Hepatocellular Early Apoptosis Associated with HES 130/0.4 Administration for Volume Replacement in Pigs After Severe Bleeding
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Protocol
2.3. Sample Collection and Sacrifice
2.4. Histological Analysis
2.5. Apoptosis Analysis
2.6. Data Analysis
3. Results
3.1. General Data
3.2. Histological Analysis
3.3. Analysis of Pre-Apoptosis and Apoptosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
EMA | European Medicines Agency |
H&E | Haematoxylin and eosin |
HES | Hydroxyethyl starch |
RL | Ringer lactate |
References
- Kang, H.J.; Sol, M.Y.; Park, D.Y.; Lee, S.H.; Shin, D.H.; Kim, J.H.; Choi, K.U.; Kim, H.W.; Lee, C.H.; Huh, G.H. Assessment of Apoptosis by M 30 Immunoreactivity and the Relationship with the MSI status and the Clinicopathological Characteristics of Colorectal Carcinomas. Korean J. Pathol. 2006, 40, 319–325. [Google Scholar]
- Adams, D.H.; Eksteen, B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat. Rev. Immunol. 2006, 6, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Brunt, E.M.; Gouw, A.S.H.; Hubscher, S.G.; Tiniakos, D.G.; Bedossa, P.; Burt, A.D.; Callea, F.; Clouston, A.D.; Dienes, H.P.; Goodman, Z.D.; et al. Pathology of the liver sinusoids. Histopathology 2014, 64, 907–920. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Hu, H.; Yang, H.; Li, S.; Zhou, H.; Ruan, J.; Zhu, Y.; Yang, X.; Li, Z. Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. Nanoscale Adv. 2018, 1, 1002–1012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braet, F.; Wisse, E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review. Comp. Hepatol. 2002, 1, 1. [Google Scholar] [CrossRef]
- Sarin, H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenesis Res. 2010, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Wisse, E.; De Zanger, R.B.; Charels, K.; Van Der Smissen, P.; McCuskey, R.S. The liver sieve: Considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 1985, 5, 683–692. [Google Scholar] [CrossRef]
- Catré, D.; Viana, J.S.; Cabrita, A.M.; Oliveira, M.; Felizes, A.; Lopes, M.F. Hydroxyethyl starch 130/0.4 attenuates early hepatic damage in ischemia/reperfusion injury. Can. J. Anaesth. 2010, 57, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Schick, M.A.; Isbary, J.T.; Stueber, T.; Brugger, J.; Stumpner, J.; Schlegel, N.; Roewer, N.; Eichelbroenner, O.; Wunder, C. Effects of crystalloids and colloids on liver and intestine microcirculation and function in cecal ligation and puncture induced septic rodents. BMC Gastroenterol. 2012, 12, 179. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Chawla, L.S. Hydroxyethyl starch for fluid resuscitation in critically ill patients. Can. J. Anaesth. 2013, 60, 709–713. [Google Scholar] [CrossRef]
- Ortiz, A.L.; Vala, H.; Venâncio, C.; Mesquita, J.; Silva, A.; Gonzalo-Orden, J.M.; Ferreira, D. The influence of Ringer’s lactate or HES 130/0.4 administration on the integrity of the small intestinal mucosa in a pig hemorrhagic shock model under general anesthesia. J. Vet. Emerg. Crit. Care 2017, 27, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Ortiz, A.L.; Venâncio, C.; Souza, A.P.; Ferreira, L.M.; Branco, P.S.; de Pinho, P.G.; Amorim, P.; Ferreira, D.A. Effects of acute bleeding followed by hydroxyethyl starch 130/0.4 or a crystalloid on propofol concentrations, cerebral oxygenation, and electroencephalographic and haemodynamic variables in pigs. Vet. Med. Int. 2014, 2014, 710394. [Google Scholar] [CrossRef]
