Scutellaria baicalensis and Lonicera japonica: An In-Depth Look at Herbal Interventions Against Oxidative Stress in Non-Ruminant Animals
Simple Summary
Abstract
1. Introduction
2. Oxidative Stress: Definition and Mechanism
3. Oxidative Stress: Causes and Influencing Factors in Monogastric Animals
Category | Factor | Species | Mechanism of OS | Consequence | Remarks |
---|---|---|---|---|---|
Stress | Heat (27–37 °C) | Pig | ↑ ROS, ↓ antioxidant enzymes during gestation | impaired reproduction performance and piglet survival | affects late gestation, lactation, and growing stage |
Poultry | ↑ ROS from disrupted mitochondria and redox imbalance | ↓ immunity, nutrient absorption, meat quality | birds lack sweat glands; fast-growing broilers will be affected mostly | ||
Cold (10–15 °C) | Pig | ↑ T-AOC during prolonged exposure; altered gut microbiota | diarrhea and preweaning mortality | CS threshold in sows/weaned pigs is not well defined | |
Poultry | ↑ AMPK, ↑ HSPs, and inflammatory enzymes (iNOS) | ↓ energy redirection, gut protection, and inflammatory responses | broilers are vulnerable post-hatch due to immature thermogenesis | ||
Feed Toxin | Mycotoxins (e.g., DON, AFB1, OTA) | Pig | ↓ antioxidant enzymes Inflammatory signaling | intestinal inflammation, ↓ antioxidant status | DON effect is dose-, age-, and stage-dependent |
Poultry | ↓ antioxidant enzymes Inflammatory signaling | ↓ performance and immune response | major concern in feed type | ||
Bacteria (e.g., E. coli, Salmonella) | Both species | Induces immune responses | Gut inflammation, disease susceptibility | feed safety concern | |
Lipid Oxidized | PUFA-rich oils (soybean, fish oil) | Pig | MDA, 4-HNE increase → ↑ ROS, DNA damage | Intestinal damage, ↓ growth | nursery pigs and neonates are vulnerable |
Poultry | ↑ ROS from PUFA degradation | ↓ performance and feed intake | tolerance at low doses |
4. Characteristics and Biological Activities: Scutellaria baicalensis and Lonicera japonica
5. Effectiveness of Scutellaria baicalensis and Lonicera japonica in Monogastric Animals
Animal | Herbal Additive | Dosage | Duration | Observed Effects | Reference |
---|---|---|---|---|---|
Broiler | S. baicalensis | 100–200 mg/kg | 42 days | ↑ growth performance, immune markers (CD3+/CD4+, IFN), antioxidant enzymes (SOD, GSH-Px, CAT), T-AOC in liver | Zhou et al. [84] |
Hubbard Hi-Y male broiler | S. baicalensis root extract | 0.5, 1.0, and 1.5% | 42 days | X growth performance, ↑ relative weight of bursa of Fabricius and spleen | Króliczewska et al. [85] |
Layers | S. baicalensis extract | 0–0.5% | 14 days | ↑ egg weight and egg shelf life ↓ cecal microbes and lipid oxidation | An et al. [86] |
ISA brown layers | S. baicalensis + L. japonica | 0, 0.025%, and 0.05% | 56 days | ↑ Productivity and ↓ serum cortisol concentration | Liu and Kim [91] |
Cobb 500 | S. baicalensis + L. japonica | 250 mg/kg | 35 days | ↑ AvBD11, IL4, and TLR21 expression, ↓ TLR15 expression, ↓ IFNg expression under heat stress condition | Al Amaz et al. [92] |
Beijing white chickens | S. baicalensis + L. japonica | 0, 50, 100, and 200 mg/kg | 35 days | ↓ TLR4, ↓ NF-κB activation, ↓ liver inflammation | Cheng et al. [66] |
Arbor Acres broiler | Scutellaria baicalensis Georgi | 0, 60, 120, 180, or 240 mg | 42 days | ↓ drip loss of thigh muscle ↑ liver T-SOD and GSH-Px activity | Liang et al. [93] |
Jinghong laying hens | Flos lonicerae in Combination with Baikal skullcap Attenuate | 1000 mg/kg | 56 days (Challenged with S. pullorum at the end 28 days) | ↑ serum endotoxin content, ileal expression of pro-inflammatory cytokines, including IFNG, TNFA, IL8, and IL1B, ↑ Firmicutes, Bacteroidetes and Prevotellaceae | Wang et al. [94] |
