Association Between FABP3 and FABP4 Genes with Changes in Milk Composition and Fatty Acid Profiles in the Native Southern Yellow Cattle Breed
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Resources
2.2. Milk Analyses
2.3. DNA Isolation
2.4. PCR Design and Amplification
2.5. DNA Sequencing and Interpretation
2.6. Statistical Analyses
- Yijks is the trait value of the jth individual with genotype i, on farm k, age s;
- μ is the overall mean;
- αi is the fixed effect of genotype;
- Ck is the fixed effect of the farm;
- Ds is the fixed effect of age;
- εijks is the random error term.
2.7. Predicting the Impact of the Missense SNP on FABP3 Structure and Function
2.8. Predicting the Impact of the Missense SNP on FABP3 Stability
2.9. Molecular Docking of FABP3 with Fatty Acids
2.10. Predicting the Impact of FABP4 Intron SNP
3. Results
3.1. Genotype and Allele Frequencies
3.2. Association Between the FABP3 Polymorphism and Milk Fatty Acid Profile
3.3. Association Between FABP4 Polymorphism and Milk Fatty Acid Composition
3.4. Association Between FABP3 Polymorphism and Milk Composition
3.5. Association Between FABP4 Polymorphism and Milk Composition
3.6. Impact of the Missense p.Val45Met on the FABP3 Protein
3.7. Molecular Docking Outputs
3.8. The Impact of Intronic g.3509T > C SNP on FABP4 Transcripts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrero, M.; Grace, D.; Njuki, J.; Johnson, N.; Enahoro, D.; Silvestri, S.; Rufino, M.C. The roles of livestock in developing countries. Animal 2013, 7, 3–18. [Google Scholar] [CrossRef]
- Brito, L.; Bédère, N.; Douhard, F.; Oliveira, H.; Arnal, M.; Peñagaricano, F.; Schinckel, A.; Baes, C.; Miglior, F. Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 2021, 15, 100292. [Google Scholar] [CrossRef]
- Groeneveld, L.F.; Lenstra, J.; Eding, H.; Toro, M.; Scherf, B.; Pilling, D.; Negrini, R.; Finlay, E.; Jianlin, H.; Groeneveld, E. Genetic diversity in farm animals—A review. Anim. Genet. 2010, 41, 6–31. [Google Scholar] [CrossRef]
- Dash, S.; Choudhary, M.; Behera, R.; Upadhyay, A.; Shivhre, P.R.; Rath, R. A review on genetic characterization of indigenous cattle breeds. Biol. Rhythm Res. 2024, 55, 1–15. [Google Scholar] [CrossRef]
- Mwai, O.; Hanotte, O.; Kwon, Y.-J.; Cho, S. African indigenous cattle: Unique genetic resources in a rapidly changing world. Asian-Australas. J. Anim. Sci. 2015, 28, 911. [Google Scholar] [CrossRef] [PubMed]
- Dalgleish, D. Bovine milk protein properties and the manufacturing quality of milk. Livest. Prod. Sci. 1993, 35, 75–93. [Google Scholar] [CrossRef]
- Santin Junior, I.; Silva, K.; Cucco, D. Milk fatty acids profile and the impact on human health. Dairy Vet. Sci. J 2019, 10, 555779. [Google Scholar]
- Arnould, V.-R.; Soyeurt, H. Genetic variability of milk fatty acids. J. Appl. Genet. 2009, 50, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Bobbo, T.; Penasa, M.; Cassandro, M. Genetic parameters of bovine milk fatty acid profile, yield, composition, total and differential somatic cell count. Animals 2020, 10, 2406. [Google Scholar] [CrossRef]
