A Comprehensive Review: Bovine Respiratory Disease, Current Insights into Epidemiology, Diagnostic Challenges, and Vaccination
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Economic Impact of BRD
4. Prevalence of BRD
5. Key Pathogens Implicated in BRD Pathogenesis
5.1. Viral Agents Associated with BRD
5.2. Bovine Herpesvirus 1 (BoHV-1)
5.3. Bovine Respiratory Syncytial Virus (BRSV)
5.4. Bovine Parainfluenza 3 (BPIV-3)
5.5. Bovine Viral Diarrhea Virus (BVDV)
5.6. Bovine Coronavirus (BCoV)
5.7. Bovine Adenovirus (BAV)
5.8. Bovine Rhinitis a Virus 1 (BRAV1) and Bovine Rhinitis a Virus 2 (BRAV2)
5.9. Influenza C (ICV) and Influenza D (IDV) Virus
Pathogen | Characteristics | Host Entry and Transmission | Mechanism of Immunosuppression/Infection |
---|---|---|---|
Bovine Herpesvirus 1 (BoHV-1) | A large, enveloped double-stranded DNA virus of the Varicellovirus genus in the subfamily Alphaherpesvirinae within the family Herpesviridae [67]. | Entry through respiratory mucosa; causes epithelial cell apoptosis, Fever, rhinotracheitis, cough, conjunctivitis, oral ulcers; reproductive tract infection with abortion [68]. | BoHV-1 can erode mucosal surfaces and cause lesions in the URT [67,69,70]. Acute infection can impair CD8₊ T cell recognition of infected cells and the functioning of CD4₊ T cells [67,71]. |
Bovine Respiratory Syncytial Virus (BRSV) | Negative strand RNA virus of the Paramyxoviridae family [68]. | Entry through respiratory mucosa; Penetrate or degrade the mucous and invade epithelia cells through sialic acid binding [50]. Infects bronchial epithelium, causes syncytial cell formation, bronchiolitis. Fever, cough, increased respiratory rate, depression [68]. Lung pathology as result of BRSV infection is due to the induction of pro-inflammatory cytokines and the inflow of leukocytes, mainly neutrophils [72,73,74]. | The attachment protein G aids in the attachment of the virus to host cells and may play a role in immune system interaction [50]. The G protein in BRSV binds to sialic acid residues on cell surfaces within the respiratory tract and with the fusion protein, mediates the attachment and entry of virions to cells [50]. |
Bovine Parainfluenza 3 (BPIV-3) | An enveloped virus of the Paramyxoviridae family containing a non-segmented, single-stranded, negative-sense RNA genome [50]. | Transmitted primarily via aerosol through the population [75]. Penetrate or degrade the mucous and invade epithelia cells through sialic acid binding [50]. Shown to infect tracheal cells, ciliated and non-ciliated bronchiolar cells [50] pneumocytes and pulmonary alveolar macrophages [50]. | Hemagglutinin-neuraminidase (HN) protein binds to sialic acid residues present on cell surfaces throughout the respiratory tract. The HN proteins with the fusion protein mediate attachment and entry of the virions into the cells [50]. Penetrate or degrade the mucous and infect epithelial cells of the upper respiratory tract through the binding to sialic acid residue (9-carboncarboxylated monosaccharides produced in animals, often used by pathogens as attachment sites [76] on cell membranes [50]. |
Bovine Viral Diarrhoea Virus (BVDV) | A positive strand RNA virus of the genus Pestivirus, and family Flaviviridae [68]. | Spread in secretions; causes multiple system disease (abortion, persistent infection) [68]. Infects a wide range of cell types but primarily infects immune cells such as monocytes/macrophages, dendritic cells and lymphocytes [77]. | Capable of interfering with type 1 IFN signalling for the establishment of persistent infection [77]. BVDV glycoprotein Erns is able to inhibit IFN expression [78]. The Npro glycoprotein is also essential in the blockage of type 1 IFN [77]. |
Bovine Coronavirus (BCoV) | A single stranded positive-sense RNA virus belonging to the species Betacoronavirus 1 (subgenus Embecovirus) of the Betacoronavirus genus [79,80]. | Entry through respiratory mucosa and mouth; infects upper and lower respiratory tract and intestine, causes coughing, fever, rhinitis, loss of appetite, diarrhoea [54]. | The HE and S viral proteins aid attachment to N-acetyl-9-O-acetylneuraminic acid to initiate infections [79,81,82,83]. |
Influenza D | A novel RNA pathogen belonging to the family Orthomyxoviridae. | Transmission is through direct contact [84] and by aerosol route over short distances; causes lesions in the upper respiratory tract and can replicate in the lower respiratory tract and cause pneumonia [85]. | Hemagglutinin-esterase fusion (HEF) glycoproteins aid virus entry to cells [86]. |
Influenza C | An orthomyxovirus first detected in BRD cattle in North America in 2016 [87]. | Like Influenza D virus, transmission is through direct contact or via aerosol over short distances [88]. | The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity [89]. |
Bovine Adenovirus | Member of the adenoviridae family; non-enveloped double stranded DNA virus [90]. | Infections in cattle can be asymptomatic and can occur in the respiratory [91] and alimentary tracts of calves [92]. | The viral particle gains entry to host cells by interaction with a primary receptor on the cell surface, followed by interaction with a secondary receptor allowing for viral endocytosis and transportation to the endosome [93,94]. |
5.10. Bacterial Pathogens Associated with BRD
Pathogen | Characteristics | Method of Pathogenesis | Mechanism of Immunosuppression |
---|---|---|---|
Pasteurella multocida | A small, non-motile, facultative anaerobic, Gram-negative coccobacillus, measuring approximately 0.3 to 1.0 μm in width and 1.0 to 2.0 μm in length. Five capsular serogroups (A, B, D, E, F) [34,106,107] and 16 seroptypes have been classified [34,108]. | Commensal bacteria present in the upper respiratory tract; stress resulting from viral infections allow for opportunistic infection of the lung [68]. | Virulence factors include a capsule which plays a role in resisting phagocytosis by host cells [34,109]. Outer membrane proteins (e.g., OmpA and type IV fimbriae which may play a role it the adherence to host cells [34,110,111]. Lipopolysaccharide which interacts with the host innate immune response through Toll-like receptors playing a role in the disease process [34,112]. |
Histophilus somni | A non-encapsulated, Gram-negative coccobacillus of the Pasteurellaceae family [34]. | Commensal bacteria of the upper respiratory tract and reproductive tract, involved in diseases such as thrombotic meningoencephalitis, respiratory disease, myocarditis, polysynovitis, otitis media, mastitis and reproductive tract diseases [34]. | Capable of adhering to the endothelial cells causing platelet activation and thrombus formation; the production of lipooligosaccharide can induce apoptosis of endothelial cells [34,113,114]. Capable of biofilm formation with P. multocida [34,115]. |
Mannheimia haemolytica | A Gram-negative, non-motile, non-spore forming, facultative, coccobacillus of the Pasteurellaceae family [68,116]. Comprises 12 capsular serotypes (A1, A2, A5, A6, A7, A8, A9, A12, A13, A14, A16, A17) [116,117]. | Commensal bacteria present in the upper respiratory tract; stress resulting from viral infections allow for opportunistic infection of the lung [68]. | Multiple virulence factors including an adhesion, capsular polysaccharide, iron-regulated outer membrane proteins, leukotoxin (Lkt), LPS, lipoproteins, neuraminidase, a serotype-specific antigen, sialoglycoprotease and transferrin-binding proteins [116]. |
Mycoplasma bovis | A wall-less bacterium of class Mollicutes [68]. | Causes mastitis, anorexia, nasal discharge; synergistic with other BRD pathogens, forms biofilms to facilitate persistence [68]. Adapted to colonize and persist in mucosal surfaces, with or without causing clinical disease [118]. | A lack of a cell wall amongst Mycoplasmas leave membrane proteins exposed and allow them to be the primary interface with the host [118]. Immunodominant variable surface lipoproteins contained by M. bovis exhibit strain variation, allowing for a vast antigenic variation in M. bovis populations, contributing to immune evasion and persistence [118,119]. |
