Immunogenicity of Virus-like Particles Based on VP1 Protein of Bovine Norovirus
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Gene and Plasmid Constructs
2.2. Cells, Animals, and Antibodies
2.3. Rescue of Baculoviruses and Production of BNoV-VLPs
2.4. SDS-PAGE and WB Verified the Expression of VLPs
2.5. Indirect Immunofluorescence Verified the Expression of VLPs
2.6. VLPs Purification
2.7. Transmission Electron Microscopy (TEM)
2.8. Mice Immunization
2.9. Enzyme-Linked Immunosorbent Assay
2.10. Splenic Lymphocyte Isolation
2.11. Flow Cytometry
2.12. Statistical Analysis
3. Results
3.1. Rescue of Baculoviruses
3.2. Production and Purification of VP1 Proteins in sf9 Cells
3.3. VLPs Morphology Analysis via TEM
3.4. IgG Antibody Levels Against BNoV
3.5. IgA Antibody Levels Against BNoV
3.6. CD4+/CD8+ T-Cell Ratio
3.7. IFN-γ and TNF-α Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Argenzio, R.A. Pathophysiology of Neonatal Calf Diarrhea. Vet. Clin. N. Am. Food Anim. Pract. 1985, 1, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.L.; Sanderson, M.W.; Jones, R.; N’Guessan, Y.; Renter, D.; Larson, R.; White, B.J. Economic risk analysis model for bovine viral diarrhea virus biosecurity in cow-calf herds. Prev. Vet. Med. 2014, 113, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Woode, G.N.; Bridger, J.C. Isolation of small viruses resembling astroviruses and caliciviruses from acute enteritis of calves. J. Med. Microbiol. 1978, 11, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Otto, P.H.; Clarke, I.N.; Lambden, P.R.; Salim, O.; Reetz, J.; Liebler-Tenorio, E.M. Infection of calves with bovine norovirus GIII.1 strain Jena Virus: An experimental model to study the pathogenesis of norovirus infection. J. Virol. 2011, 85, 12013–12021. [Google Scholar] [CrossRef]
- Jung, K.; Scheuer, K.A.; Zhang, Z.; Wang, Q.; Saif, L.J. Pathogenesis of GIII.2 bovine norovirus, CV186-OH/00/US strain in gnotobiotic calves. Vet. Microbiol. 2014, 168, 202–207. [Google Scholar] [CrossRef]
- Deng, Y.; Batten, C.A.; Liu, B.L.; Lambden, P.R.; Elschner, M.; Günther, H.; Otto, P.; Schnürch, P.; Eichhorn, W.; Herbst, W.; et al. Studies of epidemiology and seroprevalence of bovine noroviruses in Germany. J. Clin. Microbiol. 2003, 41, 2300–2305. [Google Scholar] [CrossRef]
- van der Poel, W.H.; van der Heide, R.; Verschoor, F.; Gelderblom, H.; Vinjé, J.; Koopmans, M.P. Epidemiology of Norwalk-like virus infections in cattle in The Netherlands. Vet. Microbiol. 2003, 92, 297–309. [Google Scholar] [CrossRef]
- Wise, A.G.; Monroe, S.S.; Hanson, L.E.; Grooms, D.L.; Sockett, D.; Maes, R.K. Molecular characterization of noroviruses detected in diarrheic stools of Michigan and Wisconsin dairy calves: Circulation of two distinct subgroups. Virus Res. 2004, 100, 165–177. [Google Scholar] [CrossRef]
- Ryu, J.; Shin, S.; Choi, K. Molecular surveillance of viral pathogens associated with diarrhea in pre-weaned Korean native calves. Trop. Anim. Health 2020, 52, 1811–1820. [Google Scholar] [CrossRef]
- Mauroy, A.; Scipioni, A.; Mathijs, E.; Saegerman, C.; Mast, J.; Bridger, J.C.; Ziant, D.; Thys, C.; Thiry, E. Epidemiological study of bovine norovirus infection by RT-PCR and a VLP-based antibody ELISA. Vet. Microbiol. 2009, 137, 243–251. [Google Scholar] [CrossRef]
- Bartolo, I.D.; Ponterio, E.; Monini, M.; Ruggeri, F.M. A pilot survey of bovine norovirus in northern Italy. Vete. Rec. 2011, 169, 73. [Google Scholar] [CrossRef] [PubMed]