- Storch, J.; Thumser, A.E. The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2000, 1486, 28–44. [Google Scholar] [CrossRef]
- Veerkamp, J.H.; Maatman, R.G. Cytoplasmic fatty acid-binding proteins: Their structure and genes. Prog. Lipid Res. 1995, 34, 17–52. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genom. 2008, 9, 366. [Google Scholar] [CrossRef]
- Liang, M.-Y.; Hou, X.-M.; Qu, B.; Zhang, N.; Li, N.; Cui, Y.-J.; Li, Q.-Z.; Gao, X.-J. Functional analysis of FABP3 in the milk fat synthesis signaling pathway of dairy cow mammary epithelial cells. Vitr. Cell. Dev. Biol.-Anim. 2014, 50, 865–873. [Google Scholar] [CrossRef]
- Kulig, H.; Kowalewska-Łuczak, I.; Żukowski, K.; Kruszyński, W. FABP3, FABP4 and ANXA9 SNP genotypes in relation to breeding values for milk production traits in Polish Holstein-Friesian cows. Russ. J. Genet. 2013, 49, 852–856. [Google Scholar] [CrossRef]
- Zhou, H.; Cheng, L.; Azimu, W.; Hodge, S.; Edwards, G.; Hickford, J. Variation in the bovine FABP4 gene affects milk yield and milk protein content in dairy cows. Sci. Rep. 2015, 5, 10023. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Calvo, J.H.; Hayes, H.; Rodellar, C.; Eggen, A. Fine mapping of the bovine heart fatty acid-binding protein gene (FABP3) to BTA2q45 by fluorescence in situ hybridization and radiation hybrid mapping. Anim. Genet. 2003, 34, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Mukherjee, A. Genetic variants in exon 4 region of FABP3 gene in relation to milk production traits in Sahiwal and Karan Fries cattle. Genitics Mol. Res. 2018, 17, 1–11. [Google Scholar]
- Chmurzyńska, A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J. Appl. Genet. 2006, 47, 39–48. [Google Scholar] [CrossRef]
- Kadegowda, A.; Bionaz, M.; Piperova, L.; Erdman, R.; Loor, J. Peroxisome proliferator-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J. Dairy Sci. 2009, 92, 4276–4289. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Cheng, L.; Hodge, M.; Zhao, J.; Tung, R.; Edwards, G.; Hickford, J. Effects of FABP4 variation on milk fatty acid composition for dairy cattle grazed on pasture in late lactation. J. Dairy Res. 2020, 87, 32–36. [Google Scholar] [CrossRef]
- Öner, Y.; Yılmaz, O.; Eriş, C.; Ata, N.; Ünal, C.; Koncagül, S. Genetic diversity and population structure of Turkish native cattle breeds. S. Afr. J. Anim. Sci. 2019, 49, 628–635. [Google Scholar] [CrossRef]
- Özşensoy, Y.; Kurar, E.; Doğan, M.; Bulut, Z.; Nizamlioğlu, M.; Işik, A.; Çamlidağ, A.; Altunok, V. Phylogenetic relationships of native Turkish cattle breeds using microsatellite markers. Turk. J. Vet. Anim. Sci. 2019, 43, 23–29. [Google Scholar] [CrossRef]
- Katsonis, P.; Wilhelm, K.; Williams, A.; Lichtarge, O. Genome interpretation using in silico predictors of variant impact. Hum. Genet. 2022, 141, 1549–1577. [Google Scholar] [CrossRef] [PubMed]