Ross broilers | Fermented medicinal plants: Gynura, Rehmannia, S. baicalensis | 0.05% to 0.2% | 35 days | ↑ body weight gain and feed conversion ratio; ↑ dry matter and nitrogen retention, metabolizable energy, ↓ NH3 and H2S emissions, ↑ Lactobacillus spp. counts and ↓ E. coli counts | Jeong and Kim [99] |
Ross-308 broiler | L. japonica | Challenged | 35 days | ↑ body weight and immune response in M. gallisepticum-infected broiler flocks. | Müştak, H., et al. [103] |
Jingfen No. 2 laying hens | honeysuckle extract | 100, 200, and 300 mg/kg | 35 days | ↑ average egg weight and average daily feed intake, ↑ Haugh unit ↓ serum total cholesterol and triglyceride, ↓ yolk cholesterol | Long Bin, et al. [104] |
Finishing pig | Scutellaria baicalensis and Lonicera japonica extract | 0, 0.025% and 0.05% herbal extract mixture | 84 days | ↑ growth, ↑ digestibility, ↓ cortisol, ↑ meat quality | Liu et al. [96] |
Sow and offspring | Scutellaria baicalensis and Lonicerae Flos | 1000 mg per kg feed | From d 80 gestation to d 21 of lactation | ↑ colostrum quality, antioxidant function, liver function and immunity in sows, ↑ growth performance and immunity of piglet | Fang et al. [98] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal growth factor and intestinal barrier function. Mediat. Inflamm. 2016, 2016, 1927348. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef]
- Yin, J.; Wu, M.M.; Xiao, H.; Ren, W.K.; Duan, J.L.; Yang, G.; Li, T.J.; Yin, Y.L. Development of an antioxidant system after early weaning in piglets. J. Anim. Sci. 2014, 92, 612–619. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, H.; Wang, S.; Tu, Z.; Zhang, L.; Wang, X.; Hou, Y.; Wang, C.; Chen, J.; Liu, Y. Flaxseed oil attenuates intestinal damage and inflammation by regulating necroptosis and TLR4/NOD signaling pathways following lipopolysaccharide challenge in a piglet model. Mol. Nutr. Food Res. 2018, 62, 1700814. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, X.; Liu, Y. Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. Int. J. Biol. Macromol. 2017, 102, 396–404. [Google Scholar] [CrossRef]
- Saha, U.; Bhattacharya, R.; Saroj, S.D. Antimicrobials in growth and development. In Antimicrob. Resist.; CRC Press: Boca Raton, FL, USA, 2022; pp. 85–112. [Google Scholar]
- Golowczyc, M.; Gomez-Zavaglia, A. Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics. Foods 2024, 13, 2921. [Google Scholar] [CrossRef]
- Kavoosi, G.; Tafsiry, A.; Ebdam, A.A.; Rowshan, V. Evaluation of antioxidant and antimicrobial activities of essential oils from Carum copticum seed and Ferula assafoetida latex. J. Food Sci. 2013, 78, T356–T361. [Google Scholar] [CrossRef]
- Wu, S.; Yano, S.; Chen, J.; Hisanaga, A.; Sakao, K.; He, X.; He, J.; Hou, D.X. Polyphenols from Lonicera caerulea L. berry inhibit LPS-induced inflammation through dual modulation of inflammatory and antioxidant mediators. J. Agric. Food Chem. 2017, 65, 5133–5141. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Mehrjardi, S.S.; Rezaee, A.; Rafatpanah, H.; Jalali, S. The impact of Zataria multiflora Boiss extract on in vitro and in vivo Th1/Th2 cytokine (IFN-γ/IL4) balance. J. Ethnopharmacol. 2013, 150, 1024–1031. [Google Scholar] [CrossRef]
- Durmic, Z.; Blache, D. Bioactive plants and plant products: Effects on animal function, health and welfare. Anim. Feed Sci. Technol. 2012, 176, 150–162. [Google Scholar] [CrossRef]
- He, Z.; Li, C.; Xiao, X.; Liu, H.; Wang, M.; Zhou, X.; He, J. Effects of extracts of Scutellaria baicalensis and Lonicerae Flos on reproductive performance, milk quality and serum indexes in sows and growth performance in suckling piglets. Livest. Sci. 2023, 275, 105295. [Google Scholar] [CrossRef]