- Silva, A.; Venâncio, C.; Ortiz, A.L.; Souza, A.P.; Amorim, P.; Ferreira, D.A. The effect of high doses of remifentanil in brain near-infrared spectroscopy and in electroencephalographic parameters in pigs. Vet. Anaesth. Analg. 2014, 41, 153–162. [Google Scholar] [CrossRef]
- Madjdpour, C.; Dettori, N.; Frascarolo, P.; Burki, M.; Boll, M.; Fisch, A.; Bombeli, T.; Spahn, D.R. Molecular weight of hydroxyethyl starch: Is there an effect on blood coagulation and pharmacokinetics? Br. J. Anaesth. 2005, 94, 569–576. [Google Scholar] [CrossRef]
- Cheng, M.-X.; Chen, Z.-Z.; Cai, Y.-L.; Liu, C.-A.; Tu, B. Astragaloside IV protects against ischemia reperfusion in a murine model of orthotopic liver transplantation. Transplant. Proc. 2011, 43, 1456–1461. [Google Scholar] [CrossRef]
- Detre, S.; Jotti, G.S.; Dowsett, M. A “quickscore” method for immunohistochemical semiquantitation: Validation for oestrogen receptor in breast carcinomas. J. Clin. Pathol. 1995, 48, 876–878. [Google Scholar] [CrossRef]
- Yilmaz, S.; Ates, E.; Tokyol, C.; Pehlivan, T.; Erkasap, S.; Koken, T. The protective effect of erythropoietin on ischaemia/reperfusion injury of liver. HPB 2004, 6, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Quireze, C.; Montero, E.F.d.S.; Leitão, R.M.C.; Juliano, Y.; Fagundes, D.J.; Poli-De-Figueiredo, L.F. Ischemic preconditioning prevents apoptotic cell death and necrosis in early and intermediate phases of liver ischemia-reperfusion injury in rats. J. Investig. Surg. 2006, 19, 229–236. [Google Scholar] [CrossRef]
- Yi, S.; Tao, X.; Wang, Y.; Cao, Q.; Zhou, Z.; Wang, S. Effects of propofol on macrophage activation and function in diseases. Front. Pharmacol. 2022, 13, 964771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zikria, B.A.; Subbarao, C.; Oz, M.C.; Shih, S.T.; Mcleod, P.F.; Sachdev, R.; Freeman, H.P.; Hardy, M.A. Macromolecules reduce abnormal microvascular permeability in rat limb ischemia-reperfusion injury. Crit. Care Med. 1989, 17, 1306–1309. [Google Scholar] [CrossRef] [PubMed]
- Handrigan, M.T.; Burns, A.R.; Donnachie, E.M.; Bowden, R.A. Hydroxyethyl starch inhibits neutrophil adhesion and tran-sendothelial migration. Shock 2005, 24, 434–439. [Google Scholar] [CrossRef]
- Rittoo, D.; Gosling, P.; Simms, M.H.; Smith, S.R.G.; Vohra, R.K. The Effects of Hydroxyethyl Starch Compared with Gelofusine on Activated Endothelium and the Systemic Inflammatory Response Following Aortic Aneurysm Repair. Eur. J. Vasc. Endovasc. Surg. 2005, 30, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, J.G.; Birklein, F.; Neundörfer, B. Omeprazole-induced delirium. J. Neurol. 2000, 247, 56–57. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, X.; Sun, C.; Sun, D.; Li, Y.; Yang, M. Systemic inflammation and multiple organ injury in traumatic hemorrhagic shock. Front. Biosci. 2015, 20, 927–933. [Google Scholar] [CrossRef]
- Hüttemann, M.; Pecina, P.; Rainbolt, M.; Sanderson, T.H.; Kagan, V.E.; Samavati, L.; Doan, J.W.; Lee, I. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011, 11, 369–381. [Google Scholar] [CrossRef]
- Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001, 15, 2922–2933. [Google Scholar]
- Dalibon, N.; Schlumberger, S.; Saada, M.; Fischler, M.; Riou, B. Haemodynamic assessment of hypovolaemia under general anaesthesia in pigs submitted to graded haemorrhage and retransfusion. Br. J. Anaesth. 1999, 82, 97–103. [Google Scholar] [CrossRef]