Mycoplasma bovirhinis | A wall-less bacterium of class Mollicutes [68]. | A commonly identified species in respiratory diseases in cattle [120]. Mainly isolated from nasal mucous [121] and lung [55,122]. | Adherence proteins allow cell adherence and lipoproteins on the mycoplasma surface modulate interactions between pathogen and host–cell, antigenic variation and immune evasion [120]. Glycerol metabolism and the production of H2O2 influence Mycoplasma virulence [120,123,124]. |
6. Clinical Diagnosis of BRD
6.1. Clinical Respiratory Scoring Methods
6.2. Behavioural Monitoring
6.3. Thoracic Auscultation
6.4. Thoracic Ultrasonography (TUS)
7. Vaccination as a Preventive Strategy Against BRD
8. Prevention of BRD
9. Conclusions
10. Implications
11. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADG | Average daily gain |
AMR | Antimicrobial resistance |
BCoV | Bovine coronavirus |
BoHV-1 | Bovine herpesvirus 1 |
BPI3V | Bovine parainfluenza 3 |
BRAV1 | Bovine rhinitis A virus 1 |
BRAV2 | Bovine rhinitis A virus 2 |
BRD | Bovine respiratory disease |
BRSV | Bovine respiratory syncytial virus |
BVDV | Bovine viral diarrhoea virus |
CALA | Computer Aided Lung Auscultation |
CRS | Clinical respiratory scoring |
HN | Hemagglutinin-neuraminidase |
IDV | Influenza D virus |
IFN | Interferon |
Se | Sensitivity |
Sp | Specificity |
Lkt | Leukotoxin |
LPS | Lipopolysaccharide |
LRT | Lower respiratory tract |
MLV | Modified live vaccine |
M. bovis | Mycoplasma bovis |
TUS | Thoracic ultrasonography |
US | Unites states |
URT | Upper respiratory tract |
WBC | White blood cell |
References
- Raaperi, K.; Nurmoja, I.; Orro, T.; Viltrop, A. Seroepidemiology of bovine herpesvirus 1 (BHV1) infection among Estonian dairy herds and risk factors for the spread within herds. Prev. Vet. Med. 2010, 96, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.M.; More, S.J.; Sammin, D.; Casey, M.J.; McElroy, M.C.; O’Neill, R.G.; Byrne, W.J.; Earley, B.; Clegg, T.A.; Ball, H. Pathogens, patterns of pneumonia, and epidemiologic risk factors associated with respiratory disease in recently weaned cattle in Ireland. J. Vet. Diagn. Investig. 2017, 29, 20–34. [Google Scholar] [CrossRef]
- Buczinski, S.; Fecteau, G.; Dubuc, J.; Francoz, D. Validation of a clinical scoring system for bovine respiratory disease complex diagnosis in preweaned dairy calves using a Bayesian Framework. Prev. Vet. Med. 2018, 156, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Cirone, F.; Padalino, B.; Tullio, D.; Capozza, P.; Losurdo, M.; Lanave, G.; Pratelli, A. Prevalence of pathogens related to bovine respiratory disease before and after transportation in beef steers: Preliminary results. Animals 2019, 9, 1093. [Google Scholar] [CrossRef]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Karle, B.M.; Rossitto, P.V.; Lehenbauer, T.W.; Aly, S.S. Epidemiology of bovine respiratory disease (BRD) in preweaned calves on California dairies: The BRD 10K study. J. Dairy Sci. 2019, 102, 7306–7319. [Google Scholar] [CrossRef]
- Cuevas-Gómez, I.; McGee, M.; McCabe, M.; Cormican, P.; O’Riordan, E.; McDaneld, T.; Earley, B. Growth performance and hematological changes of weaned beef calves diagnosed with respiratory disease using respiratory scoring and thoracic ultrasonography. J. Anim. Sci. 2020, 98, skaa345. [Google Scholar] [CrossRef]
- Cuevas-Gómez, I.; McGee, M.; Sánchez Gómez, J.M.; O’Riordan, E.G.; Byrne, N.; McDaneld, T.G.; Earley, B. Association between clinical respiratory signs, lung lesions detected by thoracic ultrasonography and growth performance in pre-weaned dairy calves. Ir. Vet. J. 2021, 74, 7. [Google Scholar] [CrossRef] [PubMed]
- Studer, E.; Schönecker, L.; Meylan, M.; Stucki, D.; Dijkman, R.; Holwerda, M.; Glaus, A.; Becker, J. Prevalence of BRD-related viral pathogens in the upper respiratory tract of Swiss veal calves. Animals 2021, 11, 1940. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, J.; Chen, X.; Wei, X.; Wu, C.; Cui, Q.; Hao, Y. Investigation of viral pathogens in cattle with bovine respiratory disease complex in Inner Mongolia, China. Microb. Pathog. 2021, 153, 104594. [Google Scholar] [CrossRef]
- Baxter-Smith, K.; More, J.; Hyde, R. Use of thoracic ultrasound on Scottish dairy cattle farms to support the diagnosis and treatment of bovine respiratory disease in calves. Vet. Rec. 2021, 190, e939. [Google Scholar] [CrossRef]
- Windeyer, M.; Leslie, K.; Godden, S.M.; Hodgins, D.; Lissemore, K.; LeBlanc, S. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev. Vet. Med. 2014, 113, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Cantor, M.C.; Costa, J.H.C. Daily behavioral measures recorded by precision technology devices may indicate bovine respiratory disease status in preweaned dairy calves. J. Dairy Sci. 2022, 105, 6070–6082. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, D.; Szymańska-Czerwińska, M.; Dudek, K. Bovine respiratory syndrome (BRD) etiopathogenesis, diagnosis and control. In A Bird’s-Eye View of Veterinary Medicine; Perez-Marin, C.C., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 363–378. [Google Scholar]
- Hilton, W.M. BRD in 2014: Where have we been, where are we now, and where do we want to go. Anim. Health Res. Rev. 2014, 15, 120–122. [Google Scholar] [CrossRef]
- Mosier, D. Review of BRD pathogenesis: The old and the new. Anim. Health Res. Rev. 2015, 15, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.S.; Davidson, J.L.; Verma, M.S. Strategies for bovine respiratory disease (BRD) diagnosis and prognosis: A comprehensive overview. Animals 2024, 14, 627. [Google Scholar] [CrossRef]
- Barratt, A.S.; Rich, K.M.; Eze, J.I.; Porphyre, T.; Gunn, G.J.; Stott, A.W. Framework for estimating indirect costs in animal health using time series analysis. Front. Vet. Sci. 2019, 6, 190. [Google Scholar] [CrossRef]
- Kappes, A.; Tozooneyi, T.; Shakil, G.; Railey, A.F.; McIntyre, K.M.; Mayberry, D.E.; Rushton, J.; Pendell, D.L.; Marsh, T.L. Livestock health and disease economics: A scoping review of selected literature. Front. Vet. Sci. 2023, 10, 1168649. [Google Scholar] [CrossRef]
- Blakebrough-Hall, C.; McMeniman, J.P.; González, L.A. An evaluation of the economic effects of bovine respiratory disease on animal performance, carcass traits, and economic outcomes in feedlot cattle defined using four BRD diagnosis methods. J. Anim. Sci. 2020, 98, skaa005. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Saif, L.J. Bovine immunology: Implications for dairy cattle. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Wang, M.; Schneider, L.G.; Hubbard, K.J.; Grotelueschen, D.M.; Daly, R.F.; Stokka, G.S.; Smith, D.R. Beef producer survey of the cost to prevent and treat bovine respiratory disease in preweaned calves. J. Am. Vet. Med. Assoc. 2018, 253, 617–623. [Google Scholar] [CrossRef]
- Dubrovsky, S.; Van Eenennaam, A.; Aly, S.; Karle, B.; Rossitto, P.V.; Overton, M.; Lehenbauer, T.; Fadel, J. Preweaning cost of bovine respiratory disease (BRD) and cost-benefit of implementation of preventative measures in calves on California dairies: The BRD 10K Study. J. Dairy Sci. 2020, 103, 1583–1597. [Google Scholar] [CrossRef]
- Overton, M.W. Economics of respiratory disease in dairy replacement heifers. Anim. Health Res. Rev. 2020, 21, 143–148. [Google Scholar] [CrossRef]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Pardon, B.; Hostens, M.; Duchateau, L.; Dewulf, J.; Soens, H.; Piepers, S.; De Bleecker, K.; Callens, J.; Catry, B. Impact of respiratory disease, diarrhea, otitis and arthritis on mortality and carcass traits in white veal calves. BMC Vet. Res. 2013, 9, 79. [Google Scholar] [CrossRef]
- Delabouglise, A.; Fournié, G.; Peyre, M.; Antoine-Moussiaux, N.; Boni, M.F. Elasticity and substitutability of food demand and emerging disease risk on livestock farms. R. Soc. Open Sci. 2023, 10, 221304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Department of Agriculture, Food and the Marine (DAFM). All-Island Animal Disease Surveillance Report 2023. Available online: https://www.animalhealthsurveillance.agriculture.gov.ie/currentnews/allislanddiseasesurveillancereport2023.html (accessed on 5 August 2025).
