Long-Term Effect of Intra-Articular Adipose-Derived Stromal Vascular Fraction and Platelet-Rich Plasma in Dogs with Elbow Joint Disease—A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Dogs
3.2. Treatment Response and Cell Counts of SVF
4. Discussion
5. Conclusions
- I.
- Provided by Medivet Biologics LLC, Lidcombe, Australia. Medivet is currently Arden Animal Health.
- II.
- IDEXX LaserCyte, Westbrook, ME, USA.
- III.
- JMP 16.0, Cary, NC, USA
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Collection of Objective Data
Appendix B. Data Processing
- 1.
- A fore/hind symmetry index was calculated for the actual recording.
- 2.
- Symmetry index for left and right fore limb in relation to each other:
- 3.
- In the same way, indexes for hind limbs:
- 4.
- Ipsilateral symmetry indexes for left- and right-sided limbs:
- Total asymmetry = 1 − union (area of test polygon, area of normal square);ImpulseSpeedDirectionMatlab code to draw the symmetry plot:function Sym = DogForcePlot(LF,RF,LH,RH,axesForcePlot,Color,ForeHindSymGuide)% Used to plot Peak force or Impulse, either as weight normalized or% absolute values as inputs in a symmetry plot% Lars Roepstorff% Swedish University of Agricultural Sciences% Original 2020-11-16, last update 2021-11-06if nargin == 0% Example data if no input argLF = 172;RF = 216;LH = 132;RH = 117;scrsz = get(groot,‘ScreenSize’);fh = figure(‘Position’,[1 scrsz(4) scrsz(3) scrsz(4)],‘NumberTitle’,‘off’);axesForcePlot = axes(‘Units’,‘pixels’,‘Parent’,fh,‘FontSize’,10,...‘XTick’,[],‘Position’,[30 30 scrsz(3)-50 scrsz(4)-100]);ForeHindSymGuide = 0.635; % Calculated fore/hind distribution, based on 11 control dogselseif nargin < 7% If no symmetry guide, i.e., normal dogs is specified use the value from paperForeHindSymGuide = 0.635;elseif nargin < 6% Default color if nothing is specifiedColor = ‘r’;elseif nargin < 5% If no plot axes is defined create onescrsz = get(groot,‘ScreenSize’);fh = figure(‘Position’,[1 scrsz(4) scrsz(3) scrsz(4)],‘NumberTitle’,‘off’);axesForcePlot = axes(‘Units’,‘pixels’,‘Parent’,fh,‘FontSize’,10,...‘XTick’,[],‘Position’,[30 30 scrsz(3)-50 scrsz(4)-100]);end% Force Symmetry PlotForeHindSymAct = (LF + RF)/(LF + RF + LH + RH);LeftForeQuote = −LF/(LF + RF);RightForeQuote = LeftForeQuote + 1;LeftHindQuote = −LH/(LH + RH);RightHindQuote = RH/(LH + RH);LeftIpsiQuote = LF/(LF + LH) − ForeHindSymAct;RightIpsiQuote = RF/(RF + RH) − ForeHindSymAct;% Plot guideplot(axesForcePlot,[0.5 0.5 −0.5 −0.5 0.5],...[ForeHindSymGuide-1 ForeHindSymGuide ForeHindSymGuide ForeHindSymGuide-1 ForeHindSymGuide-1],‘k’,‘LineWidth’,2)hold (axesForcePlot,‘on’)plot(axesForcePlot,[0 0],[ForeHindSymGuide-1 ForeHindSymGuide],‘k’,‘LineWidth’,2)plot(axesForcePlot,[−0.5 0.5],[0 0],‘k’,‘LineWidth’,2)plot(axesForcePlot,[LeftForeQuote, RightForeQuote, RightHindQuote, LeftHindQuote, LeftForeQuote],...[ForeHindSymAct + LeftIpsiQuote, ForeHindSymAct + RightIpsiQuote,...ForeHindSymAct-1 + RightIpsiQuote, ForeHindSymAct-1 + LeftIpsiQuote, ...ForeHindSymAct + LeftIpsiQuote],Color,‘LineWidth’,2)% The normal or template area.NormalPgon = polyshape([0.5 0.5 −0.5 −0.5 0.5],...[ForeHindSymGuide-1 ForeHindSymGuide ForeHindSymGuide ForeHindSymGuide-1 ForeHindSymGuide-1]);TestPgon = polyshape([LeftForeQuote, RightForeQuote, RightHindQuote, LeftHindQuote, LeftForeQuote],...[ForeHindSymAct + LeftIpsiQuote, ForeHindSymAct + RightIpsiQuote,...ForeHindSymAct-1 + RightIpsiQuote, ForeHindSymAct-1 + LeftIpsiQuote, ...ForeHindSymAct + LeftIpsiQuote]);TotPgon = union(TestPgon, NormalPgon);TotArea = area(TotPgon);Sym.TotAsym = −(TotArea-1);Sym.ForHindSym = ForeHindSymAct-ForeHindSymGuide;Sym.ForeSym = 0.5 + LeftForeQuote;Sym.HindSym = 0.5 + LeftHindQuote;Sym.DiagSym = LeftIpsiQuote;