- Martino, B.D.; Profio, F.D.; Felice, E.D.; Melegari, I.; Ceci, C.; Mauroy, A.; Thiry, E.; Martella, V.; Marsilio, F. Genetic heterogeneity of bovine noroviruses in Italy. Arch. Virol. 2014, 159, 2717–2722. [Google Scholar] [CrossRef] [PubMed]
- Ferragut, F.; Vega, C.G.; Mauroy, A.; Conceição-Neto, N.; Zeller, M.; Heylen, E.; Uriarte, E.L.; Bilbao, G.; Bok, M.; Matthijnssens, J.; et al. Molecular detection of bovine Noroviruses in Argentinean dairy calves: Circulation of a tentative new genotype. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016, 40, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.F.; Ktob, G.K.F.; Ismaeil, M.E.A.; Ali, A.A.H.; Goyal, S.M. Phylogeny of bovine norovirus in Egypt based on VP2 gene. Int. J. Vet. Sci. Med. 2018, 6, 48–52. [Google Scholar] [CrossRef]
- Pourasgari, F.; Kaplon, J.; Sanchooli, A.; Fremy, C.; Karimi-Naghlani, S.; Otarod, V.; Ambert-Balay, K.; Mojgani, N.; Pothier, P. Molecular prevalence of bovine noroviruses and neboviruses in newborn calves in Iran. Arch. Virol. 2018, 163, 1271–1277. [Google Scholar] [CrossRef]
- Castells, M.; Caffarena, R.D.; Casaux, M.L.; Schild, C.; Castells, F.; Castells, D.; Victoria, M.; Riet-Correa, F.; Giannitti, F.; Parreño, V.; et al. Detection, risk factors and molecular diversity of norovirus GIII in cattle in Uruguay. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2020, 86, 104613. [Google Scholar] [CrossRef]
- Symes, S.J.; Allen, J.L.; Mansell, P.D.; Woodward, K.L.; Bailey, K.E.; Gilkerson, J.R.; Browning, G.F. First detection of bovine noroviruses and detection of bovine coronavirus in Australian dairy cattle. Aust. Vet. J. 2018, 96, 203–208. [Google Scholar] [CrossRef]
- Guo, Z.; He, Q.; Yue, H.; Zhang, B.; Tang, C. First detection of Nebovirus and Norovirus from cattle in China. Arch. Virol. 2018, 163, 475–478. [Google Scholar] [CrossRef]
- Wu, J.; Shi, J.; Kurban, S.; Abdullah, N.; Sun, L.; Yao, G.; Zhong, Q.; Luo, L.; Zhao, H.; Ma, X. Investigation on the main viral pathogens of diarrhea in Angus calves in Kashgar, Xinjiang and sequence analysis of bovine norovirus gene. China Anim. Husb. Vet. Med. 2022, 49, 4420–4428. [Google Scholar] [CrossRef]
- Wang, Y. Molecular Detection and Genome Research of Bovine Norovirus. Master’s Thesis, Southwest Minzu University, Chengdu, China, 2020. [Google Scholar]
- Wang, Y.; Guo, Z.; Yue, H.; Tang, C. Detection and evolution analysis of norovirus in fecal samples of dairy cows with diarrhea in some areas. Acta Vet. Et Zootech. Sin. 2019, 50, 1048–1055. [Google Scholar]
- Foged, C.; Perrie, Y.; Rades, T.; Hook, S. Subunit Vaccine Delivery; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar]
- Treanor, J.; Sherwood, J.; Cramer, J.P.; Le Cam Bouveret, N.; Lin, S.; Baehner, F.; Borkowski, A. A phase 2 study of the bivalent VLP norovirus vaccine candidate in older adults; impact of MPL adjuvant or a second dose. Vaccine 2020, 38, 5842–5850. [Google Scholar] [CrossRef]
- Valenzuela, P.; Medina, A.; Rutter, W.J.; Ammerer, G.; Hall, B.D. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 1982, 298, 347–350. [Google Scholar] [CrossRef]
- Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413. [Google Scholar] [CrossRef]