- Donlon, J.D.; Mee, J.F.; McAloon, C.G. Prevalence of respiratory disease in Irish preweaned dairy calves using Hierarchical Bayesian Latent Class Analysis. Front. Vet. Sci. 2023, 10, 1168357. [Google Scholar] [CrossRef]
- Karle, B.M.; Maier, G.U.; Love, W.J.; Dubrovsky, S.A.; Williams, D.R.; Anderson, R.J.; Van Eenennaam, A.L.; Lehenbauer, T.W.; Aly, S.S. Regional management practices and prevalence of bovine respiratory disease in California’s preweaned dairy calves. J. Dairy Sci. 2019, 102, 7583–7596. [Google Scholar] [CrossRef] [PubMed]
- Lago, A.; McGuirk, S.; Bennett, T.; Cook, N.; Nordlund, K. Calf respiratory disease and pen microenvironments in naturally ventilated calf barns in winter. J. Dairy Sci. 2006, 89, 4014–4025. [Google Scholar] [CrossRef]
- Gay, E.; Barnouin, J. A nation-wide epidemiological study of acute bovine respiratory disease in France. Prev. Vet. Med. 2009, 89, 265–271. [Google Scholar] [CrossRef]
- van Leenen, K.; Jouret, J.; Demeyer, P.; Van Driessche, L.; De Cremer, L.; Masmeijer, C.; Boyen, F.; Deprez, P.; Pardon, B. Associations of barn air quality parameters with ultrasonographic lung lesions, airway inflammation and infection in group-housed calves. Prev. Vet. Med. 2020, 181, 105056. [Google Scholar] [CrossRef]
- Lima, S.F.; Teixeira, A.G.; Higgins, C.H.; Lima, F.S.; Bicalho, R.C. The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media. Sci. Rep. 2016, 6, 29050. [Google Scholar] [CrossRef]
- Murray, G.M.; O’Neill, R.G.; More, S.J.; McElroy, M.C.; Earley, B.; Cassidy, J.P. Evolving views on bovine respiratory disease: An appraisal of selected key pathogens—Part 1. Vet. J. 2016, 217, 95–102. [Google Scholar] [CrossRef] [PubMed]
- McGuirk, S.M. Disease management of dairy calves and heifers. Vet. Clin. North Am. Food Anim. Pract. 2008, 24, 139–153. [Google Scholar] [CrossRef]
- Guterbock, W.M. The impact of BRD: The current dairy experience. Anim. Health Res. Rev. 2014, 15, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Delabouglise, A.; James, A.; Valarcher, J.F.; Hägglund, S.; Raboisson, D.; Rushton, J. Linking disease epidemiology and livestock productivity: The case of bovine respiratory disease in France. PLoS ONE 2017, 12, e0189090. [Google Scholar] [CrossRef]
- Kudirkiene, E.; Aagaard, A.K.; Schmidt, L.M.B.; Pansri, P.; Krogh, K.M.; Olsen, J.E. Occurrence of major and minor pathogens in calves diagnosed with bovine respiratory disease. Vet. Microbiol. 2021, 259, 109135. [Google Scholar] [CrossRef]
- Mitra, N.; Cernicchiaro, N.; Torres, S.; Li, F.; Hause, B.M. Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus. J. Gen. Virol. 2016, 97, 1771–1784. [Google Scholar] [CrossRef]
- O’Neill, R.; Mooney, J.; Connaghan, E.; Furphy, C.; Graham, D. Patterns of detection of respiratory viruses in nasal swabs from calves in Ireland: A retrospective study. Vet. Rec. 2014, 175, 351. [Google Scholar] [CrossRef]
- Nissly, R.H.; Zaman, N.; Ibrahim, P.A.S.; McDaniel, K.; Lim, L.; Kiser, J.N.; Bird, I.M.; Chothe, S.K.; Bhushan, G.L.; Vandegrift, K. Influenza C and D viral load in cattle correlates with bovine respiratory disease (BRD): Emerging role of orthomyxoviruses in the pathogenesis of BRD. Virology 2020, 551, 10–15. [Google Scholar] [CrossRef]
- Ní Dhufaigh, K.; McCabe, M.; Cormican, P.; Cuevas-Gomez, I.; McGee, M.; McDaneld, T.; Earley, B. Genome sequence of an ungulate tetraparvovirus 1 from a nasal swab of an Irish beef-suckler calf. Microbiol. Resour. Announc. 2023, 12, e00911-22. [Google Scholar] [CrossRef] [PubMed]
- Sayers, R.; Byrne, N.; O’Doherty, E.; Arkins, S. Prevalence of exposure to bovine viral diarrhoea virus (BVDV) and bovine herpesvirus-1 (BoHV-1) in Irish dairy herds. Res. Vet. Sci. 2015, 100, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Brock, J.; Guelbenzu, M. BoHV-1 prevalence in Irish dairy herds. Vet. Irel. J. 2025, 16, 281–285. [Google Scholar]
- Barrett, D.; Parr, M.; Fagan, J.; Johnson, A.; Tratalos, J.; Lively, F.; Diskin, M.; Kenny, D. Prevalence of bovine viral diarrhoea virus (BVDV), bovine herpes virus 1 (BHV-1), leptospirosis and neosporosis, and associated risk factors in 161 Irish beef herds. BMC Vet. Res. 2018, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Jones, C. Latency of bovine herpesvirus 1 (BoHV-1) in sensory neurons. In Herpesviridae; Ongradi, J., Ed.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Petrini, S.; Iscaro, C.; Righi, C. Antibody responses to bovine alphaherpesvirus 1 (BoHV-1) in passively immunized calves. Viruses 2019, 11, 23. [Google Scholar] [CrossRef]
- Larsen, L.E. Bovine respiratory syncytial virus (BRSV): A review. Acta Vet. Scand. 2000, 41, 1–24. [Google Scholar] [CrossRef]
- Hägglund, S.; Näslund, K.; Svensson, A.; Lefverman, C.; Enül, H.; Pascal, L.; Siltenius, J.; Holzhauer, M.; Delabouglise, A.; Österberg, J.; et al. Longitudinal study of the immune response and memory following natural bovine respiratory syncytial virus infections in cattle of different age. PLoS ONE 2022, 17, e0274332. [Google Scholar] [CrossRef] [PubMed]
- Makoschey, B.; Berge, A.C. Review on bovine respiratory syncytial virus and bovine parainfluenza—Usual suspects in bovine respiratory disease—A narrative review. BMC Vet. Res. 2021, 17, 261. [Google Scholar] [CrossRef]
- Basqueira, N.S.; Martin, C.C.; dos Reis Costa, J.F.; Okuda, L.H.; Pituco, M.E.; Batista, C.F.; Della Libera, A.M.M.P.; Gomes, V. Bovine respiratory disease (BRD) complex as a signal for bovine viral diarrhoea virus (BVDV) presence in the herd. Acta Sci. Vet. 2017, 45, 6. [Google Scholar]
- Suzuki, T.; Otake, Y.; Uchimoto, S.; Hasebe, A.; Goto, Y. Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis. Viruses 2020, 12, 183. [Google Scholar] [CrossRef]
- Ní Dhufaigh, K.; McCabe, M.; Cormican, P.; Cuevas-Gomez, I.; McGee, M.; McDaneld, T.; Earley, B. Genome sequence of bovine coronavirus variants from the nasal virome of Irish beef suckler and pre-weaned dairy calves clinically diagnosed with bovine respiratory disease. Microbiol. Resour. Announc. 2022, 11, e00821-22. [Google Scholar] [CrossRef]
- Saif, L.J. Bovine respiratory coronavirus. Vet. Clin. Food Anim. Pract. 2010, 26, 349–364. [Google Scholar] [CrossRef]
- McDaneld, T.G.; Workman, A.M.; Chitko-McKown, C.G.; Kuehn, L.A.; Dickey, A.; Bennett, G.L. Detection of Mycoplasma bovirhinis and bovine coronavirus in an outbreak of bovine respiratory disease in nursing beef calves. Front. Microbiomes 2022, 1, 837619. [Google Scholar] [CrossRef]