- Mapar, M.; Taghdir, M.; Ranjbar, B. Comparative study of stability and activity of wild-type and mutant human carbonic anhydrase II enzymes using molecular dynamics and docking simulations. Biochem. Biophys. Res. Commun. 2024, 734, 150720. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Wang, Y.; Wang, E. A comparison on predicting functional impact of genomic variants. NAR Genom. Bioinform. 2022, 4, lqab122. [Google Scholar] [CrossRef]
- Yazar, M.; Özbek, P. In silico tools and approaches for the prediction of functional and structural effects of single-nucleotide polymorphisms on proteins: An expert review. OMICS J. Integr. Biol. 2021, 25, 23–37. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Ichihara, K.I.; Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 2010, 51, 635–640. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Hall, T.; Al-Shuhaib, M.B.S.; Hashim, H.O. Mastering DNA chromatogram analysis in Sanger sequencing for reliable clinical analysis. J. Genet. Eng. Biotechnol. 2023, 21, 115. [Google Scholar] [CrossRef]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Ostell, J.; Pruitt, K.D.; Sayers, E.W. GenBank. Nucleic Acids Res. 2018, 46, D41–D47. [Google Scholar] [CrossRef]
- Lassen, D.; Lücke, C.; Kveder, M.; Mesgarzadeh, A.; Schmidt, J.M.; Specht, B.; Lezius, A.; Spener, F.; Rüterjans, H. Three-dimensional structure of bovine heart fatty acid-binding protein with bound palmitic acid, determined by multidimensional NMR spectroscopy. Eur. J. Biochem. 1995, 230, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, R.; Capriotti, E.; Casadio, R. PhD-SNP: A web server for the prediction of human genetic diseases associated to missense single nucleotide polymorphisms. In EMBNET08; ITA: Martina Franca, Italy, 2008; p. 78. [Google Scholar]
- Capriotti, E.; Martelli, P.L.; Fariselli, P.; Casadio, R. Blind prediction of deleterious amino acid variations with SNPs&GO. Hum. Mutat. 2017, 38, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Hecht, M.; Bromberg, Y.; Rost, B. Better prediction of functional effects for sequence variants. BMC Genom. 2015, 16, S1. [Google Scholar] [CrossRef] [PubMed]
- Bendl, J.; Stourac, J.; Salanda, O.; Pavelka, A.; Wieben, E.D.; Zendulka, J.; Brezovsky, J.; Damborsky, J. PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput. Biol. 2014, 10, e1003440. [Google Scholar] [CrossRef]
- Pires, D.E.; Ascher, D.B.; Blundell, T.L. mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014, 30, 335–342. [Google Scholar] [CrossRef]
- Pandurangan, A.P.; Ochoa-Montano, B.; Ascher, D.B.; Blundell, T.L. SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res. 2017, 45, W229–W235. [Google Scholar] [CrossRef]
- Pires, D.E.; Ascher, D.B.; Blundell, T.L. DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014, 42, W314–W319. [Google Scholar] [CrossRef] [PubMed]
