G.; Doreau, M. Microbial colonisation of tannin-rich tropical plants: Interplay between degradability, methane production and tannin disappearance in the rumen. Animal 2022, 16, 100589. [Google Scholar] [CrossRef]
- Terrill, T.; Waghorn, G.C.; Woolley, D.; McNabb, W.; Barry, T. Assay and digestion of 14C-labelled condensed tannins in the gastrointestinal tract of sheep. Br. J. Nutr. 1994, 72, 467–477. [Google Scholar] [CrossRef]
- Kronberg, S.L.; Zeller, W.E.; Waghorn, G.C.; Grabber, J.H.; Terrill, T.H.; Liebig, M.A. Effects of feeding Lespedeza cuneata pellets with Medicago sativa hay to sheep: Nutritional impact, characterization and degradation of condensed tannin during digestion. Anim. Feed. Sci. Technol. 2018, 245, 41–47. [Google Scholar] [CrossRef]
- Quijada, J.; Drake, C.; Gaudin, E.; El-Korso, R.; Hoste, H.; Mueller-Harvey, I. Condensed tannin changes along the digestive tract in lambs fed with sainfoin pellets or hazelnut skins. J. Agric. Food Chem. 2018, 66, 2136–2142. [Google Scholar] [CrossRef]
- van Cleef, F.O.S.; Dubeux, J.C.B.; Wheeler, C.S.; García, C.C.V.; Ruiz-Moreno, M.; Sollenberger, L.E.; Vendramini, J.M.B.; DiLorenzo, N.; Naumann, H.D. Stable isotopes provide evidence that condensed tannins from sericea lespedeza are degraded by ruminal microbes. Sci. Rep. 2022, 12, 14318. [Google Scholar] [CrossRef]
- Waghorn, G.; Shelton, I.; McNabb, W.; McCutcheon, S. Effects of condensed tannins in Lotus pedunculatus on its nutritive value for sheep. 2. Nitrogenous aspects. J. Agric. Sci. 1994, 123, 109–119. [Google Scholar] [CrossRef]
- Barry, T.; McNabb, W. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 1999, 81, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Butter, N.; Dawson, J.; Buttery, P. Effects of dietary tannins on ruminants. In Secondary Plant Products, Antinutritional and Beneficial Actions in Animal Feeds; Caygill, J.C., Mueller-Harvey, I., Eds.; Nottingham University Press: Nottingham, UK, 1999; pp. 51–70. [Google Scholar]
- Austin, P.J.; Suchar, L.A.; Robbins, C.T.; Hagerman, A.E. Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. J. Chem. Ecol. 1989, 15, 1335–1347. [Google Scholar] [CrossRef]
- Ianni, A.; Di Maio, G.; Pittia, P.; Grotta, L.; Perpetuini, G.; Tofalo, R.; Cichelli, A.; Martino, G. Chemical-nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J. Sci. Food Agric. 2019, 99, 3635–3643. [Google Scholar] [CrossRef]
- Chedea, V.S.; Pelmus, R.S.; Lazar, C.; Pistol, G.C.; Calin, L.G.; Toma, S.M.; Dragomir, C.; Taranu, I. Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows. J. Sci. Food Agric. 2017, 97, 2516–2523. [Google Scholar] [CrossRef]
- Cabrita, A.R.; Fonseca, A.J.; Dewhurst, R.J.; Sampaio, C.V.; Miranda, M.F.; Sousa, G.N.; Miranda, I.M.; Gomes, E. Nitrogen supplementation of corn silages. 1. Effects on feed intake and milk production of dairy cows. J. Dairy Sci. 2003, 86, 4008–4019. [Google Scholar] [CrossRef]
- Cabrita, A.R.; Bessa, R.J.; Alves, S.P.; Dewhurst, R.J.; Fonseca, A.J. Effects of dietary protein and starch on intake, milk production, and milk fatty acid profiles of dairy cows fed corn silage-based diets. J. Dairy Sci. 2007, 90, 1429–1439. [Google Scholar] [CrossRef]
- Nielsen, B.; Hansen, H. Effect of grape pomace rich in flavonoids and antioxidants on production parameters in dairy production. J. Anim. Feed. Sci. 2004, 13, 535–538. [Google Scholar] [CrossRef]
