Determining the Persistence of Xylazine and Ketamine in Cattle Tissue Following a Simulated Rendering Process
Simple Summary
Abstract
1. Introduction
Objectives
2. Materials and Methods
- RAW—individual tissues (fat, liver, muscle, kidney) not subject to heating prior to drug analysis.
- RENDER—individual tissues (fat, liver, muscle, kidney) subject to heating prior to drug analysis.
- RAW–COMP—all tissues combined prior to drug analysis.
- RENDER–COMP—all tissues combined prior to heating and drug analysis.
2.1. Rendering
2.2. Drug Analysis
2.2.1. Chemicals and Reagents
2.2.2. Stock Solutions
2.2.3. Standard Working Solutions
2.2.4. Internal Standard Working Solutions
2.2.5. Sample Preparation
2.2.6. Instrumentation
2.2.7. Method Validation
3. Results
3.1. Tissue Concentrations
3.2. Tissue Concentration Changes
3.3. Moisture Loss
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AVMA. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. Available online: https://www.avma.org/sites/default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf (accessed on 7 May 2025).
- USDA. Carcass Management Course: Rendering Module. Available online: https://www.aphis.usda.gov/sites/default/files/7-rendering.pdf (accessed on 27 May 2025).
- Meeker, D.L. Essential Rendering: All About the Animal By-Products Industry; Kirby Lithographic Company, Inc.: Alexandria, VA, USA, 2006; p. 295. [Google Scholar]
- Buchweitz, J.P.; Johnson, M.; Jones, J.L.; Lehner, A.F. Development of a Quantitative Gas Chromatography-Tandem Mass Spectrometry Method for the Determination of Pentobarbital in Dog Food. J. Agric. Food Chem. 2018, 66, 11166–11169. [Google Scholar] [CrossRef]
- Kaiser, A.M.; McFarland, W.; Siemion, R.S.; Raisbeck, M.F. Secondary pentobarbital poisoning in two dogs: A cautionary tale. J. Vet. Diagn. Investig. 2010, 22, 632–634. [Google Scholar] [CrossRef]
- Jurczynski, K.; Zittlau, E. Pentobarbital poisoning in Sumatran tigers (Panthera tigris sumatrae). J. Zoo Wildl. Med. 2007, 38, 583–584. [Google Scholar] [CrossRef]
- Bischoff, K.; Jaeger, R.; Ebel, J.G. An unusual case of relay pentobarbital toxicosis in a dog. J. Med. Toxicol. 2011, 7, 236–239. [Google Scholar] [CrossRef]
- O’Connor, J.J.; Stowe, C.M.; Robinson, R.R. Fate of Sodium Pentobarbital in Rendered Products. Am. J. Vet. Res. 1985, 46, 1721–1724. [Google Scholar] [CrossRef]
- Garcia-Villar, R.; Toutain, P.L.; Alvinerie, M.; Ruckebusch, Y. The pharmacokinetics of xylazine hydrochloride: An interspecific study. J. Vet. Pharmacol. Ther. 1981, 4, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Sellers, G.; Lin, H.C.; Riddell, M.G.; Ravis, W.R.; Lin, Y.J.; Duran, S.H.; Givens, M.D. Pharmacokinetics of ketamine in plasma and milk of mature Holstein cows. J. Vet. Pharmacol. Ther. 2010, 33, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, W.L. Disposition of Anesthetic and Anesthetic-Related Agents in Ruminants. Vet. Clin. N. Am. Food Anim. Pract. 1986, 2, 527–552. [Google Scholar] [CrossRef] [PubMed]
- Papich, M.G. Drug Residue Considerations for Anesthetics and Adjunctive Drugs in Food-Producing Animals. Vet. Clin. North Am. Food Anim. Pract. 1996, 12, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Craigmill, A.L.; Rangel-Lugo, M.; Damian, P.; Riviere, J.E. Extralabel use of tranquilizers and general anesthetics. J. Am. Vet. Med. Assoc. 1997, 211, 302–304. [Google Scholar] [CrossRef]
- Smith, G. Extralabel Use of Anesthetic and Analgesic Compounds in Cattle. Vet. Clin. Food Anim. Pract. 2013, 29, 29–45. [Google Scholar] [CrossRef]
- Aleman, M.; Davis, E.; Knych, H.; Guedes, A.; Smith, F.; Madigan, J.E. Drug Residues after Intravenous Anesthesia and Intrathecal Lidocaine Hydrochloride Euthanasia in Horses. J. Vet. Intern. Med. 2016, 30, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- FSIS, U. Screening and Confirmation of Animal Drug Residues by UHPLC-MS-MS. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/documents/CLG-MRM3.04.pdf (accessed on 7 March 2025).