- Montanucci, L.; Capriotti, E.; Birolo, G.; Benevenuta, S.; Pancotti, C.; Lal, D.; Fariselli, P. DDGun: An untrained predictor of protein stability changes upon amino acid variants. Nucleic Acids Res. 2022, 50, W222–W227. [Google Scholar] [CrossRef]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Struct. Funct. Bioinform. 2006, 62, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, H.; Zhang, N.; Zhu, Z.; Wang, S.; Li, M. PremPS: Predicting the impact of missense mutations on protein stability. PLoS Comput. Biol. 2020, 16, e1008543. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2. 0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef]
- Yuan, S.; Chan, H.S.; Hu, Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1298. [Google Scholar] [CrossRef]
- Bugnon, M.; Röhrig, U.F.; Goullieux, M.; Perez, M.A.; Daina, A.; Michielin, O.; Zoete, V. SwissDock 2024: Major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 2024, 52, W324–W332. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Jejurikar, B.L.; Rohane, S.H. Drug designing in discovery studio. Asian J. Res. Chem. 2021, 14, 135–138. [Google Scholar]
- Smith, P.J.; Zhang, C.; Wang, J.; Chew, S.L.; Zhang, M.Q.; Krainer, A.R. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum. Mol. Genet. 2006, 15, 2490–2508. [Google Scholar] [CrossRef]
- Cartegni, L.; Wang, J.; Zhu, Z.; Zhang, M.Q.; Krainer, A.R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003, 31, 3568–3571. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chang, G.; Geng, X.; Geng, X. Bioinformatics analysis of Exonic Splicing Enhancers (ESEs) for predicting potential regulatory elements of hTERT mRNA Splicing. Eur. Rev. Med. Pharmacol. Sci 2014, 18, 526–536. [Google Scholar]
- Kaczor, U.; Famielec, M.; Dudziak, P.; Kaczor, A.; Kucharski, M.; Mandecki, A. Fatty acid binding protein 4 (FABP4) and thyreoglobulin (TG) polymorphisms in relation to milk performance traits in the Holstein-Friesian cattle. Acta Sci. Polonorum. Zootech. 2017, 16, 11–16. [Google Scholar] [CrossRef]
- Kulig, H.; Kowalewska-Łuczak, I.; Kmieć, M.; Wojdak-Maksymiec, K. ANXA9, SLC27A3, FABP3 and FABP4 single nucleotide polymorphisms in relation to milk production traits in Jersey cows. Czech J. Anim. Sci 2010, 55, 463–467. [Google Scholar] [CrossRef]
- Ma, L.; Sonstegard, T.S.; Cole, J.B.; VanTassell, C.P.; Wiggans, G.R.; Crooker, B.A.; Tan, C.; Prakapenka, D.; Liu, G.E.; Da, Y. Genome changes due to artificial selection in US Holstein cattle. BMC Genom. 2019, 20, 128. [Google Scholar] [CrossRef]
- Qanbari, S. On the extent of linkage disequilibrium in the genome of farm animals. Front. Genet. 2020, 10, 1304. [Google Scholar] [CrossRef]
- van den Berg, I.; Boichard, D.; Guldbrandtsen, B.; Lund, M.S. Using sequence variants in linkage disequilibrium with causative mutations to improve across-breed prediction in dairy cattle: A simulation study. G3 Genes Genomes Genet. 2016, 6, 2553–2561. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 Are the Most Abundant Isoforms in Bovine Mammary Tissue and Their Expression Is Affected by Stage of Lactation3. J. Nutr. 2008, 138, 1019–1024. [Google Scholar] [CrossRef]