- Ream, C.A.; Stevens, A.V.; Myers, C.; Chibisa, G.E. Effect of feeding ensiled or dried grape pomace on nitrogen utilization in backgrounding cattle. Transl. Anim. Sci. 2021, 5, S120–S124. [Google Scholar] [CrossRef]
- Vinyard, J.R.; Myers, C.A.; Murdoch, G.K.; Rezamand, P.; Chibisa, G.E. Optimum grape pomace proportion in feedlot cattle diets: Ruminal fermentation, total tract nutrient digestibility, nitrogen utilization, and blood metabolites. J. Anim. Sci. 2021, 99, skab044. [Google Scholar] [CrossRef]
- Kumar, R.; Vaithiyanathan, S. Occurrence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim. Feed. Sci. Technol. 1990, 30, 21–38. [Google Scholar] [CrossRef]
- Besharati, M.; Taghizadeh, A. Evaluation of dried grape by-product as a tanniniferous tropical feedstuff. Anim. Feed. Sci. Technol. 2009, 152, 198–203. [Google Scholar] [CrossRef]
- Frutos, P.; Hervas, G.; Giráldez, F.J.; Mantecón, A. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef]
- Díaz Carrasco, J.M.; Cabral, C.; Redondo, L.M.; Pin Viso, N.D.; Colombatto, D.; Farber, M.D.; Fernandez Miyakawa, M.E. Impact of chestnut and quebracho tannins on rumen microbiota of bovines. BioMed Res. Int. 2017, 2017, 9610810. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Rolinec, M.; Medo, J.; Gábor, M.; Miluchová, M.; Šimko, M.; Gálik, B.; Hanušovský, O.; Schubertová, Z.; Bíro, D.; Zábranský, L.; et al. Effect of grape pomace intake on the rumen bacterial community of sheep. Diversity 2023, 15, 234. [Google Scholar] [CrossRef]
- Biscarini, F.; Palazzo, F.; Castellani, F.; Masetti, G.; Grotta, L.; Cichelli, A.; Martino, G. Rumen microbiome in dairy calves fed copper and grape-pomace dietary supplementations: Composition and predicted functional profile. PLoS ONE 2018, 13, e0205670. [Google Scholar] [CrossRef]

| Diet 1 | |||
|---|---|---|---|
| Item | DGP0 | DGP3 | DGP6 |
| Ingredient (% of DM) | |||
| Corn silage | 53 | 53 | 53 |
| Chopped barley straw | 7.0 | 7.0 | 7.0 |
| Corn grain | 7.8 | 7.8 | 7.8 |
| Rapeseed meal | 12 | 12 | 12 |
| Soybean meal | 4.0 | 4.0 | 4.0 |
| Sunflower meal | 6.0 | 6.0 | 6.0 |
| Soybean hulls | 6.0 | 3.0 | - |
| Dehydrated grape pomace | - | 3.0 | 6.0 |
| Cane molasses | 1.2 | 1.2 | 1.2 |
| Calcium carbonate | 0.84 | 0.84 | 0.84 |
| Calcium soaps 2 | 0.80 | 0.80 | 0.80 |
| Urea | 0.40 | 0.40 | 0.40 |
| Sodium bicarbonate | 0.36 | 0.36 | 0.36 |
| Magnesium oxide | 0.24 | 0.24 | 0.24 |
| Mineral and vitamin premix 3 | 0.16 | 0.16 | 0.16 |
| Salt | 0.20 | 0.20 | 0.20 |
| Chemical composition (% of DM, except for DM content) | |||
| DM (%) | 60.6 | 60.6 | 60.6 |
| Ash | 6.35 | 6.38 | 6.31 |
| CP | 15.1 | 15.1 | 15.1 |
| EE | 3.51 | 3.49 | 3.52 |
| NDF | 36.8 | 37.0 | 36.8 |
| ADF | 22.5 | 22.7 | 22.8 |
| ADL | 5.4 | 6.1 | 6.7 |
| Starch | 21.6 | 21.3 | 21.5 |
| P | 0.38 | 0.38 | 0.37 |
| Item | DGP | SH | RSM | SBM |
|---|---|---|---|---|
| DM (%) | 90.6 | 90.8 | 90.9 | 89.4 |
| Ash | 5.27 | 7.90 | 5.24 | 7.41 |
| CP | 11.5 | 9.45 | 39.4 | 49.1 |
| EE | 3.58 | 1.03 | 1.61 | 1.46 |
| NDF | 73.4 | 70.5 | 28.8 | 18.9 |
| ADF | 65.3 | 51.2 | 21.2 | 10.7 |
| ADL | 56.2 | 5.83 | 11.7 | 4.22 |
| NDIN (% of CP) | 47.8 | ND 2 | ND | ND |
| ADIN (% of CP) | 39.1 | ND | ND | ND |
| P | 0.26 | 0.07 | 1.26 | 0.66 |