- Tresset, G.; Decouche, V.; Bryche, J.F.; Charpilienne, A.; Le Cœur, C.; Barbier, C.; Squires, G.; Zeghal, M.; Poncet, D.; Bressanelli, S. Unusual self-assembly properties of Norovirus Newbury2 virus-like particles. Arch. Biochem. Biophys. 2013, 537, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Jiang, Q.; Quan, C.; Liu, L.; Zhang, Z.; Xie, J.; Zhao, L.; Zhong, Q.; Yao, G.; Ma, X. The first complete genome sequence and genetic evolution analysis of bovine norovirus in Xinjiang, China. J. Vet. Res. 2024, 68, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Beach, N.M.; Meng, X.J. Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2). Virus Res. 2012, 164, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, M.O.; Bachmann, M.F. Virus-like particle vaccinology, from bench to bedside. Cell. Mol. Immunol. 2022, 19, 993–1011. [Google Scholar] [CrossRef]
- Pogan, R.; Dülfer, J.; Uetrecht, C. Norovirus assembly and stability. Curr. Opin. Virol. 2018, 31, 59–65. [Google Scholar] [CrossRef]
- Castells, M.; Colina, R. Viral enteritis in cattle: To well known viruses and beyond. Microbiol. Res. 2021, 12, 663–682. [Google Scholar] [CrossRef]
- Liu, F.; Wu, X.; Li, L.; Liu, Z.; Wang, Z. Use of baculovirus expression system for generation of virus-like particles: Successes and challenges. Protein Expr. Purif. 2013, 90, 104–116. [Google Scholar] [CrossRef]
- Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 2014, 95, 5301–5317. [Google Scholar] [CrossRef]
- Guokun, L.; Xiangdong, G.; Chen, X. Research Progress of Mammalian Cell Expression System. China Biotechnol. 2014, 34, 95–100. [Google Scholar]
- Scotti, N.; Rybicki, E.P. Virus-like particles produced in plants as potential vaccines. Expert Rev. Vaccines 2013, 12, 211–224. [Google Scholar] [CrossRef]
- Berger, I.; Fitzgerald, D.J.; Richmond, T.J. Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol. 2004, 22, 1583–1587. [Google Scholar] [CrossRef]
- Sun, J.C.; Zhang, E.H.; Yao, L.G.; Zhang, H.L.; Jin, P.F. A high efficient method of constructing recombinant Bombyx mori (silkworm) multiple nucleopolyhedrovirus based on zero-background Tn7-mediated transposition in Escherichia coli. Biotechnol. Prog. 2010, 25, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Rob, N.; Meredith, S.; Mark, B.; Cristina, C.; Keith, W.; Polly, R. Multigene expression of protein complexes by iterative modification of genomic Bacmid DNA. BMC Mol. Biol. 2009, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Wang, S.; Su, S.; Yao, N.; He, J.; Peng, L.; Sun, J. Construction of a baculovirus-silkworm multigene expression system and its application on producing virus-like particles. PLoS ONE 2012, 7, e32510. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef]
- Onodera, T.; Hashi, K.; Shukla, R.K.; Miki, M.; Takai-Todaka, R.; Fujimoto, A.; Kuraoka, M.; Miyoshi, T.; Kobayashi, K.; Hasegawa, H.; et al. Immune-focusing properties of virus-like particles improve protective IgA responses. J. Immunol. 2019, 203, 3282–3292. [Google Scholar] [CrossRef]
- Ramadevi, R. Virus-like particles: Innate immune stimulators. Expert Rev. Vaccines 2011, 10, 409–411. [Google Scholar]
- Keller, S.A.; Bauer, M.; Manolova, V.; Muntwiler, S.; Saudan, P.; Bachmann, M.F. Cutting Edge: Limited specialization of dendritic cell subsets for MHC Class II-associated presentation of viral particles. J. Immunol. 2010, 184, 26–29. [Google Scholar] [CrossRef]