- Silva Neto, J.B.; Mota, L.F.; Londoño-Gil, M.; Schmidt, P.I.; Rodrigues, G.R.; Ligori, V.A.; Arikawa, L.M.; Magnabosco, C.U.; Brito, L.F.; Baldi, F. Genotype-by-environment interactions in beef and dairy cattle populations: A review of methodologies and perspectives on research and applications. Anim. Genet. 2024, 55, 871–892. [Google Scholar] [CrossRef] [PubMed]
- Nafikov, R.; Schoonmaker, J.; Korn, K.; Noack, K.; Garrick, D.; Koehler, K.; Minick-Bormann, J.; Reecy, J.; Spurlock, D.; Beitz, D. Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk. J. Dairy Sci. 2013, 96, 6007–6021. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Mukherjee, A.; Kumar, S. Association of polymorphism at intron 2 of FABP3 Gene with milk production traits in Sahiwal and Karan Fries cattle. Indian J. Anim. Res. 2019, 53, 559–565. [Google Scholar] [CrossRef]
- Abuzahra, M.; Al-Shuhaib, M.B.S.; Wijayanti, D.; Effendi, M.H.; Mustofa, I.; Moses, I.B. A novel p. 127Val> Ile single nucleotide polymorphism in the MTNR1A gene and its relation to litter size in Thin-tailed Indonesian ewes. Anim. Biosci. 2024, 38, 209. [Google Scholar] [CrossRef]
- Al-Shuhaib, M.B.S. A comprehensive in silico prediction of the most deleterious missense variants in the bovine LEP gene. BioTechnol. J. Biotechnol. Comput. Biol. Bionanotechnol. 2019, 100, 429–439. [Google Scholar] [CrossRef]
- Bayraktar, M.; Koluman, N.; Al-Shuhaib, M.B.S. Investigating the impact of a novel GHRHR gene variant on growth traits in Damascus goats. Small Rumin. Res. 2024, 240, 107366. [Google Scholar] [CrossRef]
- Bope, C.D.; Chimusa, E.R.; Nembaware, V.; Mazandu, G.K.; De Vries, J.; Wonkam, A. Dissecting in silico mutation prediction of variants in African genomes: Challenges and perspectives. Front. Genet. 2019, 10, 601. [Google Scholar] [CrossRef]
- Aljubouri, T.R.; Al-Shuhaib, M.B.S. A missense SNP in the proopiomelanocortin (POMC) gene is associated with growth traits in Awassi and Karakul sheep. Anim. Biotechnol. 2023, 34, 4837–4850. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, M.; Durmuş, M.; Al-Shuhaib, M.B.S. Identification of two novel SNPs in the myocyte enhancer factor 2B (MEF2B) gene and its association with growth traits in two breeds of Turkish sheep. Small Rumin. Res. 2023, 218, 106867. [Google Scholar] [CrossRef]
- Bottomley, S.P.; Lawrenson, I.D.; Tew, D.; Dai, W.; Whisstock, J.C.; Pike, R.N. The role of strand 1 of the C β-sheet in the structure and function of α1-antitrypsin. Protein Sci. 2001, 10, 2518–2524. [Google Scholar] [CrossRef]
- Zhu, B.Y.; Zhou, M.E.; Kay, C.M.; Hodges, R.S. Packing and hydrophobicity effects on protein folding and stability: Effects of β-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded α-helical coiled coils/leucine zippers. Protein Sci. 1993, 2, 383–394. [Google Scholar] [CrossRef]
- Deller, M.C.; Kong, L.; Rupp, B. Protein stability: A crystallographer’s perspective. Struct. Biol. Cryst. Commun. 2016, 72, 72–95. [Google Scholar] [CrossRef]