| Condensed tannins | 8.90 | ND | ND | ND |
| SE | SE | SE | RMSE 1 | p | |||||
|---|---|---|---|---|---|---|---|---|---|
| DM | |||||||||
| DGP | 27.3 | 1.50 | 14.4 | 1.47 | 0.034 | 0.0085 | 41.7 | 2.48 | <0.001 |
| SH | 9.5 | 4.73 | 83.0 | 4.59 | 0.047 | 0.0056 | 92.5 | 6.81 | <0.001 |
| N | |||||||||
| DGP | 52.9 | 1.59 | 19.8 | 1.55 | 0.039 | 0.0070 | 72.7 | 2.50 | <0.001 |
| SH | 34.8 | 2.96 | 59.2 | 2.88 | 0.055 | 0.0055 | 93.9 | 3.92 | <0.001 |
| Diet 1 | Contrasts (p) 2 | |||||
|---|---|---|---|---|---|---|
| Item | DGP0 | DGP3 | DGP6 | SEM | L | Q |
| DMI (kg/d) | 27.2 | 26.9 | 27.3 | 0.81 | 0.938 | 0.765 |
| Yield (kg/d) | ||||||
| Milk | 37.4 | 38.0 | 36.9 | 0.46 | 0.559 | 0.282 |
| ECM 3 | 37.0 | 38.0 | 37.5 | 0.79 | 0.707 | 0.505 |
| Fat | 1.48 | 1.53 | 1.53 | 0.074 | 0.670 | 0.821 |
| Protein | 1.18 | 1.22 | 1.17 | 0.017 | 0.933 | 0.204 |
| Lactose | 1.83 | 1.85 | 1.80 | 0.030 | 0.578 | 0.418 |
| Composition (%) | ||||||
| Fat | 3.97 | 4.05 | 4.20 | 0.226 | 0.552 | 0.902 |
| Protein | 3.14 | 3.21 | 3.20 | 0.057 | 0.564 | 0.650 |
| Lactose | 4.89 | 4.87 | 4.87 | 0.018 | 0.545 | 0.646 |
| MUN (mg/d) | 14.5 | 16.5 | 17.3 | 0.01 | <0.001 | <0.001 |
| Milk/DMI | 1.38 | 1.42 | 1.35 | 0.036 | 0.632 | 0.343 |
| ECM/DMI | 1.37 | 1.42 | 1.37 | 0.068 | 0.943 | 0.592 |
| Diet 1 | Contrasts (p) 2 | |||||
|---|---|---|---|---|---|---|
| Item | DGP0 | DGP3 | DGP6 | SEM | L | Q |
| pH | 6.0 | 5.9 | 6.1 | 0.18 | 0.805 | 0.604 |
| Total SCFA 3 (mmol/L) | 151.3 | 134.0 | 138.1 | 1.84 | 0.037 | 0.042 |
| SCFA profile (% mol) | ||||||
| Acetate | 62.1 | 63.9 | 63.4 | 1.03 | 0.477 | 0.455 |
| Propionate | 19.7 | 18.0 | 19.6 | 0.95 | 0.927 | 0.288 |
| Isobutyrate | 0.89 | 0.85 | 0.95 | 0.052 | 0.504 | 0.413 |
| Butyrate | 13.5 | 13.1 | 12.2 | 0.41 | 0.154 | 0.669 |
| Isovarelate | 1.82 | 2.34 | 2.10 | 0.278 | 0.548 | 0.385 |
| Valerate | 1.45 | 1.36 | 1.39 | 0.056 | 0.569 | 0.488 |
| Caproate | 0.50 | 0.45 | 0.41 | 0.018 | 0.064 | 0.972 |
| Acetate/Propionate | 3.18 | 3.58 | 3.29 | 0.211 | 0.750 | 0.321 |
| Propionate/Butyrate | 1.46 | 1.37 | 1.68 | 0.140 | 0.389 | 0.369 |
| SE | SE | DGP0 | SE | DGP3 | SE | DGP6 | SE | L 4 | Q 4 | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RSM | 31.9 | 1.38 | 61.3 | 1.66 | 0.095 | 0.0089 | 0.103 | 0.0105 | 0.111 | 0.0107 | 0.234 | 0.998 |
| SBM | 18.8 | 1.30 | 80.8 | 1.71 | 0.076 | 0.0055 | 0.087 | 0.0063 | 0.093 | 0.0070 | 0.108 | 0.752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fonseca, A.J.M.; Cabrita, A.R.J. Grape Pomace as a Replacement for Soybean Hulls in Corn Silage-Based Diets for Dairy Cows. Vet. Sci. 2026, 13, 87. https://doi.org/10.3390/vetsci13010087
Fonseca AJM, Cabrita ARJ. Grape Pomace as a Replacement for Soybean Hulls in Corn Silage-Based Diets for Dairy Cows. Veterinary Sciences. 2026; 13(1):87. https://doi.org/10.3390/vetsci13010087
Chicago/Turabian StyleFonseca, António J. M., and Ana R. J. Cabrita. 2026. "Grape Pomace as a Replacement for Soybean Hulls in Corn Silage-Based Diets for Dairy Cows" Veterinary Sciences 13, no. 1: 87. https://doi.org/10.3390/vetsci13010087
APA StyleFonseca, A. J. M., & Cabrita, A. R. J. (2026). Grape Pomace as a Replacement for Soybean Hulls in Corn Silage-Based Diets for Dairy Cows. Veterinary Sciences, 13(1), 87. https://doi.org/10.3390/vetsci13010087