- Dang, D.X.; Li, Y.J.; Kim, I.H. Effects of dietary supplementation of enzymatic bio-conversion of Scutellaria baicalensis extract as an alternative to antibiotics on the growth performance, nutrient digestibility, fecal microbiota, fecal gas emission, blood hematology, and antioxidative indicators in growing pigs. Livest. Sci. 2021, 244, 104307. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Heilmann, R.M.; Paital, B.; Patel, A.; Yadav, V.K.; Wong, D.; Jergens, A.E. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front. Endocrinol. 2023, 14, 1217165. [Google Scholar] [CrossRef] [PubMed]
- Kang, O.H.; Choi, J.G.; Lee, J.H.; Kwon, D.Y. Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-κB and MAPKs activation pathways in HMC-1 cells. Molecules 2010, 15, 385–398. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive oxygen species-sources, functions, oxidative damage. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2020, 48, 124–127. [Google Scholar]
- Yara, S.; Lavoie, J.C.; Beaulieu, J.F.; Delvin, E.; Amre, D.; Marcil, V.; Seidman, E.; Levy, E. Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: Impact on inflammation. PLoS ONE 2013, 8, e63456. [Google Scholar] [CrossRef]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
- Kumari, K.N.; Nath, D.N. Ameliorative measures to counter heat stress in poultry. World’s Poult. Sci. J. 2018, 74, 117–130. [Google Scholar] [CrossRef]
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
- Valadez-García, K.M.; Avendaño-Reyes, L.; Díaz-Molina, R.; Mellado, M.; Meza-Herrera, C.A.; Correa-Calderón, A.; Macías-Cruz, U. Free ferulic acid supplementation of heat-stressed hair ewe lambs: Oxidative status, feedlot performance, carcass traits and meat quality. Meat Sci. 2021, 173, 108395. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Guo, H.; He, J.; Yang, X.; Zheng, W.; Yao, W. Responses of intestinal morphology and function in offspring to heat stress in primiparous sows during late gestation. J. Therm. Biol. 2020, 89, 102539. [Google Scholar] [CrossRef]
- Brownstein, A.J.; Ganesan, S.; Summers, C.M.; Pearce, S.; Hale, B.J.; Ross, J.W.; Gabler, N.; Seibert, J.T.; Rhoads, R.P.; Baumgard, L.H.; et al. Heat stress causes dysfunctional autophagy in oxidative skeletal muscle. Physiol. Rep. 2017, 5, e13317. [Google Scholar] [CrossRef]
- Mujahid, A.; Furuse, M. Behavioral responses of neonatal chicks exposed to low environmental temperature. Poult. Sci. 2009, 88, 917–922. [Google Scholar] [CrossRef]
- Yu, J.; Chen, S.; Zeng, Z.; Xing, S.; Chen, D.; Yu, B.; He, J.; Huang, Z.; Luo, Y.; Zheng, P.; et al. Effects of cold exposure on performance and skeletal muscle fiber in weaned piglets. Animals 2021, 11, 2148. [Google Scholar] [CrossRef]
- Song, X.; Chen, Y.; Sun, Y.; Lin, B.; Qin, Y.; Hui, H.; Li, Z.; You, Q.; Lu, N.; Guo, Q. Oroxylin A, a classical natural product, shows a novel inhibitory effect on angiogenesis induced by lipopolysaccharide. Pharmacol. Rep. 2012, 64, 1189–1199. [Google Scholar] [CrossRef]
- Roman, E.; Nylander, I. The impact of emotional stress early in life on adult voluntary ethanol intake-results of maternal separation in rats. Stress 2005, 8, 157–174. [Google Scholar] [CrossRef]
- Marín-Aguilar, F.; Pavillard, L.E.; Giampieri, F.; Bullón, P.; Cordero, M.D. Adenosine monophosphate (AMP)-activated protein kinase: A new target for nutraceutical compounds. Int. J. Mol. Sci. 2017, 18, 288. [Google Scholar] [CrossRef]
- Xie, J.; Tang, L.; Lu, L.; Zhang, L.; Lin, X.; Liu, H.C.; Odle, J.; Luo, X. Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders. Poult. Sci. 2015, 94, 1635–1644. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, T.; Li, W.; Muhammad, I.; Wang, H.; Sun, X.; Yang, Y.; Li, J.; Xiao, T.; Zhang, X. Baicalin alleviates lipopolysaccharide-induced liver inflammation in chicken by suppressing TLR4-mediated NF-κB pathway. Front. Pharmacol. 2017, 8, 547. [Google Scholar] [CrossRef]