- Hirose, M.; Sugiyama, S.; Ishida, H.; Niiyama, M.; Matsuoka, D.; Hara, T.; Mizohata, E.; Murakami, S.; Inoue, T.; Matsuoka, S. Structure of the human-heart fatty acid-binding protein 3 in complex with the fluorescent probe 1-anilinonaphthalene-8-sulphonic acid. Synchrotron Radiat. 2013, 20, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Papaleo, E.; Saladino, G.; Lambrughi, M.; Lindorff-Larsen, K.; Gervasio, F.L.; Nussinov, R. The role of protein loops and linkers in conformational dynamics and allostery. Chem. Rev. 2016, 116, 6391–6423. [Google Scholar] [CrossRef]
- Tokuriki, N.; Tawfik, D.S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 2009, 19, 596–604. [Google Scholar] [CrossRef]
- Zelencova-Gopejenko, D.; Videja, M.; Grandane, A.; Pudnika-Okinčica, L.; Sipola, A.; Vilks, K.; Dambrova, M.; Jaudzems, K.; Liepinsh, E. Heart-type fatty acid binding protein binds long-chain acylcarnitines and protects against lipotoxicity. Int. J. Mol. Sci. 2023, 24, 5528. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 2008, 7, 489–503. [Google Scholar] [CrossRef]
- Gaffar, S.; Aathirah, A.S. Fatty acid-binding proteins: From lipid transporters to disease biomarkers. Biomolecules 2023, 13, 1753. [Google Scholar] [CrossRef]
- Smathers, R.L.; Petersen, D.R. The human fatty acid-binding protein family: Evolutionary divergences and functions. Hum. Genom. 2011, 5, 170. [Google Scholar] [CrossRef]
- Storch, J.; McDermott, L. Structural and functional analysis of fatty acid-binding proteins. J. Lipid Res. 2009, 50, S126–S131. [Google Scholar] [CrossRef]
- Arslan, K.; Kıyıcı, J.; Akyüz, B.; Kalİber, M.; Aksel, E.; Çınar, M. Investigation of the relationship between FABP4, NR1H3 and SCD genes and some milk yield traits in Holstein cattle. J. Fac. Vet. Med. Erciyes Univ. 2019, 16, 115–121. [Google Scholar][Green Version]
- Anna, A.; Monika, G. Splicing mutations in human genetic disorders: Examples, detection, and confirmation. J. Appl. Genet. 2018, 59, 253–268. [Google Scholar] [CrossRef]
- Cartegni, L.; Chew, S.L.; Krainer, A.R. Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nat. Rev. Genet. 2002, 3, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Zinder, M.; Lipkin, E.; Shor-Shimoni, E.; Ben-Meir, Y.; Agmon, R.; Asher, A.; Miron, J.; Shabtay, A. FABP4 gene has a very large effect on feed efficiency in lactating Israeli Holstein cows. Physiol. Genom. 2019, 51, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, J.; Huang, B.; Xu, Y.M.; Li, J.; Huang, L.F.; Lin, J.; Zhang, J.; Min, Q.H.; Yang, W.M. Mechanism of alternative splicing and its regulation. Biomed. Rep. 2015, 3, 152–158. [Google Scholar] [CrossRef]
- Huang, C.-S.; Shen, C.-Y.; Wang, H.-W.; Wu, P.-E.; Cheng, C.-W. Increased expression of SRp40 affecting CD44 splicing is associated with the clinical outcome of lymph node metastasis in human breast cancer. Clin. Chim. Acta 2007, 384, 69–74. [Google Scholar] [CrossRef] [PubMed]
Gene Locus | Genotype Frequency | Allele Frequency | χ2 (HWE) | He |
---|---|---|---|---|