- Paim, W.P.; Bauermann, F.V.; Kutish, G.F.; Pillatzki, A.; Long, C.; Ohnstad, M.; Diel, D.G. Identification and genetic characterization of an isolate of bovine adenovirus 7 from the United States, a putative member of a new species in the genus Atadenovirus. Arch. Virol. 2021, 166, 2835–2839. [Google Scholar] [CrossRef]
- Klein, M.; Earley, E.; Zellat, J. Isolation from cattle of a virus related to human adenovirus. Proc. Soc. Exp. Biol. Med. 1959, 102, 1–4. [Google Scholar] [CrossRef]
- Benko, M.; Harrach, B.; Both, G.; Russell, W.; Adair, B.; Adam, E.; Dejong, J.; Hess, M.; Johnson, M.; Kajon, A. Adenoviridae. In Virus Taxonomy. Eighth Report of the International Committee on the Taxonomy of Viruses; Fauquet, C.M., Ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: London, UK, 2005; pp. 213–228. [Google Scholar]
- Ng, T.F.F.; Kondov, N.O.; Deng, X.; Van Eenennaam, A.; Neibergs, H.L.; Delwart, E. A metagenomics and case-control study to identify viruses associated with bovine respiratory disease. J. Virol. 2015, 89, 5340–5349. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.A.; Calvert, V.; Curran, W.; Wylie, M.; Snodden, D.A.; Moffet, D.A.; Adair, B.M.; Smyth, J.A.; Benkö, M.; Papp, T. Isolation of bovine adenovirus serotype 6 from a calf in the United Kingdom. Vet. Rec. 2005, 156, 82–86. [Google Scholar] [CrossRef]
- Jesse, S.T.; Ciurkiewicz, M.; Siesenop, U.; Spitzbarth, I.; Osterhaus, A.; Baumgärtner, W.; Ludlow, M. Molecular characterization of a bovine adenovirus type 7 (Bovine Atadenovirus F) strain isolated from a systemically infected calf in Germany. Virol. J. 2022, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Hause, B.M.; Collin, E.A.; Anderson, J.; Hesse, R.A.; Anderson, G. Bovine rhinitis viruses are common in U.S. cattle with bovine respiratory disease. PLoS ONE 2015, 10, e0121998. [Google Scholar] [CrossRef]
- Flynn, O.; Gallagher, C.; Mooney, J.; Irvine, C.; Ducatez, M.; Hause, B.; McGrath, G.; Ryan, E. Influenza D virus in cattle, Ireland. Emerg. Infect. Dis. 2018, 24, 389–391. [Google Scholar] [CrossRef]
- O’Donovan, T.; Donohoe, L.; Ducatez, M.F.; Meyer, G.; Ryan, E. Seroprevalence of influenza D virus in selected sample groups of Irish cattle, sheep and pigs. Ir. Vet. J. 2019, 72, 11. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.; Falkenberg, S.M.; Kaplan, B.S.; Crossley, B.; Ridpath, J.F.; Bauermann, F.B.; Fossler, C.P.; Dargatz, D.A.; Dassanayake, R.P.; Vincent, A.L.; et al. Serosurvey for Influenza D Virus Exposure in Cattle, United States, 2014–2015. Emerg. Infect. Dis. 2019, 25, 2074–2080. [Google Scholar] [CrossRef]
- Saipinta, D.; Panyamongkol, T.; Chuammitri, P.; Suriyasathaporn, W. Reduction in Mortality of Calves with Bovine Respiratory Disease in Detection with Influenza C and D Virus. Animals 2022, 12, 3252. [Google Scholar] [CrossRef]
- Righi, C.; Franzoni, G.; Feliziani, F.; Jones, C.; Petrini, S. The cell-mediated immune response against bovine alphaherpesvirus 1 (BoHV-1) infection and vaccination. Vaccines 2023, 11, 785. [Google Scholar] [CrossRef]
- Gershwin, L.J.; Van Eenennaam, A.L.; Anderson, M.L.; McEligot, H.A.; Shao, M.X.; Toaff-Rosenstein, R.; Taylor, J.F.; Neibergs, H.L.; Womack, J.; Bovine respiratory disease complex coordinated agricultural project research team. Single pathogen challenge with agents of the bovine respiratory disease complex. PLoS ONE 2015, 10, e0142479. [Google Scholar] [CrossRef]
- Hodgson, P.; Aich, P.; Manuja, A.; Hokamp, K.; Roche, F.; Brinkman, F.; Potter, A.; Babiuk, L.; Griebel, P. Effect of stress on viral-bacterial synergy in bovine respiratory disease: Novel mechanisms to regulate inflammation. Comp. Funct. Genom. 2005, 6, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; Chowdhury, S. Bovine herpesvirus Type 1 (BHV-1) is an important cofactor in the bovine respiratory disease complex. Vet. Clin. Food Anim. Pract. 2010, 26, 303–321. [Google Scholar] [CrossRef] [PubMed]
- Jones, C. Bovine herpesvirus 1 counteracts immune responses and immune-surveillance to enhance pathogenesis and virus transmission. Front. Immunol. 2019, 10, 1234. [Google Scholar] [CrossRef]
- Ghildyal, R.; Ho, A.; Jans, D.A. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol. Rev. 2006, 30, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Valarcher, J.-F.; Taylor, G. Bovine respiratory syncytial virus infection. Vet. Res. 2007, 38, 153–180. [Google Scholar] [CrossRef]
- Sudaryatma, P.E.; Nakamura, K.; Mekata, H.; Sekiguchi, S.; Kubo, M.; Kobayashi, I.; Subangkit, M.; Goto, Y.; Okabayashi, T. Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells. Vet. Microbiol. 2018, 220, 33–38. [Google Scholar] [CrossRef]
- Werid, G.M.; Van, T.D.; Miller, D.; Hemmatzadeh, F.; Fulton, R.W.; Kirkwood, R.; Petrovski, K. Bovine parainfluenza-3 virus detection methods and prevalence in cattle: A systematic review and meta-analysis. Animals 2024, 14, 494. [Google Scholar] [CrossRef]
- Ghosh, S. Chapter 1—Sialic acid and biology of life: An introduction. In Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease; Ghosh, S., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–61. [Google Scholar]
- Brodersen, B.W. Bovine viral diarrhea virus infections: Manifestations of infection and recent advances in understanding pathogenesis and control. Vet. Pathol. 2014, 51, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Mätzener, P.; Magkouras, I.; Rümenapf, T.; Peterhans, E.; Schweizer, M. The viral RNase E(rns) prevents IFN type-I triggering by pestiviral single- and double-stranded RNAs. Virus Res. 2009, 140, 15–23. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Saif, L.J. Bovine coronavirus and the associated diseases. Front. Vet. Sci. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, B.; Sun, D. Advances in bovine coronavirus epidemiology. Viruses 2022, 14, 1109. [Google Scholar] [CrossRef]
- Vlasak, R.; Luytjes, W.; Spaan, W.; Palese, P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc. Natl. Acad. Sci. USA 1988, 85, 4526–4529. [Google Scholar] [CrossRef]
- Schultze, B.; Gross, H.; Brossmer, R.; Herrler, G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J. Virol. 1991, 65, 6232–6237. [Google Scholar] [CrossRef]
- Schultze, B.; Herrler, G. Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J. Gen. Virol. 1992, 73, 901–906. [Google Scholar] [CrossRef]