- Grove, D.M.; Ramsay, E.C. Sedative and physiologic effects of orally administered alpha 2-adrenoceptor agonists and ketamine in cats. J. Am. Vet. Med. Assoc. 2000, 216, 1929–1932. [Google Scholar] [CrossRef]
- Clements, J.A.; Nimmo, W.S.; Grant, I.S. Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J. Pharm. Sci. 1982, 71, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.M.; Whelan, M.; Danaher, M.; Kennedy, D.G. Stability during cooking of anthelmintic veterinary drug residues in beef. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2011, 28, 155–165. [Google Scholar] [CrossRef]
- Foertsch, M.J.; McMullan, J.T.; Harger, N.J.; Rodriquez, D., Jr.; Salvator, A.; PharmD, E.W.M.; Droege, C.A. Ketamine Stability over Six Months of Exposure to Moderate and High Temperature Environments. Prehospital Emerg. Care 2022, 26, 422–427. [Google Scholar] [CrossRef]
- Mgonja, F.; Mosha, R.; Mabiki, F.; Choongo, K. Effect of heat treatment on oxytetracycline residues in beef. Am. J. Res. Commun. 2017, 5, 2325–4076. [Google Scholar]
- Planche, C.; Chevolleau, S.; Noguer-Meireles, M.H.; Jouanin, I.; Mompelat, S.; Ratel, J.; Verdon, E.; Engel, E.; Debrauwer, L. Fate of Sulfonamides and Tetracyclines in Meat during Pan Cooking: Focus on the Thermodegradation of Sulfamethoxazole. Molecules 2022, 27, 6233. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Adetuyi, B.O.; Igirigi, A.I.; Adisa, A.; Palangi, V.; Aiyedun, S.; Alvarado-Ramírez, E.R.; Elghandour, M.M.M.Y.; Molina, O.M.; Oladipo, A.A.; et al. Comprehensive insights into antibiotic residues in livestock products: Distribution, factors, challenges, opportunities, and implications for food safety and public health. Food Control 2024, 163, 110545. [Google Scholar] [CrossRef]
- Zheng, X.; Mi, X.; Li, S.; Chen, G. Determination of xylazine and 2,6-xylidine in animal tissues by liquid chromatography-tandem mass spectrometry. J. Food Sci. 2013, 78, T955–T959. [Google Scholar] [CrossRef] [PubMed]
- Mella, M.; Schweitzer, B.; Botch-Jones, S.; Mallet, C. Analysis of ketamine and xylazine in complex matrices using two-dimensional liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.F.; Saidy, L.; Haddad, R.; Hosri, C.; Asmar, S.; Jammoul, A.; Jammoul, R.; Hassan, H.; Serhan, M. Investigation of the effects of some processing conditions on the fate of oxytetracycline and tylosin antibiotics in the making of commonly consumed cheeses from the East Mediterranean. Vet. World 2021, 14, 1644–1649. [Google Scholar] [CrossRef] [PubMed]
Treatment Group | Animal 1 | Animal 2 | Animal 3 | Animal 4 | Animal 5 | Animal 6 | Mean (SD) |
---|---|---|---|---|---|---|---|
Group 1 Xyl. Raw | |||||||
Muscle | 222.4 | 129.6 | 142.4 | 99.4 | 109.8 | 138.5 | 140.35 (43.51) |
Fat | 152.0 | 47.8 | 52.4 | 56.5 | 72.7 | 42.4 | 70.63 (41.17) |
Liver | 288.0 | 457.8 | 251.7 | 345.6 | 167.0 | 213.6 | 287.28 (103.58) |
Kidney | 1562.0 | 506.7 | 1308.5 | 749.3 | 1180.5 | 898.9 | 1034.32 (388.06) |
Composite | 558.6 | 291.1 | 433.0 | 384.9 | 398.0 | 364.0 | 404.93 (88.86) |
Group 1 Xyl. Rendered | |||||||
Muscle | 303.0 | 172.0 | 181.9 | 123.0 | 141.4 | 162.8 | 180.68 (63.61) |
Fat | 121.6 | 52.1 | 57.3 | 58.5 | 76.6 | 49.6 | 69.28 (27.32) |
Liver | 378.2 | 828.4 | 318.1 | 451.5 | 212.5 | 268.3 | 409.50 (221.50) |
Kidney | 2033.5 | 836.1 | 1747.3 | 1401.6 | 1823.9 | 1514.7 | 1559.52 (419.55) |
Composite | 649.8 | 414.7 | 535.0 | 354.0 | 422.6 | 373.6 | 458.28 (112.95) |