FABP3 | GG (0.625) GA (0.25) AA (0.125) | G (0.75) A (0.25) | p < 0.05 | 0.38 |
FABP4 | TT (0.65) TC (0.10) CC (0.25) | T (0.70) C (0.30) | p < 0.05 | 0.42 |
Traits | Genotype | p-Value | ||
---|---|---|---|---|
GG | GA | AA | ||
Butyric acid (C4:0) | 2.05 ± 0.05 b | 2.09 ± 0.04 b | 3.09 ± 0.06 a | 0.037 * |
Caprylic acid (C8:0) | 1.32 ± 0.05 | 1.37 ± 0.04 | 2.37 ± 0.05 | 0.102 |
Capric acid (C10:0) | 3.51 ± 0.19 | 3.65 ± 0.14 | 4.62 ± 0.19 | 0.347 |
Lauric acid (C12:0) | 4.42 ± 0.29 | 4.44 ± 0.22 | 5.42 ± 0.30 | 0.098 |
Myristic acid (C14:0) | 13.59 ± 0.32 | 13.53 ± 0.24 | 15.03 ± 0.33 | 0.301 |
Myristoleic acid (C14:1 cis-9) | 1.38 ± 0.05 | 1.34 ± 0.04 | 2.34 ± 0.05 | 0.087 |
Pentadecanoic acid (C15:0) | 0.25 ± 0.02 | 0.27 ± 0.02 | 0.58 ± 0.02 | 0.101 |
Palmitic acid (C16:0) | 35.26 ± 0.97 ab | 37.43 ± 0.73 b | 40.36 ± 1.01 a | 0.014 * |
Palmitoleic acid (C16:1) | 2.60 ± 0.28 | 2.33 ± 0.21 | 3.06 ± 0.29 | 0.412 |
Stearic acid (C18:0) | 6.72 ± 0.61 | 5.96 ± 0.46 | 9.10 ± 0.63 | 0.236 |
Oleic acid (C18:1 cis-9) | 16.82 ± 0.77 ab | 17.28 ± 0.58 b | 18.89 ± 0.80 a | 0.043 * |
Linoleic acid (C18:2 cis-9, cis-12) | 1.69 ± 0.09 | 1.70 ± 0.07 | 2.52 ± 0.10 | 0.199 |
α-Linolenic acid (C18:3 cis-9, cis-12, cis-15) | 0.70 ± 0.16 a | 0.81 ± 0.12 a | 1.17 ± 0.16 b | 0.010 * |
Heptadecenoic acid (C17:1) | 2.15 ± 0.06 | 2.13 ± 0.05 | 3.11 ± 0.06 | 0.328 |
γ-Linolenic acid (C18:3) | 1.39 ± 0.06 | 1.43 ± 0.05 | 2.35 ± 0.07 | 0.157 |
Conjugated linoleic acid (cis-9, trans-11 CLA) | 3.55 ± 0.16 | 3.36 ± 0.12 | 4.62 ± 0.16 | 0.083 |
Arachidic acid (C20:0) | 4.10 ± 0.26 | 4.25 ± 0.19 | 5.79 ± 0.27 | 0.595 |
Traits | Genotype | p-Value | ||
---|---|---|---|---|
TT | TC | CC | ||
Butyric acid (C4:0) | 2.04 ± 0.05 | 3.15 ± 0.04 | 2.05 ± 0.06 | 0.412 |
Caprylic acid (C8:0) | 1.33 ± 0.05 | 2.39 ± 0.04 | 1.32 ± 0.05 | 0.369 |
Capric acid (C10:0) | 3.63 ± 0.18 | 4.64 ± 0.15 | 3.51 ± 0.21 | 0.148 |
Lauric acid (C12:0) | 4.52 ± 0.29 | 5.43 ± 0.23 | 4.32 ± 0.32 | 0.091 |
Myristic acid (C14:0) | 14.13 ± 0.31 | 14.67 ± 0.25 | 12.35 ± 0.35 | 0.741 |
Myristoleic acid (C14:1 cis 9) | 1.49 ± 0.07 a | 2.28 ± 0.05 b | 1.30 ± 0.06 ab | 0.031 * |
Pentadecanoic acid (C15:0) | 0.20 ± 0.04 | 0.84 ± 0.05 | 0.26 ± 0.03 | 0.137 |
Palmitic acid (C16:0) | 37.55 ± 0.96 | 39.69 ± 0.78 | 38.81 ± 1.08 | 0.274 |
Palmitoleic acid (C16:1) | 1.81 ± 0.30 | 3.53 ± 0.24 | 2.65 ± 0.31 | 0.630 |
Stearic acid (C18:0) | 8.04 ± 0.60 | 9.37 ± 0.49 | 7.37 ± 0.67 | 0.111 |
Oleic acid (C18:1 cis 9) | 17.69 ± 0.76 | 18.96 ± 0.62 | 17.74 ± 0.85 | 0.179 |
Linoleic acid (C18:2 cis 9, cis 12) | 1.71 ± 0.010 | 2.47 ± 0.08 | 1.73 ± 0.12 | 0.320 |
α Linolenic acid (C18:3 cis 9, cis 12, cis 15) | 0.43 ± 0.19 | 0.75 ± 0.15 | 0.35 ± 0.18 | 0.204 |
Heptadecenoic acid (C17:1) | 2.09 ± 0.08 | 3.19 ± 0.06 | 2.22 ± 0.07 | 0.444 |
γ Linolenic acid (C18:3) | 1.36 ± 0.04 ab | 2.37 ± 0.08 a | 1.44 ± 0.11 b | 0.017 * |
Conjugated linoleic acid (cis 9, trans 11 CLA) | 3.44 ± 0.20 b | 4.80 ± 0.25 a | 2.31 ± 0.27 ab | 0.027 * |