- Ferguson, L.; Olivier, A.K.; Genova, S.; Epperson, W.B.; Smith, D.R.; Schneider, L.; Barton, K.; McCuan, K.; Webby, R.J.; Wan, X.-F. Pathogenesis of influenza D virus in cattle. J. Virol. 2016, 90, 5636–5642. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.; Puig, A.; Bassols, M.; Fraile, L.; Armengol, R. Influenza D virus: A review and update of its role in bovine respiratory syndrome. Viruses 2022, 14, 2717. [Google Scholar] [CrossRef]
- Kwasnik, M.; Rola, J.; Rozek, W. Influenza D in domestic and wild animals. Viruses. 2023, 15, 2433. [Google Scholar] [CrossRef]
- Zhang, H.; Porter, E.; Lohman, M.; Lu, N.; Peddireddi, L.; Hanzlicek, G.; Marthaler, D.; Liu, X.; Bai, J. Influenza C virus in cattle with respiratory disease, United States, 2016–2018. Emerg. Infect. Dis. 2018, 24, 1926. [Google Scholar] [CrossRef] [PubMed]
- Chiapponi, C.; Faccini, S.; De Mattia, A.; Baioni, L.; Barbieri, I.; Rosignoli, C.; Nigrelli, A.; Foni, E. Detection of Influenza D Virus among Swine and Cattle, Italy. Emerg. Infect. Dis. 2016, 22, 352–354. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; He, W.; Zhang, X.; Wen, B.; Wang, C.; Xu, Q.; Li, G.; Zhou, J.; Veit, M.; et al. Genetic evolution and molecular selection of the HE gene of influenza C virus. Viruses 2019, 11, 167. [Google Scholar] [CrossRef]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C. Changes to virus taxonomy and the statutes ratified by the International Committee on Taxonomy of Viruses (2020). Arch. Virol. 2020, 165, 2737–2748. [Google Scholar] [CrossRef] [PubMed]
- Mattson, D.; Smith, P.; Schmitz, J. Isolation of bovine adenovirus type 4 from cattle in Oregon. Am. J. Vet. Res. 1977, 38, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.; Wheeler, J.; Lupton, H. Isolation of bovine adenovirus type 7 from calves with pneumonia and enteritis. Am. J. Vet. Res. 1978, 39, 1968–1971. [Google Scholar] [CrossRef]
- Berk, A. Adenoviridae: The viruses and their replication. In Fields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 2355–2394. [Google Scholar]
- Li, X.; Bangari, D.S.; Sharma, A.; Mittal, S.K. Bovine adenovirus serotype 3 utilizes sialic acid as a cellular receptor for virus entry. Virology 2009, 392, 162–168. [Google Scholar] [CrossRef]
- Grissett, G.; White, B.; Larson, R. Structured literature review of responses of cattle to viral and bacterial pathogens causing bovine respiratory disease complex. J. Vet. Intern. Med. 2015, 29, 770–780. [Google Scholar] [CrossRef]
- Frucchi, A.P.S.; Dall Agnol, A.M.; Caldart, E.T.; Bronkhorst, D.E.; Alfieri, A.F.; Alfieri, A.A.; Headley, S.A. The Role of mycoplasma bovirhinis in the development of singular and concomitant respiratory infections in dairy calves from Southern Brazil. Pathogens 2024, 13, 114. [Google Scholar] [CrossRef]
- McMullen, C.; Alexander, T.W.; Orsel, K.; Timsit, E. Progression of nasopharyngeal and tracheal bacterial microbiotas of feedlot cattle during development of bovine respiratory disease. Vet. Microbiol. 2020, 248, 108826. [Google Scholar] [CrossRef]
- Taylor, J.D.; Fulton, R.W.; Dabo, S.M.; Lehenbauer, T.W.; Confer, A.W. Comparison of genotypic and phenotypic characterization methods for Pasteurella multocida isolates from fatal cases of bovine respiratory disease. J. Vet. Diagn. Investig. 2010, 22, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.; Earley, B.; Cormican, P.; Murray, G.; Kenny, D.A.; Waters, S.M.; McGee, M.; Kelly, A.K.; McCabe, M.S. Illumina MiSeq 16S amplicon sequence analysis of bovine respiratory disease associated bacteria in lung and mediastinal lymph node tissue. BMC Vet. Res. 2017, 13, 118. [Google Scholar] [CrossRef]
- Doherty, M.; McElroy, M.; Markey, B.; Carter, M.; Ball, H. Isolation of mycoplasma bovis from a calf imported into the Republic of Ireland. Vet. Rec. 1994, 135, 13–14. [Google Scholar] [CrossRef] [PubMed]
- McAloon, C.I.; McAloon, C.G.; Tratalos, J.; O’Grady, L.; McGrath, G.; Guelbenzu, M.; Graham, D.A.; O’Keeffe, K.; Barrett, D.J.; More, S.J. Seroprevalence of mycoplasma bovis in bulk milk samples in Irish dairy herds and risk factors associated with herd seropositive status. J. Dairy Sci. 2022, 105, 5410–5419. [Google Scholar] [CrossRef]
- Ter Laak, E.; Noordergraaf, J.; Boomsluiter, E. The nasal mycoplasmal flora of healthy calves and cows. J. Vet. Med. Ser. B 1992, 39, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Centeno-Martinez, R.E.; Glidden, N.; Mohan, S.; Davidson, J.L.; Fernández-Juricic, E.; Boerman, J.P.; Schoonmaker, J.; Pillai, D.; Koziol, J.; Ault, A.; et al. Identification of bovine respiratory disease through the nasal microbiome. Anim. Microbiome 2022, 4, 15. [Google Scholar] [CrossRef]
- O’Connor, A.M.; Shen, H.G.; Wang, C.; Opriessnig, T. Descriptive epidemiology of Moraxella bovis, Moraxella bovoculi and Moraxella ovis in beef calves with naturally occurring infectious bovine keratoconjunctivitis (Pinkeye). Vet. Microbiol. 2012, 155, 374–380. [Google Scholar] [CrossRef]
- McAtee, T.B.; Pinnell, L.J.; Powledge, S.A.; Wolfe, C.A.; Morley, P.S.; Richeson, J.T. Effects of respiratory virus vaccination and bovine respiratory disease on the respiratory microbiome of feedlot cattle. Front. Microbiol. 2023, 14, 1203498. [Google Scholar] [CrossRef]
- Carter, G.R. Studies on pasteurella multocida. I. A hemagglutination test for the identification of serological types. Am. J. Vet. Res. 1955, 16, 481–484. [Google Scholar]
- Carter, G. A new sero-logical type of pasteurella multocida from Central Africa. Vet. Rec. 1961, 73, 1059–1060. [Google Scholar]
- Heddleston, K.L.; Gallagher, J.E.; Rebers, P.A. Fowl cholera: Gel diffusion precipitin test for Serotyping pasteurella multocida from Avian Species. Avian Dis. 1972, 16, 925–936. [Google Scholar] [CrossRef]
- Harmon, B.G.; Glisson, J.R.; Latimer, K.S.; Steffens, W.L.; Nunnally, J.C. Resistance of pasteurella multocida A:3,4 to phagocytosis by turkey macrophages and heterophils. Am. J. Vet. Res. 1991, 52, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Glorioso, J.C.; Jones, G.W.; Rush, H.G.; Pentler, L.J.; Darif, C.A.; Coward, J.E. Adhesion of type A pasteurella multocida to rabbit pharyngeal cells and its possible role in rabbit respiratory tract infections. Infect. Immun. 1982, 35, 1103–1109. [Google Scholar] [CrossRef]