Group 2 Xyl. Raw | |||||||
Muscle | 409.5 | 66.5 | 29.7 | 489.3 | 261.1 | 568.3 | 304.07 (223.07) |
Fat | 68.9 | 20.3 | 6.2 | 95.4 | 40.8 | 192.2 | 70.63 (67.78) |
Liver | 754.4 | 31.8 | 16.2 | 543.5 | 538.7 | 641.3 | 420.98 (317.45) |
Kidney | 3629.0 | 657.0 | 190.7 | 2858 | 2979.7 | 4093.6 | 2401.33 (1602.72) |
Composite | 1320.7 | 169.0 | 71.2 | 1885.3 | 1289.2 | 1847.3 | 1097.12 (798.10) |
Group 2 Xyl. Rendered | |||||||
Muscle | 509.3 | 82.3 | 41.0 | 597.6 | 339.0 | 629.8 | 366.50 (257.14) |
Fat | 63.3 | 20.3 | 6.3 | 77.3 | 34.9 | 218.5 | 70.10 (77.34) |
Liver | 1087.7 | 35.8 | 20.4 | 192.1 | 715.3 | 834.0 | 480.88 (456.38) |
Kidney | 4633.9 | 914.5 | 251.0 | 6866.8 | 3729.5 | 5525.8 | 3653.58 (2602.96) |
Composite | 1573.2 | 214.9 | 73.8 | 2271.8 | 1096.2 | 1746.4 | 1162.72 (874.96) |
Group 2 Ket. Raw | |||||||
Muscle | 1474.2 | 156.5 | 328.9 | 1653 | 1028.2 | 1827.3 | 1078.02 (701.69) |
Fat | 215.5 | 52.6 | 44.8 | 461.2 | 160.8 | 1214.4 | 358.22 (446.01) |
Liver | 2261.1 | 66.2 | 65.4 | 819.3 | 971.4 | 1401.7 | 930.85 (836.90) |
Kidney | 2591.6 | 232.0 | 165.7 | 1304.9 | 1442.2 | 3321.3 | 1509.62 (1259.98) |
Composite | 1591.9 | 140.5 | 166.3 | 1808.9 | 850.4 | 1969.8 | 1087.97 (819.14) |
Group 2 Ket. Rendered | |||||||
Muscle | 1995.2 | 186.0 | 499.6 | 2340.8 | 1031.0 | 2247.6 | 1383.37 (935.61) |
Fat | 292.4 | 74.0 | 56.6 | 477.1 | 161.1 | 1624.3 | 477.58 (597.37) |
Liver | 2790.2 | 93.4 | 102.1 | 2661.4 | 1345.4 | 2087.8 | 1513.38 (1209.50) |
Kidney | 3528.2 | 316.2 | 235.1 | 3884.2 | 1840.3 | 4528.2 | 2388.70 (1862.60) |
Composite | 1930.8 | 162.6 | 210.3 | 2174.3 | 977.6 | 2421.6 | 1312.87 (1000.44) |
Treatment Group | Muscle | Fat | Liver | Kidney | Composite |
---|---|---|---|---|---|
Group 1 Xylazine | 24.83 (9.00) | −4.38 (11.92) | 13.48 (39.62) | 49.82 (44.59 | 8.33 (16.58) |
Group 2 Xylazine | 27.79 (6.60) | 4.04 (12.65) | 37.02 (21.64) | 56.47 (21.79) | 13.86 (17.79) |
Group 2 Ketamine | 28.50 (18.37) | 23.35 (17.33) | 72.15 (74.61) | 62.65 (66.30) | 20.26 (4.37) |
Tissue | Muscle | Fat | Liver | Kidney | Composite |
---|---|---|---|---|---|
% Change | −11.52% (1.82) | −12.65% (3.96) | −12.43% (2.20) | −11.90% (1.20) | −16.85% (2.19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritz, S.A.; Kleinhenz, M.D.; Ensley, S.M.; Gorden, P.J.; Zhang, Y.; Coetzee, J.F.; Apley, M.D. Determining the Persistence of Xylazine and Ketamine in Cattle Tissue Following a Simulated Rendering Process. Vet. Sci. 2025, 12, 740. https://doi.org/10.3390/vetsci12080740
Fritz SA, Kleinhenz MD, Ensley SM, Gorden PJ, Zhang Y, Coetzee JF, Apley MD. Determining the Persistence of Xylazine and Ketamine in Cattle Tissue Following a Simulated Rendering Process. Veterinary Sciences. 2025; 12(8):740. https://doi.org/10.3390/vetsci12080740
Chicago/Turabian StyleFritz, Scott A., Michael D. Kleinhenz, Steve M. Ensley, Patrick J. Gorden, Yuntao Zhang, Johann F. Coetzee, and Michael D. Apley. 2025. "Determining the Persistence of Xylazine and Ketamine in Cattle Tissue Following a Simulated Rendering Process" Veterinary Sciences 12, no. 8: 740. https://doi.org/10.3390/vetsci12080740
APA StyleFritz, S. A., Kleinhenz, M. D., Ensley, S. M., Gorden, P. J., Zhang, Y., Coetzee, J. F., & Apley, M. D. (2025). Determining the Persistence of Xylazine and Ketamine in Cattle Tissue Following a Simulated Rendering Process. Veterinary Sciences, 12(8), 740. https://doi.org/10.3390/vetsci12080740