- Tolosa Chelós, J.; Rodríguez Carrasco, Y.; Ruiz Leal, M.J.; Vila Donat, P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. Food Chem. Toxicol. 2021, 158, 112661. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.; Korzeniowska, M.; Guiné, R.P. Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef]
- Alves, M.B.; Fonseca, B.B.; Melo, R.T.; Mendonça, E.P.; Nalevaiko, P.C.; Girão, L.C.; Monteiro, G.P.; Silva, P.L.; Rossi, D.A. Feed can be a source of Campylobacter jejuni infection in broilers. Br. Poult. Sci. 2017, 58, 46–49. [Google Scholar] [CrossRef]
- Ngai, D.G.; Nyamache, A.K.; Ombori, O. Prevalence and antimicrobial resistance profiles of Salmonella species and Escherichia coli isolates from poultry feeds in Ruiru Sub-County, Kenya. BMC Res. Notes 2021, 14, 41. [Google Scholar] [CrossRef]
- Shirota, K.; Katoh, H.; Ito, T.; Otsuki, K. Salmonella contamination in commercial layer feed in Japan. J. Vet. Med. Sci. 2000, 62, 789–791. [Google Scholar] [CrossRef]
- Udhayavel, S.; Ramasamy, G.T.; Gowthaman, V.; Malmarugan, S.; Senthilvel, K. Occurrence of Clostridium perfringens contamination in poultry feed ingredients: Isolation, identification and its antibiotic sensitivity pattern. Anim. Nutr. 2017, 3, 309–312. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Giamouri, E.; Tavrizelou, S.; Zacharioudaki, M.; Danezis, G.; Simitzis, P.E.; Zoidis, E.; Tsiplakou, E.; Pappas, A.C.; Georgiou, C.A.; et al. Impact of mycotoxins on animals’ oxidative status. Antioxidants 2021, 10, 214. [Google Scholar] [CrossRef]
- Seppanen, C.M.; Saari Csallany, A. Formation of 4-hydroxynonenal, a toxic aldehyde, in soybean oil at frying temperature. J. Am. Oil Chem. Soc. 2002, 79, 1033–1038. [Google Scholar] [CrossRef]
- Rosero, D.S.; Odle, J.; Moeser, A.J.; Boyd, R.D.; van Heugten, E. Peroxidised dietary lipids impair intestinal function and morphology of the small intestine villi of nursery pigs in a dose-dependent manner. Br. J. Nutr. 2015, 114, 1985–1992. [Google Scholar] [CrossRef]
- Huang, L.; Ma, X.Y.; Jiang, Z.Y.; Hu, Y.J.; Zheng, C.T.; Yang, X.F.; Wang, L.; Gao, K.G. Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil. J. Zhejiang Univ.-Sci. B 2016, 17, 965–974. [Google Scholar] [CrossRef]
- Valencia, M.E.; Watkins, S.E.; Waldroup, A.L.; Waldroup, P.W.; Fletcher, D.L. Utilization of crude and refined palm and palm kernel oils in broiler diets. Poult. Sci. 1993, 72, 2200–2215. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Al-Nasser, A. Dietary source of polyunsaturated fatty acids influences cell cytotoxicity in broiler chickens. Sci. Rep. 2021, 11, 10113. [Google Scholar] [CrossRef]
- Lauridsen, C. From oxidative stress to inflammation: Redox balance and immune system. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef] [PubMed]
- Suomela, J.P.; Ahotupa, M.; Kallio, H. Triacylglycerol oxidation in pig lipoproteins after a diet rich in oxidized sunflower seed oil. Lipids 2005, 40, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Tavárez, M.A.; Boler, D.D.; Bess, K.N.; Zhao, J.; Yan, F.; Dilger, A.C.; McKeith, F.K.; Killefer, J. Effect of antioxidant inclusion and oil quality on broiler performance, meat quality, and lipid oxidation. Poult. Sci. 2011, 90, 922–930. [Google Scholar] [CrossRef]
- Anjum, M.I.; Alam, M.Z.; Mirza, I.H. Effect of non-oxidized and oxidized soybean oil supplemented with two levels of antioxidant on broiler performance. Asian-Australas. J. Anim. Sci. 2002, 15, 713–720. [Google Scholar] [CrossRef]
- Yin, B.; Li, W.; Qin, H.; Yun, J.; Sun, X. The use of Chinese skullcap (Scutellaria baicalensis) and its extracts for sustainable animal production. Animals 2021, 11, 1039. [Google Scholar] [CrossRef]