- Dabo, S.M.; Confer, A.W.; Quijano-Blas, R.A. Molecular and immunological characterization of pasteurella multocida serotype A:3 OmpA: Evidence of its role in P. multocida interaction with extracellular matrix molecules. Microb. Pathog. 2003, 35, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.; Cox, A.D.; Adler, B.; Boyce, J.D. Pasteurella multocida lipopolysaccharide: The long and the short of It. Vet. Microbiol. 2011, 153, 109–115. [Google Scholar] [CrossRef]
- Sylte, M.J.; Corbeil, L.B.; Inzana, T.J.; Czuprynski, C.J. Haemophilus somnus induces apoptosis in bovine endothelial cells in vitro. Infect. Immun. 2001, 69, 1650–1660. [Google Scholar] [CrossRef]
- Kuckleburg, C.J.; McClenahan, D.J.; Czuprynski, C.J. Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization. Shock 2008, 29, 189–196. [Google Scholar] [CrossRef]
- Elswaifi, S.F.; Scarratt, W.K.; Inzana, T.J. The role of lipooligosaccharide phosphorylcholine in colonization and pathogenesis of histophilus somni in cattle. Vet. Res. 2012, 43, 1. [Google Scholar] [CrossRef]
- Rice, J.A.; Carrasco-Medina, L.; Hodgins, D.C.; Shewen, P.E. Mannheimia haemolytica and bovine respiratory disease. Anim. Health Res. Rev. 2007, 8, 117–128. [Google Scholar] [CrossRef]
- Angen, Ø.; Mutters, R.; Caugant, D.A.; Olsen, J.E.; Bisgaard, M. Taxonomic relationships of the [pasteurella] haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. Int. J. Syst. Evol. Microbiol. 1999, 49, 67–86. [Google Scholar]
- Maunsell, F.; Woolums, A.; Francoz, D.; Rosenbusch, R.; Step, D.; Wilson, D.J.; Janzen, E. Mycoplasma bovis infections in cattle. J. Vet. Intern. Med. 2011, 25, 772–783. [Google Scholar] [CrossRef]
- Beier, T.; Hotzel, H.; Lysnyansky, I.; Grajetzki, C.; Heller, M.; Rabeling, B.; Yogev, D.; Sachse, K. Intraspecies polymorphism of vsp genes and expression profiles of variable surface protein antigens (Vsps) in field isolates of mycoplasma bovis. Vet. Microbiol. 1998, 63, 189–203. [Google Scholar] [CrossRef]
- Chen, S.; Hao, H.; Zhao, P.; Liu, Y.; Chu, Y. Genome-wide analysis of mycoplasma bovirhinis GS01 reveals potential virulence factors and phylogenetic relationships. G3 Genes Genomes Genet. 2018, 8, 1417–1424. [Google Scholar] [CrossRef]
- Hirose, K.; Kobayashi, H.; Ito, N.; Kawasaki, Y.; Zako, M.; Kotani, K.; Ogawa, H.; Sato, H. Isolation of mycoplasmas from nasal swabs of calves affected with respiratory diseases and antimicrobial susceptibility of their isolates. J. Vet. Med. B Infect. Dis. Vet. Public Health 2003, 50, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Soehnlen, M.K.; Kariyawasam, S.; Lumadue, J.A.; Pierre, T.A.; Wolfgang, D.R.; Jayarao, B.M. Molecular epidemiological analysis of mycoplasma bovis isolates from the Pennsylvania Animal Diagnostic Laboratory showing genetic diversity. J. Dairy Sci. 2011, 94, 1893–1899. [Google Scholar] [CrossRef] [PubMed]
- Hames, C.; Halbedel, S.; Hoppert, M.; Frey, J.; Stülke, J. Glycerol metabolism is important for cytotoxicity of mycoplasma pneumoniae. J. Bacteriol. 2009, 191, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Vilei, E.M.; Frey, J. Genetic and biochemical characterization of glycerol uptake in mycoplasma mycoides subsp. mycoides SC: Its impact on H2O2 production and virulence. Clin. Diagn. Lab. Immunol. 2001, 8, 85–92. [Google Scholar] [CrossRef]
- Pardon, B.; Buczinski, S. Bovine respiratory disease diagnosis: What progress has been made in infectious diagnosis. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 425–444. [Google Scholar] [CrossRef]
- Buczinski, S.; Boccardo, A.; Pravettoni, D. Clinical scores in veterinary medicine: What are the pitfalls of score construction, reliability, and validation a general methodological approach applied in cattle. Animals 2021, 11, 3244. [Google Scholar] [CrossRef]
- Love, W.J.; Lehenbauer, T.W.; Kass, P.H.; Van Eenennaam, A.L.; Aly, S.S. Development of a novel clinical scoring system for on-farm diagnosis of bovine respiratory disease in pre-weaned dairy calves. Peer J. 2014, 2, e238. [Google Scholar] [CrossRef]
- Maier, G.U.; Rowe, J.D.; Lehenbauer, T.W.; Karle, B.M.; Williams, D.R.; Champagne, J.D.; Aly, S.S. Development of a clinical scoring system for bovine respiratory disease in weaned dairy calves. J. Dairy Sci. 2019, 102, 7329–7344. [Google Scholar] [CrossRef]
- Maier, G.U.; Love, W.J.; Karle, B.M.; Dubrovsky, S.A.; Williams, D.R.; Champagne, J.D.; Anderson, R.J.; Rowe, J.D.; Lehenbauer, T.W.; Van Eenennaam, A.L.; et al. A novel risk assessment tool for bovine respiratory disease in preweaned dairy calves. J. Dairy Sci. 2020, 103, 9301–9317. [Google Scholar] [CrossRef]
- Probo, M.; Veronesi, M.C. Clinical scoring systems in the newborn calf: An overview. Animals 2022, 12, 3013. [Google Scholar] [CrossRef]
- Berman, J. Literature review of the principal diagnostic tests to detect bovine respiratory disease in pre-weaned dairy and veal calves. Animals 2024, 14, 329. [Google Scholar] [CrossRef]
- Buczinski, S.; Faure, C.; Jolivet, S.; Abdallah, A. Evaluation of inter-observer agreement when using a clinical respiratory scoring system in pre-weaned dairy calves. N. Z. Vet. J. 2016, 64, 243–247. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, S.; Earley, B.; Johnston, D.; McCabe, M.S.; Kim, J.W.; Taylor, J.F.; Duffy, C.; Lemon, K.; McMenamy, M.; Cosby, S.L.; et al. Whole blood transcriptome analysis in dairy calves experimentally challenged with bovine herpesvirus 1 (BoHV-1) and comparison to a bovine respiratory syncytial virus (BRSV) challenge. Front. Genet. 2023, 14, 1092877. [Google Scholar] [CrossRef] [PubMed]
- McNeff, C.A.; Walsh, K.L.; Falkner, T.R.; Stokka, G.L.; Step, D.L.; Fulton, R.W.; Confer, A.W. Modified-live versus inactivated respiratory viral vaccines for revaccinating beef calves at weaning. Appl. Anim. Sci. 2023, 39, 1–13. [Google Scholar] [CrossRef]
- White, B.J.; Goehl, D.R.; McMeniman, J.P.; Batterham, T.; Booker, C.W.; McMullen, C. Determination of behavioral changes associated with bovine respiratory disease in Australian Feedlots. Animals 2023, 13, 3692. [Google Scholar] [CrossRef]
- Bushby, E.V.; Thomas, M.; Vázquez-Diosdado, J.A.; Occhiuto, F.; Kaler, J. Early detection of bovine respiratory disease in pre-weaned dairy calves using sensor-based feeding, movement, and social behavioural data. Sci. Rep. 2024, 14, 9737. [Google Scholar] [CrossRef]
- Buczinski, S.; Forté, G.; Francoz, D.; Bélanger, A.M. Comparison of thoracic auscultation, clinical score, and ultrasonography as indicators of bovine respiratory disease in preweaned dairy calves. J. Vet. Intern. Med. 2014, 28, 234–242. [Google Scholar] [CrossRef]