- Collins, J.A.; Schandl, C.A.; Young, K.K.; Vesely, J.; Willingham, M.C. Major DNA fragmentation is a late event in apoptosis. J. Histochem. Cytochem. 1997, 45, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Leers, M.P.G.; Björklund, V.; Björklund, B.; Jörnvall, H.; Nap, M. An immunohistochemical study of the clearance of apoptotic cellular fragments. Cell. Mol. Life Sci. 2002, 59, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Wisse, E.; De Zanger, R.B.; Jacobs, R.; McCuskey, R.S. Scanning electron microscope observations on the structure of portal veins, sinusoids and central veins in rat liver. Scan Electron Microsc. 1983, 3 Pt 3, 1441–1452. [Google Scholar] [PubMed]
- Fujii, Y.; Tanabe, T.; Yamashiro, T.; Shirai, M.; Takewa, Y.; Tatsumi, E. Effect of Hydroxyethyl Starch Priming on the Systemic Inflammatory Response and Lung Edema after Cardiopulmonary Bypass in a Rat Model. Asaio J. 2017, 63, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Schimmer, R.C.; Urner, M.; Voigtsberger, S.; Booy, C.; Z’graggen, B.R.; Beck-Schimmer, B.; Schläpfer, M.; Stover, C.M. Inflammatory Kidney and Liver Tissue Response to Different Hydroxyethylstarch (HES) Preparations in a Rat Model of Early Sepsis. PLoS ONE 2016, 11, e0151903. [Google Scholar] [CrossRef] [PubMed]
- Myburgh, J.A.; Finfer, S.; Bellomo, R.; Billot, L.; Cass, A.; Gattas, D.; Glass, P.; Lipman, J.; Liu, B.; McArthur, C.; et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N. Engl. J. Med. 2012, 367, 1901–1911. [Google Scholar] [CrossRef]
- Lagny, M.-G.; Roediger, L.; Koch, J.-N.; Dubois, F.; Senard, M.; Donneau, A.-F.; Hubert, M.B.; Hans, G.A. Hydroxyethyl Starch 130/0.4 and the Risk of Acute Kidney Injury After Cardiopulmonary Bypass: A Single-Center Retrospective Study. J. Cardiothorac. Vasc. Anesth. 2016, 30, 869–875. [Google Scholar] [CrossRef]
- Perner, A.; Haase, N.; Guttormsen, A.B.; Tenhunen, J.; Klemenzson, G.; Åneman, A.; Madsen, K.R.; Møller, M.H.; Elkjær, J.M.; Poulsen, L.M.; et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N. Engl. J. Med. 2012, 367, 124–134. [Google Scholar] [CrossRef]
- Ferreira, D.A.; Cruz, R.; Venâncio, C.; Faustino-Rocha, A.I.; Silva, A.; Mesquita, J.R.; Ortiz, A.L.; Vala, H. Evaluation of renal injury caused by acute volume replacement with hydroxyethyl starch 130/0.4 or Ringer’s lactate solution in pigs. J. Vet. Sci. 2018, 19, 608–619. [Google Scholar] [CrossRef] [PubMed]
Group 1 | Group 2 | Group 3 | |
---|---|---|---|
Duration of bleeding period (minutes) (p > 0.050) | 20 ± 0.6 | 21 ± 0.9 | -- |
Duration of waiting period (minutes) (p > 0.050) | 26 ± 2.3 | 25 ± 2.9 | -- |
Duration of the volume reposition period (minutes) (p < 0.050) | 43 ± 5.9 * | 35 ± 5.1 * | -- |
Duration of the final waiting period (minutes (p > 0.050) | 65 ± 2.7 | 64 ± 5.9 | -- |
Duration from intubation until euthanasia (hours) (p > 0.050) | 4 ± 0.5 | 5 ± 0.6 | 4.2 ± 0.3 |
Liver Damage | Experimental Group | |||
---|---|---|---|---|
Group 1 (RL) n = 6 | Group 2 (HES 130/0.4) n = 6 | Group 3 (Control) n = 6 | ||
Hepatocellular lesions | ||||
Hydropic degeneration (p > 0.050) | 3 (50.0) | 1 (16.7) | 1 (16.7) | |
Hepatocellular vacuolation (p > 0.050) | 3 (50.0) | 0 (0.0) | 1 (16.7) | |
Inflammation | ||||
Lobular (p > 0.050) | 2 (33.3) | 3 (50.0) | 3 (50.0) | |
Portal (p > 0.050) | 3 (50.0) | 4 (66.7) | 4 (66.7) | |
Midzonal (p > 0.050) | 3 (50.0) | 4 (66.7) | 4 (66.7) | |
Vascular lesions | ||||
Congestion (p > 0.050) | 5 (83.3) | 5 (83.3) | 4 (66.7) | |
Hyperaemia (p > 0.050) | 0 (0.0) | 3 (50.0) | 2 (33.3) | |
Haemorrhage (p > 0.050) | 0 (0.0) | 2 (33.3) | 0 (0.0) | |