- Xing, S.; Wang, M.; Peng, Y.; Chen, D.; Li, X. Simulated gastrointestinal tract metabolism and pharmacological activities of water extract of Scutellaria baicalensis roots. J. Ethnopharmacol. 2014, 152, 183–189. [Google Scholar] [CrossRef]
- Zhao, T.; Tang, H.; Xie, L.; Zheng, Y.; Ma, Z.; Sun, Q.; Li, X. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Pharm. Pharmacol. 2019, 71, 1353–1369. [Google Scholar] [CrossRef]
- Kim, I.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef]
- Li, H.; Yang, L. Molecular regulatory mechanism of Nrf2 antioxidant. Chin. J. Bioinform 2018, 16, 1–6. [Google Scholar]
- Zhao, H.Y.; Zhang, F.; Fan, S.D. Effects of baicalin on contents of PGE2 and cAMP in hypothalamus of fever rats. Chin. J. Appl. Physiol. 2002, 18, 139–141. [Google Scholar]
- Guo, X.; Chi, S.; Cong, X.; Li, H.; Jiang, Z.; Cao, R.; Tian, W. Baicalin protects sertoli cells from heat stress-induced apoptosis via activation of the Fas/FasL pathway and Hsp72 expression. Reprod. Toxicol. 2015, 57, 196–203. [Google Scholar] [CrossRef]
- Smith, J.F.; Starr, E.G.; Goodman, M.A.; Hanson, R.B.; Palmer, T.A.; Woolstenhulme, J.B.; Weyand, J.A.; Marchant, A.D.; Bueckers, S.L.; Nelson, T.K.; et al. Topical application of wogonin provides a novel treatment of knee osteoarthritis. Front. Physiol. 2020, 11, 8057. [Google Scholar] [CrossRef]
- Yang, W.; Li, H.; Cong, X.; Wang, X.; Jiang, Z.; Zhang, Q.; Qi, X.; Gao, S.; Cao, R.; Tian, W. Baicalin attenuates lipopolysaccharide induced inflammation and apoptosis of cow mammary epithelial cells by regulating NF-κB and HSP72. Int. Immunopharmacol. 2016, 40, 139–145. [Google Scholar] [CrossRef]
- Pan, L.; Cho, K.S.; Yi, I.; To, C.H.; Chen, D.F.; Do, C.W. Baicalein, Baicalin, and Wogonin: Protective Effects Against Ischemia-Induced Neurodegeneration in the Brain and Retina. Oxidative Med. Cell. Longev. 2021, 2021, 8377362. [Google Scholar] [CrossRef]
- Kim, D.S.; Son, E.J.; Kim, M.; Heo, Y.M.; Nam, J.B.; Ro, J.Y.; Woo, S.S. Antiallergic herbal composition from Scutellaria baicalensis and Phyllostachys edulis. Planta Medica 2010, 76, 678–682. [Google Scholar] [CrossRef]
- Fan, Z.; Li, L.; Bai, X.; Zhang, H.; Liu, Q.; Zhang, H.; Fu, Y.; Moyo, R. Extraction optimization, antioxidant activity, and tyrosinase inhibitory capacity of polyphenols from Lonicera japonica. Food Sci. Nutr. 2019, 7, 1786–1794.61. [Google Scholar] [CrossRef]
- Li, R.J.; Kuang, X.P.; Wang, W.J.; Wan, C.P.; Li, W.X. Comparison of chemical constitution and bioactivity among different parts of Lonicera japonica Thunb. J. Sci. Food Agric. 2020, 100, 614–622. [Google Scholar] [CrossRef]
- Park, K.I.; Kang, S.R.; Park, H.S.; Lee, D.H.; Nagappan, A.; Kim, J.A.; Shin, S.C.; Kim, E.H.; Lee, W.S.; Chung, H.J.; et al. Regulation of proinflammatory mediators via NF-κB and p38 MAPK-dependent mechanisms in RAW 264.7 macrophages by polyphenol components isolated from Korea Lonicera japonica THUNB. Evid. Based Complement. Altern. Med. 2012, 2012, 828521. [Google Scholar] [CrossRef]
- Yejun, L.; Su Kyoung, L.; Shin Ja, L.; Jong-Su, E.; Sung Sill, L. Effects of Lonicera japonica extract supplementation on in vitro ruminal fermentation, methane emission, and microbial population. Anim. Sci. J. 2019, 90, 1170–1176. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Bai, X.; Liu, P.; Yang, Y.; Huang, J.; Zhou, L.; Min, X. Fractionation and antioxidant activities of the water-soluble polysaccharides from Lonicera japonica Thunb. Int. J. Biol. Macromol. 2020, 151, 1058–1066. [Google Scholar] [CrossRef]
- Lee, J.; Park, G.; Chang, Y.H. Nutraceuticals and antioxidant properties of Lonicera japonica Thunb. as affected by heating time. Int. J. Food Prop. 2019, 22, 630–645. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Zhong, J.; Fang, R. Potential application of Lonicera japonica extracts in animal production: From the perspective of intestinal health. Front. Microbiol. 2021, 12, 719877. [Google Scholar] [CrossRef]