- Mang, A.V.; Buczinski, S.; Booker, C.W.; Timsit, E. Evaluation of a computer-aided lung auscultation system for diagnosis of bovine respiratory disease in feedlot cattle. J. Vet. Intern. Med. 2015, 29, 1112–1116. [Google Scholar] [CrossRef]
- Booker, C.W.; Jim, G.K.; Grimson, T.M.; Hill, K.T.; Wildman, B.K.; Nickell, J.N. Association between computer-aided lung auscultation and treatment failure risk in calves treated for respiratory disease. Can. Vet. J. 2021, 62, 511–514. [Google Scholar]
- Porter, M.M.; McDonald, P.O.; Slate, J.R.; Kreuder, A.J.; McGill, J.L. Use of thoracic ultrasonography to improve disease detection in experimental BRD infection. Front. Vet. Sci. 2021, 8, 763972. [Google Scholar] [CrossRef]
- Buczinski, S.; Pardon, B. BRD diagnosis: What progress have we made in clinical diagnosis. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 399–423. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, V.; Ryan, E.G.; Hayes, C.J.; McAloon, C.; O’Grady, L.; Hoey, S.; Mee, J.F.; Pardon, B.; Earley, B.; McAloon, C.G. Diagnosis of respiratory disease in preweaned dairy calves using sequential thoracic ultrasonography and clinical respiratory scoring: Temporal transitions and association with growth rates. J. Dairy Sci. 2021, 104, 11165–11175. [Google Scholar] [CrossRef] [PubMed]
- Feitoza, L.F.B.B.; White, B.J.; Larson, R.L. Thoracic ultrasound in cattle: Methods, diagnostics, and prognostics. Vet. Sci. 2025, 12, 16. [Google Scholar] [CrossRef]
- Feitoza, L.F.B.B.; White, B.J.; Larson, R.L.; Spore, T.J. Associations between thoracic ultrasound chute-side evaluations and 60-day outcomes in feedyard cattle at time of first treatment for respiratory disease. Vet. Sci. 2025, 12, 369. [Google Scholar] [CrossRef]
- Stokstad, M.; Klem, T.B.; Myrmel, M.; Oma, V.S.; Toftaker, I.; Østerås, O.; Nødtvedt, A. Using biosecurity measures to combat respiratory disease in cattle: The Norwegian control program for bovine respiratory syncytial virus and bovine coronavirus. Front. Vet. Sci. 2020, 7, 167. [Google Scholar] [CrossRef] [PubMed]
- McAllister, H.R.; Ramirez, B.I.; Crews, M.E.; Rey, L.M.; Thompson, A.C.; Capik, S.F.; Scott, M.A. A systematic review on the impact of vaccination for respiratory disease on antibody titer responses, health, and performance in beef and dairy cattle. Vet. Sci. 2024, 11, 599. [Google Scholar] [CrossRef]
- Theurer, M.E.; Larson, R.L.; White, B.J. Systematic review and meta-analysis of the effectiveness of commercially available vaccines against bovine herpesvirus, bovine viral diarrhea virus, bovine respiratory syncytial virus, and parainfluenza type 3 virus for mitigation of bovine respiratory disease complex in cattle. J. Am. Vet. Med. Assoc. 2015, 246, 126–142. [Google Scholar]
- Chamorro, M.F.; Palomares, R.A. Bovine respiratory disease vaccination against viral pathogens: Modified-live versus inactivated antigen vaccines, intranasal versus parenteral, what is the evidence. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 461–472. [Google Scholar] [CrossRef]
- Bell, R.L.; Turkington, H.L.; Cosby, S.L. The bacterial and viral agents of BRDC: Immune evasion and vaccine developments. Vaccines 2021, 9, 337. [Google Scholar] [CrossRef]
- Stevens, E.T.; Brown, M.S.; Burdett, W.W.; Bolton, M.W.; Nordstrom, S.T.; Chase, C.C. Efficacy of a non-adjuvanted, modified-live virus vaccine in calves with maternal antibodies against a virulent bovine viral diarrhea virus type 2a challenge seven months following vaccination. Bov. Pract. 2011, 45, 23–31. [Google Scholar] [CrossRef]
- Mahan, S.M.; Sobecki, B.; Johnson, J.; Oien, N.L.; Meinert, T.R.; Verhelle, S.; Mattern, S.J.; Bowersock, T.L.; Leyh, R.D. Efficacy of intranasal vaccination with a multivalent vaccine containing temperature-sensitive modified-live bovine herpesvirus type 1 for protection of seronegative and seropositive calves against respiratory disease. J. Am. Vet. Med. Assoc. 2016, 248, 1280–1286. [Google Scholar] [CrossRef]
- Chamorro, M.F.; Walz, P.H.; Passler, T.; Palomares, R.; Newcomer, B.W.; Riddell, K.P.; Gard, J.; Zhang, Y.; Galik, P. Efficacy of four commercially available multivalent modified-live virus vaccines against clinical disease, viremia, and viral shedding in early-weaned beef calves exposed simultaneously to cattle persistently infected with bovine viral diarrhea virus and cattle acutely infected with bovine herpesvirus 1. Amer. J. Vet. Res. 2016, 77, 88–97. [Google Scholar] [CrossRef]
- Ridpath, J.F.; Dominowski, P.; Mannan, R.; Yancey, R.; Jackson, J.A.; Taylor, L.; Mediratta, S.; Eversole, R.; Mackenzie, C.D.; Neill, J.D. Evaluation of three experimental bovine viral diarrhea virus killed vaccines adjuvanted with combinations of Quil A cholesterol and dimethyldioctadecylammonium (DDA) bromide. Vet. Res. Commun. 2010, 34, 691–702. [Google Scholar] [CrossRef]
- Richeson, J.T.; Falkner, T.R. Bovine respiratory disease vaccination: What is the effect of timing. Vet. Clin. Food Anim. Pract. 2020, 36, 473–485. [Google Scholar] [CrossRef]
- Peters, A.; Thevasagayam, S.; Wiseman, A.; Salt, J. Duration of immunity of a quadrivalent vaccine against respiratory diseases caused by BHV-1, PI3V, BVDV, and BRSV in experimentally infected calves. Prev. Vet. Med. 2004, 66, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Carstens, G.; Runyan, C.; Ridpath, J.; Sawyer, J.; Herring, A. Effects of multivalent BRD vaccine treatment and temperament on performance and feeding behavior responses to a BVDV1b challenge in beef steers. Animals 2021, 11, 2133. [Google Scholar] [CrossRef] [PubMed]
- Stilwell, G.; Matos, M.; Carolino, N.; Lima, M.S. Effect of a quadrivalent vaccine against respiratory virus on the incidence of respiratory disease in weaned beef calves. Prev. Vet. Med. 2008, 85, 151–157. [Google Scholar] [CrossRef]
- Tapiolas, M.; Gibert, M.; Montbrau, C.; Taberner, E.; Solé, M.; Santo Tomás, H.; Puig, A.; March, R. Efficacy of a new multivalent vaccine for the control of bovine respiratory disease (BRD) in a randomized clinical trial in commercial fattening units. Vaccines 2024, 12, 1233. [Google Scholar] [CrossRef]
- Nicholls, M.J.; Black, L.; Rweyemamu, M.M.; Genovese, J.; Ferrari, R.; Hammant, C.A.; de Silva, E.; Umehara, O. The effect of maternally derived antibodies on the response of calves to vaccination against foot and mouth disease. J. Hyg. 1984, 92, 105–116. [Google Scholar] [CrossRef]