Oedema (p > 0.050) | 1 (16.7) | 0 (0.0) | 1 (16.7%) |
Cytochrome c | Experimental Group | |||
---|---|---|---|---|
Group 1 (RL) (n = 6) | Group 2 (HES 130/0.4) (n = 6) | Group 3 (Control) (n = 6) | ||
Q-score (p > 0.050) | 0 (undetectable) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
1 (weak) | 1 (16.7%) | 0 (0.0%) | 0 (0.0%) | |
2 (moderate) | 4 (66.7%) | 2 (33.3%) | 3 (50.0%) | |
3 (intense) | 1 (16.7%) | 3 (50.0%) | 1 (16.7%) | |
4 (very intense) | 0 (0.0%) | 1 (16.7%) | 2 (33.3%) | |
Mean Q-score | 2.0 | 2.8 | 2.8 |
TUNEL | Experimental Group | |||
---|---|---|---|---|
Group 1 (RL) (n = 6) | Group 2 (HES 130/0.4) (n = 6) | Group 3 (Control) (n = 6) | ||
Q-score (p > 0.050) | 0 (undetectable) | 1/6 (16.7) | 0/6 (0.0) | 2/6 (33.3) |
1 (weak) | 3/6 (50.0) | 1/6 (16.7) | 0/6 (0.0) | |
2 (moderate) | 1/6 (16.7) | 3/6 (50.0) | 4/6 (66.7) | |
3 (intense) | 1/6 (16.7) | 2/6 (33.3) | 0/6 (0.0) | |
4 (very intense) | 0/6 (0.0) | 0/6 (0.0) | 0/6 (0.0) | |
Mean Q-score | 1.3 | 2.2 | 1.3 | |
H-score (p > 0.050) | 62.6 ± 84.6 | 135.08 ± 75.5 | 50.5 ± 45.8 | |
Total number of apoptotic cells (p > 0.050) | 606.2 ± 610.1 | 1390.5 ± 560.9 | 677.3 ± 570.8 | |
Apoptotic index (%) (p > 0.050) | 33.8 ± 35.6 | 68.7 ± 26.6 | 29.7 ± 25.3 | |
Apoptotic cells/mm2 (p > 0.050) | 1273.5 ± 1281.1 | 2920.2 ± 1178.2 | 1423.0 ± 1199.1 |
M30 | Experimental Group | |||
---|---|---|---|---|
Group 1 (RL) (n = 6) | Group 2 (HES 130/0.4) (n = 6) | Group 3 (Control) (n = 6) | ||
Q-score (p < 0.010) | 0 (undetectable) | 0/6 (0.0) | 0/6 (0.0) | 0/6 (0.0) |
1 (weak) | 5/6 (83.3) | 0/6 (0.0) | 4/6 (66.7) | |
2 (moderate) | 0/6 (0.0) | 1/6 (16.7) | 2/6 (33.3) | |
3 (intense) | 1/6 (16.7) | 5/6 (83.3) | 0/6 (0.0) | |
4 (very intense) | 0/6 (0.0) | 0/6 (0.0) | 0/6 (0.0) | |
Mean Q-score | 1.3 | 2.8 a,b | 1.3 | |
H-score (p < 0.010) | 62.0 ± 39.9 | 128.3 ± 38.8 a,b | 56.8 ± 28.9 | |
Total number of apoptotic cells (p > 0.050) | 942.2 ± 498.4 | 1533.5 ± 463.7 | 936.8 ± 386.3 | |
Apoptotic index (%) (p < 0.050) | 42.7 ± 19.2 | 65.5 ± 13.9 a,b | 39.8 ± 12.2 | |
Apoptotic cells/mm2 (p > 0.050) | 998.2 ± 514.3 | 1612.5 ± 487.6 | 940.1 ± 377.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vala, H.; Faustino-Rocha, A.I.; Cruz, R.; Venâncio, C.; Silva, A.; Mesquita, J.R.; Ortiz, A.L.; Ferreira, D.A. Hepatocellular Early Apoptosis Associated with HES 130/0.4 Administration for Volume Replacement in Pigs After Severe Bleeding. Vet. Sci. 2025, 12, 787. https://doi.org/10.3390/vetsci12090787
Vala H, Faustino-Rocha AI, Cruz R, Venâncio C, Silva A, Mesquita JR, Ortiz AL, Ferreira DA. Hepatocellular Early Apoptosis Associated with HES 130/0.4 Administration for Volume Replacement in Pigs After Severe Bleeding. Veterinary Sciences. 2025; 12(9):787. https://doi.org/10.3390/vetsci12090787
Chicago/Turabian StyleVala, Helena, Ana I. Faustino-Rocha, Rita Cruz, Carlos Venâncio, Aura Silva, João R. Mesquita, Ana Liza Ortiz, and David A. Ferreira. 2025. "Hepatocellular Early Apoptosis Associated with HES 130/0.4 Administration for Volume Replacement in Pigs After Severe Bleeding" Veterinary Sciences 12, no. 9: 787. https://doi.org/10.3390/vetsci12090787
APA StyleVala, H., Faustino-Rocha, A. I., Cruz, R., Venâncio, C., Silva, A., Mesquita, J. R., Ortiz, A. L., & Ferreira, D. A. (2025). Hepatocellular Early Apoptosis Associated with HES 130/0.4 Administration for Volume Replacement in Pigs After Severe Bleeding. Veterinary Sciences, 12(9), 787. https://doi.org/10.3390/vetsci12090787