- Kong, D.; Li, Y.; Bai, M.; Deng, Y.; Liang, G.; Wu, H. A comparative study of the dynamic accumulation of polyphenol components and the changes in their antioxidant activities in diploid and tetraploid Lonicera japonica. Plant Physiol. Biochem. 2017, 112, 87–96. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Q.; Ci, X.; Chen, S.; Xie, Z.; Li, H.; Zhang, H.; Chen, F.; Xie, Q. Evaluation of the efficacy of chlorogenic acid in reducing small intestine injury, oxidative stress, and inflammation in chickens challenged with Clostridium perfringens type A. Poult. Sci. 2020, 99, 6606–6618. [Google Scholar] [CrossRef]
- Hsu, H.F.; Hsiao, P.C.; Kuo, T.C.; Chiang, S.T.; Chen, S.L.; Chiou, S.J.; Ling, X.H.; Liang, M.T.; Cheng, W.Y.; Houng, J.Y. Antioxidant and anti-inflammatory activities of Lonicera japonica Thunb. var. sempervillosa Hayata flower bud extracts prepared by water, ethanol and supercritical fluid extraction techniques. Ind. Crops Prod. 2016, 89, 543–549. [Google Scholar] [CrossRef]
- Zhou, X.; Dong, Q.; Kan, X.; Peng, L.; Xu, X.; Fang, Y.; Yang, J. Immunomodulatory activity of a novel polysaccharide from Lonicera japonica in immunosuppressed mice induced by cyclophosphamide. PLoS ONE 2018, 13, e0204152. [Google Scholar] [CrossRef]
- Surin, S.; Surayot, U.; Seesuriyachan, P.; You, S.; Phimolsiripol, Y. Antioxidant and immunomodulatory activities of sulphated polysaccharides from purple glutinous rice bran (Oryza sativa L.). Int. J. Food Sci. Technol. 2018, 53, 994–1004. [Google Scholar] [CrossRef]
- de Almeida, A.J.; de Oliveira, J.C.; da Silva Pontes, L.V.; de Souza Júnior, J.F.; Gonçalves, T.A.; Dantas, S.H.; de Almeida Feitosa, M.S.; Silva, A.O.; de Medeiros, I.A. ROS: Basic concepts, sources, cellular signaling, and its implications in aging pathways. Oxidative Med. Cell. Longev. 2022, 2022, 1225578. [Google Scholar] [CrossRef]
- Lum, H.; Roebuck, K.A. Oxidant stress and endothelial cell dysfunction. Am. J. Physiol.-Cell Physiol. 2001, 280, C719–C741. [Google Scholar] [CrossRef]
- Chen, F.; Chen, J.; Chen, Q.; Yang, L.; Yin, J.; Li, Y.; Huang, X. Lactobacillus delbrueckii protected intestinal integrity, alleviated intestinal oxidative damage, and activated toll-like receptor–Bruton’s tyrosine kinase–nuclear factor erythroid 2-related factor 2 pathway in weaned piglets challenged with lipopolysaccharide. Antioxidants 2021, 10, 468. [Google Scholar]
- Xu, X.; Yan, G.; Chang, J.; Wang, P.; Yin, Q.; Liu, C.; Liu, S.; Zhu, Q.; Lu, F. Astilbin ameliorates deoxynivalenol-induced oxidative stress and apoptosis in intestinal porcine epithelial cells (IPEC-J2). J. Appl. Toxicol. 2020, 40, 1362–1372. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Wu, X.; Wan, D.; Yin, Y. Effects of dietary serine supplementation on intestinal integrity, inflammation and oxidative status in early weaned piglets. Cell. Physiol. Biochem. 2018, 48, 993–1002. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, D.; Zhu, H.; Zhu, J.; Weng, S.; Dong, L.; Liu, T.; Hu, Y.; Shen, X. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe−/− mice. Atherosclerosis 2018, 268, 117–126. [Google Scholar] [CrossRef]
- Saracila, M.; Panaite, T.D.; Papuc, C.P.; Criste, R.D. Heat stress in broiler chickens and the effect of dietary polyphenols, with special reference to Willow (Salix spp.) bark supplements—A review. Antioxidants 2021, 10, 686. [Google Scholar] [CrossRef]