- Ponterio, E.; Petrizzo, A.; Bartolo, I.D.; Buonaguro, F.M.; Buonaguro, L.; Ruggeri, F.M. Pattern of activation of human antigen presenting cells by genotype GII.4 norovirus virus-like particles. J. Transl. Med. 2013, 11, 127. [Google Scholar] [CrossRef]
- Grgacic, E.V.L.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods Companion Methods Enzymol. 2006, 40, 60–65. [Google Scholar] [CrossRef]
- Yan, D.; Wei, Y.; Guo, H.; Sun, S. The application of virus-like particles as vaccines and biological vehicles. Appl. Microbiol. Biotechnol. 2015, 99, 10415–10432. [Google Scholar] [CrossRef] [PubMed]
- Kushnir, N.; Streatfield, S.J.; Yusibov, V. Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine 2012, 31, 58–83. [Google Scholar] [CrossRef] [PubMed]
- Waerlop, G.; Janssens, Y.; Jacobs, B.; Jarczowski, F.; Diessner, A.; Leroux-Roels, G.; Klimyuk, V.; Leroux-Roels, I.; Thieme, F. Immune responses in healthy adults elicited by a bivalent norovirus vaccine candidate composed of GI.4 and GII.4 VLPs without adjuvant. Front. Immunol. 2023, 14, 1188431. [Google Scholar] [CrossRef]
- Li, B.; Duan, Z.; Pang, L. Research progress of interferon against norovirus infection. Chin. J. Virol. 2020, 36, 1213–1220. [Google Scholar] [CrossRef]
- Souza, M.; Azevedo, M.S.P.; Jung, K.; Cheetham, S.; Saif, L.J. Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. J. Virol. 2008, 82, 1777–1786. [Google Scholar] [CrossRef]
- Souza, M.; Cheetham, S.M.; Azevedo, M.S.P.; Costantini, V.; Saif, L.J. Cytokine and antibody responses in gnotobiotic pigs after infection with human norovirus genogroup II.4 (HS66 strain). J. Virol. 2007, 81, 9183–9192. [Google Scholar] [CrossRef]
- Ploeg, K.v.d.; Kirosingh, A.S.; Mori, D.A.M.; Chakraborty, S.; Hu, Z.; Sievers, B.L.; Jacobson, K.B.; Bonilla, H.; Parsonnet, J.; Andrews, J.R.; et al. TNF-α+ CD4+ T cells dominate the SARS-CoV-2 specific T cell response in COVID-19 outpatients and are associated with durable antibodies. Cell Rep. Med. 2022, 6, 100640. [Google Scholar] [CrossRef]
- Wobus, C.E.; Thackray, L.B.; Virgin, H.W.t. Murine norovirus: A model system to study norovirus biology and pathogenesis. J. Virol. 2006, 80, 5104–5112. [Google Scholar] [CrossRef]
- Farkas, T. Rhesus enteric calicivirus surrogate model for human norovirus gastroenteritis. . J. Gen. Virol. 2015, 96, 1504–1514. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Ma, X.; Tao, X.; Huang, Y.; Jiang, Q.; Ding, X.; Min, F.; Chu, Y.; Li, R.; Zhang, X.; et al. Immunogenicity of Virus-like Particles Based on VP1 Protein of Bovine Norovirus. Vet. Sci. 2025, 12, 802. https://doi.org/10.3390/vetsci12090802
Ma Z, Ma X, Tao X, Huang Y, Jiang Q, Ding X, Min F, Chu Y, Li R, Zhang X, et al. Immunogenicity of Virus-like Particles Based on VP1 Protein of Bovine Norovirus. Veterinary Sciences. 2025; 12(9):802. https://doi.org/10.3390/vetsci12090802
Chicago/Turabian StyleMa, Zhigang, Xuelian Ma, Xinyu Tao, Yong Huang, Qian Jiang, Xiaojun Ding, Fang Min, Yichen Chu, Ru Li, Xinying Zhang, and et al. 2025. "Immunogenicity of Virus-like Particles Based on VP1 Protein of Bovine Norovirus" Veterinary Sciences 12, no. 9: 802. https://doi.org/10.3390/vetsci12090802
APA StyleMa, Z., Ma, X., Tao, X., Huang, Y., Jiang, Q., Ding, X., Min, F., Chu, Y., Li, R., Zhang, X., Liu, L., Zhang, C., Zhong, Q., & Yao, G. (2025). Immunogenicity of Virus-like Particles Based on VP1 Protein of Bovine Norovirus. Veterinary Sciences, 12(9), 802. https://doi.org/10.3390/vetsci12090802