Arachidic acid (C20:0) | 3.58 ± 0.30 ab | 5.74 ± 0.26 a | 4.83 ± 0.38 b | 0.041 * |
Traits | Genotype | p-Value | ||
---|---|---|---|---|
GG | GA | AA | ||
Fat (%) | 1.16 ± 0.49 ab | 1.67 ± 0.38 b | 2.37 ± 0.53 a | 0.039 * |
Solids not fat (SNF, %) | 8.13 ± 0.32 | 8.54 ± 0.25 | 9.57 ± 0.35 | 0.512 |
Density (D, °T) | 28.91 ± 1.25 | 30.11 ± 0.97 | 32.07 ± 1.34 | 0.368 |
Protein (%) | 2.04 ± 0.12 | 2.20 ± 0.09 | 3.50 ± 0.13 | 0.147 |
Freezing point (FP, °C) | 53.23 ± 2.39 | 56.36 ± 1.85 | 60.05 ± 2.58 | 0.249 |
Temperature (°C) | 19.07 ± 0.63 | 19.30 ± 0.50 | 21.02 ± 0.70 | 0.364 |
Lactose (%) | 4.77 ± 0.66 | 4.22 ± 0.53 | 5.87 ± 0.74 | 0.307 |
Electrical conductivity (mS/cm) | 4.42 ± 0.26 | 4.07 ± 0.19 | 5.14 ± 0.28 | 0.097 |
pH | 6.21 ± 0.39 | 6.85 ± 0.30 | 7.47 ± 0.41 | 0.389 |
Traits | Genotype | p-Value | ||
---|---|---|---|---|
TT | TC | CC | ||
Fat (%) | 1.99 ± 0.49 | 3.66 ± 0.44 | 2.06 ± 0.60 | 0.437 |
Solids not fat (SNF, %) | 30.45 ± 1.23 | 32.98 ± 1.11 | 27.67 ± 1.54 | 0.512 |
Density (D, °T) | 6.40 ± 0.41 ab | 8.304 ± 0.40 a | 7.48 ± 0.57 b | 0.029 * |
Protein (%) | 2.36 ± 0.12 b | 3.19 ± 0.11 a | 2.11 ± 0.15 b | 0.021 * |
Freezing point (FP, °C) | 56.55 ± 2.37 | 59.16 ± 2.14 | 53.93 ± 2.95 | 0.745 |
Temperature (°C) | 18.53 ± 0.63 | 21.15 ± 0.57 | 18.73 ± 0.78 | 0.224 |
Lactose (%) | 4.02 ± 0.67 | 5.02 ± 0.63 | 3.77 ± 0.84 | 0.010 |
Electrical conductivity (mS/cm) | 4.25 ± 0.26 | 5.36 ± 0.24 | 4.04 ± 0.35 | 0.393 |
pH | 5.07 ± 0.38 | 7.68 ± 0.37 | 6.47 ± 0.47 | 0.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayraktar, M.; Göncü, S.; Ergül, A.; Karaman, R.; Özcan, B.D.; Ergül, Ş.; Oluk, C.A.; Anitaş, Ö.; Bayram, A.; Al-Shuhaib, M.B.S. Association Between FABP3 and FABP4 Genes with Changes in Milk Composition and Fatty Acid Profiles in the Native Southern Yellow Cattle Breed. Vet. Sci. 2025, 12, 893. https://doi.org/10.3390/vetsci12090893
Bayraktar M, Göncü S, Ergül A, Karaman R, Özcan BD, Ergül Ş, Oluk CA, Anitaş Ö, Bayram A, Al-Shuhaib MBS. Association Between FABP3 and FABP4 Genes with Changes in Milk Composition and Fatty Acid Profiles in the Native Southern Yellow Cattle Breed. Veterinary Sciences. 2025; 12(9):893. https://doi.org/10.3390/vetsci12090893
Chicago/Turabian StyleBayraktar, Mervan, Serap Göncü, Atalay Ergül, Recep Karaman, Bahri Devrim Özcan, Şerife Ergül, Celile Aylin Oluk, Özgül Anitaş, Ahmet Bayram, and Mohammed Baqur S. Al-Shuhaib. 2025. "Association Between FABP3 and FABP4 Genes with Changes in Milk Composition and Fatty Acid Profiles in the Native Southern Yellow Cattle Breed" Veterinary Sciences 12, no. 9: 893. https://doi.org/10.3390/vetsci12090893
APA StyleBayraktar, M., Göncü, S., Ergül, A., Karaman, R., Özcan, B. D., Ergül, Ş., Oluk, C. A., Anitaş, Ö., Bayram, A., & Al-Shuhaib, M. B. S. (2025). Association Between FABP3 and FABP4 Genes with Changes in Milk Composition and Fatty Acid Profiles in the Native Southern Yellow Cattle Breed. Veterinary Sciences, 12(9), 893. https://doi.org/10.3390/vetsci12090893