- Cao, S.; Wu, H.; Wang, C.; Zhang, Q.; Jiao, L.; Lin, F.; Hu, C.H. Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets. J. Anim. Sci. 2018, 96, 1795–1805. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, Q.; Kang, X.; Tian, G.; Ming, D.; Yang, J. Protective role of a new polysaccharide extracted from Lonicera japonica Thunb in mice with ulcerative colitis induced by dextran sulphate sodium. BioMed Res. Int. 2021, 2021, 8878633. [Google Scholar] [CrossRef]
- Bang, B.W.; Park, D.; Kwon, K.S.; Lee, D.H.; Jang, M.J.; Park, S.K.; Kim, J.Y. BST-104, a water extract of Lonicera japonica, has a gastroprotective effect via antioxidant and anti-inflammatory activities. J. Med. Food 2019, 22, 140–151. [Google Scholar] [CrossRef]
- Yang, X.M.; Zhang, F.Y.; Xiang, F.; Dai, Z.Z.; Yu, C.; Li, S.S. Honeysuckle extract promotes host health by improving intestinal microbes and enhancing intestinal mucosal immunity. Genom. Appl. Biol. 2020, 39, 1257–1263. [Google Scholar]
- Lin, Z.N.; Ye, L.; Li, Z.W.; Huang, X.S.; Lu, Z.; Yang, Y.Q.; Xing, H.W.; Bai, J.Y.; Ying, Z.Y. Chinese herb feed additives improved the growth performance, meat quality, and nutrient digestibility parameters of pigs. Anim. Models Exp. Med. 2020, 3, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Mao, S.; Zhou, M. Effect of the flavonoid baicalein as a feed additive on the growth performance, immunity, and antioxidant capacity of broiler chickens. Poult. Sci. 2019, 98, 2790–2799. [Google Scholar] [CrossRef]
- Króliczewska, B.; Graczyk, S.; Króliczewski, J.; Pliszczak-Król, A.; Miśta, D.; Zawadzki, W. Investigation of the immune effects of Scutellaria baicalensis on blood leukocytes and selected organs of the chicken’s lymphatic system. J. Anim. Sci. Biotechnol 2017, 8, 22. [Google Scholar] [CrossRef]
- An, B.K.; Kwon, H.S.; Lee, B.K.; Kim, J.Y.; You, S.J.; Kim, J.M.; Kang, C.W. Effects of dietary skullcap (Scutellaria baicalensis) extract on laying performance and lipid oxidation of chicken eggs. Asian-Australas. J. Anim. Sci. 2010, 23, 772–776. [Google Scholar] [CrossRef]
- Takiishi, T.; Fenero, C.I.; Câmara, N.O. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017, 5, e1373208. [Google Scholar] [CrossRef]
- Clavijo, V.; Flórez, M.J. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef]
- Qamar, A.; Waheed, J.; Hamza, A.; Mohyuddin, S.G.; Lu, Z.; Namula, Z.; Chen, Z.; Chen, J.J. The role of intestinal microbiota in chicken health, intestinal physiology and immunity. JAPS J. Anim. Plant Sci. 2021, 31, 342–351. [Google Scholar] [CrossRef]
- Yitbarek, A.; Astill, J.; Hodgins, D.C.; Parkinson, J.; Nagy, É.; Sharif, S. Commensal gut microbiota can modulate adaptive immune responses in chickens vaccinated with whole inactivated avian influenza virus subtype H9N2. Vaccine 2019, 37, 6640–6647. [Google Scholar] [CrossRef]
- Liu, W.C.; Kim, I.H. Influence of extract mixture from Scutellaria baicalensis and Lonicera japonica on egg production, nutrient digestibility, blood profiles and egg quality in laying hens reared in hot humid season. Anim. Nutr. Feed Technol. 2017, 17, 137–146. [Google Scholar] [CrossRef]
- Al Amaz, S.; Shahid, M.A.; Jha, R.; Mishra, B. Early embryonic thermal programming and post-hatch flavonoid (Scutellaria baicalensis) supplementation enhanced immune response markers in broiler chickens. Front. Vet. Sci. 2025, 28, 1537116. [Google Scholar] [CrossRef]
- Liang, Y.; Ren, C.C.; Jing, D.; Teng, Z.C.; Bi, H.M. Effects of flavonoids from Scutellaria baicalensis Georgi on growth performance and intestinal microflora of broilers. J. Tradit. Chin. Vet. Med. 2012, 31, 39–42. [Google Scholar]
- Wang, W.W.; Jia, H.J.; Zhang, H.J.; Wang, J.; Lv, H.Y.; Wu, S.G.; Qi, G.H. Supplemental plant extracts from Flos lonicerae in combination with Baikal skullcap attenuate intestinal disruption and modulate gut microbiota in laying hens challenged by Salmonella pullorum. Front. Microbiol. 2019, 10, 1681. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, L.; Guo, S.; Li, Y. Baicalin induced colon cancer cells apoptosis through miR-217/DKK1-mediated inhibition of Wnt signaling pathway. Mol. Biol. Rep. 2019, 46, 1693–1700. [Google Scholar] [CrossRef]