- Windeyer, M.C.; Leslie, K.E.; Godden, S.M.; Hodgins, D.C.; Lissemore, K.D.; LeBlanc, S.J. The effects of viral vaccination of dairy heifer calves on the incidence of respiratory disease, mortality, and growth. J. Dairy Sci. 2012, 95, 6731–6739. [Google Scholar] [CrossRef]
- Metcalfe, L.; Chevalier, M.; Tiberghien, M.P.; Jolivet, E.; Huňady, M.; Timothy, S.; Philippe-Reversat, C. Efficacy of a live intranasal vaccine against parainfluenza type 3 and bovine respiratory syncytial virus in young calves with maternally derived antibodies. Vet. Rec. Open 2020, 7, e000429. [Google Scholar] [CrossRef]
- Marzo, E.; Montbrau, C.; Moreno, M.-C.; Roca, M.; Sitjà, M.; March, R.; Gow, S.; Lacoste, S.; Ellis, J. NASYM, a live intranasal vaccine, protects young calves from bovine respiratory syncytial virus in the presence of maternal antibodies. Vet. Rec. 2021, 188, e83. [Google Scholar] [CrossRef]
- Schumaher, T.F.; Cooke, R.F.; Brandão, A.P.; Schubach, K.M.; De Sousa, O.A.; Bohnert, D.W.; Marques, R.S. Effects of vaccination timing against respiratory pathogens on performance, antibody response, and health in feedlot cattle. J. Anim. Sci. 2019, 97, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Santinello, M.; De Marchi, M.; Scali, F.; Lorenzi, V.; Romeo, C.; Alborali, G.L.; Fusi, F.; Penasa, M. Effects of vaccination timing and target pathogens on performances and antimicrobial use in long-transported Charolais beef cattle from France to Italy—A retrospective study. Prev. Vet. Med. 2024, 224, 106130. [Google Scholar] [CrossRef] [PubMed]
- Woolums, A. Vaccines for all stages. In Proceedings of the American Association of Bovine Practitioners Conference Proceedings, Columbus, OH, USA, 12–14 September 2024; pp. 34–36. [Google Scholar] [CrossRef]
- Earley, B.; Buckham-Sporer, K.; O’Loughlin, A.; Johnston, D. Physiological and immunological tools and techniques for the assessment of cattle welfare. In Cattle Welfare in Dairy and Beef Systems: A New Approach to Global Issues; Animal Welfare Series, 23; Haskell, M., Ed.; Springer: Cham, Switzerland, 2023; pp. 55–88. [Google Scholar] [CrossRef]
- O’Shaughnessy, J.; Earley, B.; Mee, J.F.; Doherty, M.L.; Crosson, P.; Barrett, D.; de Waal, T. Nematode Control in Suckler Beef Cattle over Their First Two grazing seasons using a targeted selective treatment approach. Ir. Vet. J. 2015, 68, 13. [Google Scholar] [CrossRef]
- O’Shaughnessy, J.; Earley, B.; Mee, J.F.; Doherty, M.L.; Crosson, P.; Barrett, D.; de Waal, T. Controlling nematodes in dairy calves using targeted selective treatments. Vet. Parasitol. 2015, 209, 221–228. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and Council. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, L4, 43–167. Available online: https://eur-lex.europa.eu/eli/reg/2019/6/oj/eng (accessed on 8 August 2025).
- McGee, M.; Earley, B. Review: Passive immunity in beef suckler calves. Animal 2019, 13, 810–825. [Google Scholar] [CrossRef]
- Buckham-Sporer, K.; Earley, B.; Marti, S. Current Knowledge on the transportation by road of cattle, including unweaned calves. Animals 2023, 13, 3393. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar Schmidt, C.; Michel, V.; et al. EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare), Scientific opinion on the welfare of cattle during transport. EFSA J. 2022, 20, e07442. [Google Scholar] [CrossRef]
- Earley, B. Beef Cattle and Veal Calves. In Management and Welfare of Farm Animals: The UFAW Farm Handbook, 6th ed.; Webster, J., Ed.; Universities Federation for Animal Welfare (UFAW): London, UK, 2022; Chapter 4. [Google Scholar]
- Earley, B.; Buckham Sporer, K.; Gupta, S. Invited Review: Relationship between cattle transport, immunity and respiratory disease. Animal 2017, 11, 486–492. [Google Scholar] [CrossRef]
- Lynch, E.M.; Earley, B.; McGee, M.; Doyle, S. Effect of abrupt weaning at housing on leukocyte distribution, functional activity of neutrophils, and acute phase protein response of beef calves. BMC Vet. Res. 2010, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Lynch, E.M.; McGee, M.; Doyle, S.; Earley, B. Effect of Post-weaning management practices on physiological and immunological responses of weaned beef calves. Ir. J. Agric. Food Res. 2011, 50, 161–174. Available online: https://www.jstor.org/stable/41549249 (accessed on 8 August 2025).
- Lynch, E.; McGee, M.; Earley, B. Review: Weaning management of beef calves with implications for animal health and welfare. J. Appl. Anim. Res. 2019, 47, 167–175. [Google Scholar] [CrossRef]
- Johnston, D.; Kenny, D.A.; Kelly, A.K.; McCabe, M.; McGee, M.; Waters, S.M.; Earley, B. Characterisation of haematological profiles and leukocyte relative gene expression levels in artificially reared Holstein-Friesian and Jersey bull calves undergoing gradual weaning. Animal 2016, 10, 1547–1556. [Google Scholar] [CrossRef]
- Marquette, G.A.; Ronan, S.; Earley, B. Calf Disbudding—Animal welfare considerations. J. Appl. Anim. Res. 2023, 51, 616–623. [Google Scholar] [CrossRef]
- Marquette, G.A.; Ronan, S.; Earley, B. Review: Castration—Animal welfare considerations. J. Appl. Anim. Res. 2023, 51, 703–718. [Google Scholar] [CrossRef]
- Johnston, D.; Kenny, D.A.; McGee, M.; Waters, S.M.; Kelly, A.K.; Earley, B. Electronic feeding behavioural data as indicators of health status in dairy calves. Ir. J. Agric. Food Res. 2016, 55, 159–168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Donoghue, S.; Waters, S.M.; Morris, D.W.; Earley, B. A Comprehensive Review: Bovine Respiratory Disease, Current Insights into Epidemiology, Diagnostic Challenges, and Vaccination. Vet. Sci. 2025, 12, 778. https://doi.org/10.3390/vetsci12080778
O’Donoghue S, Waters SM, Morris DW, Earley B. A Comprehensive Review: Bovine Respiratory Disease, Current Insights into Epidemiology, Diagnostic Challenges, and Vaccination. Veterinary Sciences. 2025; 12(8):778. https://doi.org/10.3390/vetsci12080778
Chicago/Turabian StyleO’Donoghue, Stephanie, Sinéad M. Waters, Derek W. Morris, and Bernadette Earley. 2025. "A Comprehensive Review: Bovine Respiratory Disease, Current Insights into Epidemiology, Diagnostic Challenges, and Vaccination" Veterinary Sciences 12, no. 8: 778. https://doi.org/10.3390/vetsci12080778
APA StyleO’Donoghue, S., Waters, S. M., Morris, D. W., & Earley, B. (2025). A Comprehensive Review: Bovine Respiratory Disease, Current Insights into Epidemiology, Diagnostic Challenges, and Vaccination. Veterinary Sciences, 12(8), 778. https://doi.org/10.3390/vetsci12080778