- Liu, W.C.; Pi, S.H.; Kim, I.H. Effects of Scutellaria baicalensis and Lonicera japonica extract mixture supplementation on growth performance, nutrient digestibility, blood profiles and meat quality in finishing pigs. Ital. J. Anim. Sci. 2016, 15, 446–452. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, G.; Wang, Q.; Tian, J.; Feng, X.; Zhang, Q.; Gong, L. Effects of dietary Astragalus membranaceus and Codonopsis pilosula extracts on growth performance, antioxidant capacity, immune status, and intestinal health in broilers. Front. Vet. Sci. 2023, 10, 1302801. [Google Scholar] [CrossRef]
- Fang, C.; Tang, X.; Zhang, Q.; Yu, Q.; Deng, S.; Wu, S.; Fang, R. Effects of Dietary Lonicera flos and Sucutellaria baicalensis Mixed Extracts Supplementation on Reproductive Performance, Umbilical Cord Blood Parameters, Colostrum Ingredients and Immunoglobulin Contents of Late-Pregnant Sows. Animals 2024, 14, 2054. [Google Scholar] [CrossRef]
- Jeong, J.S.; Kim, I.H. Effect of fermented medicinal plants (Gynura procumbens, Rehmannia glutinosa, Scutellaria baicalensis) as alternative performance enhancers in broilers. J. Poult. Sci. 2015, 52, 119–216. [Google Scholar] [CrossRef]
- Chang, C.H.; Chen, Y.S.; Chiou, M.T.; Su, C.H.; Chen, D.S.; Tsai, C.E.; Yu, B.; Hsu, Y.M. Application of Scutellariae radix, Gardeniae fructus, and probiotics to prevent Salmonella enterica Serovar Choleraesuis infection in swine. Evid.-Based Complement. Altern. Med. 2013, 2013, 568528. [Google Scholar] [CrossRef]
- Park, J.H.; Kang, S.N.; Chu, G.M.; Jin, S.K. Growth performance, blood cell profiles, and meat quality properties of broilers fed with Saposhnikovia divaricata, Lonicera japonica, and Chelidonium majus extracts. Livest. Sci. 2014, 165, 87–94. [Google Scholar] [CrossRef]
- Jang, A.; Liu, X.D.; Shin, M.H.; Lee, B.D.; Lee, S.K.; Lee, J.H.; Jo, C. Antioxidative potential of raw breast meat from broiler chicks fed a dietary medicinal herb extract mix. Poult. Sci. 2008, 87, 2382–2389. [Google Scholar] [CrossRef]
- Müştak, H.K.; Torun, E.; Özen, D.; Yücel, G.; Akan, M.; Diker, K.S. Effect of Lonicera japonica extract on Mycoplasma gallisepticum in naturally infected broiler flocks. Br. Poult. Sci. 2015, 56, 299–303. [Google Scholar] [CrossRef]
- Long, B.; Li, Z.Q.; Dong, G.Z.; Wang, Q.Z.; Yu, Z.W. Effects of honeysuckle extract on performance, egg quality, lipid metabolism and yolk cholesterol content of laying hens. Chin. J. Anim. Nutr. 2018, 30, 212–218. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampath, V.; Baek, Y.J.; Kim, I.H. Scutellaria baicalensis and Lonicera japonica: An In-Depth Look at Herbal Interventions Against Oxidative Stress in Non-Ruminant Animals. Vet. Sci. 2025, 12, 816. https://doi.org/10.3390/vetsci12090816
Sampath V, Baek YJ, Kim IH. Scutellaria baicalensis and Lonicera japonica: An In-Depth Look at Herbal Interventions Against Oxidative Stress in Non-Ruminant Animals. Veterinary Sciences. 2025; 12(9):816. https://doi.org/10.3390/vetsci12090816
Chicago/Turabian StyleSampath, Vetriselvi, Yu Jin Baek, and In Ho Kim. 2025. "Scutellaria baicalensis and Lonicera japonica: An In-Depth Look at Herbal Interventions Against Oxidative Stress in Non-Ruminant Animals" Veterinary Sciences 12, no. 9: 816. https://doi.org/10.3390/vetsci12090816
APA StyleSampath, V., Baek, Y. J., & Kim, I. H. (2025). Scutellaria baicalensis and Lonicera japonica: An In-Depth Look at Herbal Interventions Against Oxidative Stress in Non-Ruminant Animals. Veterinary Sciences, 12(9), 816. https://doi.org/10.3390/vetsci12090816