Appendix C. PRP and Tissue Processing and SVF Isolation
References
- Wind, A.P. Elbow Incongruity and Developmental Elbow Diseases in the Dog: Part 1. J. Am. Anim. Hosp. Assoc. 1986, 22, 711–724. [Google Scholar]
- Wind, A.P.; Packard, M.E. Elbow Incongruity and Deveopmental Elbow Diseases in the Dog: Part II. J. Am. Anim. Hosp. Assoc. 1986, 22, 725–731. [Google Scholar]
- Burton, N.J.; Owen, M.R.; Kirk, L.S.; Toscano, M.J.; Colborne, G.R. Conservative versus arthroscopic management for medial coronoid process disease in dogs: A prospective gait evaluation. Vet. Surg. 2011, 40, 972–980. [Google Scholar] [CrossRef]
- Evans, R.B.; Gordon-Evans, W.J.; Conzemius, M.G. Comparison of three methods for the management of fragmented medial coronoid process in the dog. A systematic review and meta-analysis. Vet. Comp. Orthop. Traumatol. 2008, 21, 106–109. [Google Scholar] [CrossRef]
- Quinn, M.M.; Keuler, N.S.; Lu, Y.; Faria, M.L.E.; Muir, P.; Markel, M.D. Evaluation of Agreement Between Numerical Rating Scales, Visual Analogue Scoring Scales, and Force Plate Gait Analysis in Dogs. Vet. Surg. 2007, 36, 360–367. [Google Scholar] [CrossRef]
- Waxman, A.S.; Robinson, D.A.; Evans, R.B.; Hulse, D.A.; Innes, J.F.; Conzemius, M.G. Relationship Between Objective and Subjective Assessment of Limb Function in Normal Dogs with an Experimentally Induced Lameness. Vet. Surg. 2008, 37, 241–246. [Google Scholar] [CrossRef]
- Brown, D.C.; Boston, R.C.; Farrar, J.T. Comparison of force plate gait analysis and owner assessment of pain using the Canine Brief Pain Inventory in dogs with osteoarthritis. J. Vet. Intern. Med. 2013, 27, 22–30. [Google Scholar] [CrossRef]
- Radke, H.; Joeris, A.; Chen, M. Evidence-based evaluation of owner-reported outcome measures for canine orthopedic care—A COSMIN evaluation of 6 instruments. Vet. Surg. 2022, 51, 244–253. [Google Scholar] [CrossRef]
- Walton, M.B.; Cowderoy, E.; Lascelles, D.; Innes, J.F. Evaluation of construct and criterion validity for the ‘Liverpool Osteoarthritis in Dogs’ (LOAD) clinical metrology instrument and comparison to two other instruments. PLoS ONE 2013, 8, e58125. [Google Scholar] [CrossRef] [PubMed]
- Kriston-Pal, E.; Czibula, A.; Gyuris, Z.; Balka, G.; Seregi, A.; Sükösd, F.; Süth, M.; Kiss-Tóth, E.; Haracska, L.; Uher, F.; et al. Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis. Can. J. Vet. Res. 2017, 81, 73–78. [Google Scholar] [PubMed]
- Vieira, N.M.; Brandalise, V.; Zucconi, E.; Secco, M.; Strauss, B.E.; Zatz, M. Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant. 2010, 19, 279–289. [Google Scholar] [CrossRef]
- Spencer, N.D.; Chun, R.; Vidal, M.A.; Gimble, J.M.; Lopez, M.J. In vitro expansion and differentiation of fresh and revitalized adult canine bone marrow-derived and adipose tissue-derived stromal cells. Vet. J. 2012, 191, 231–239. [Google Scholar] [CrossRef]
- Sullivan, M.O.; Gordon-Evans, W.J.; Fredericks, L.P.; Kiefer, K.; Conzemius, M.G.; Griffon, D.J. Comparison of Mesenchymal Stem Cell Surface Markers from Bone Marrow Aspirates and Adipose Stromal Vascular Fraction Sites. Front. Vet. Sci. 2015, 2, 82. [Google Scholar] [CrossRef]
- Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.; Yoshimura, K.; Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15, 641–648. [Google Scholar] [CrossRef]
- Cyranoski, D. Stem cells boom in vet clinics. Nature 2013, 496, 148–149. [Google Scholar] [CrossRef]
- Upchurch, D.A.; Renberg, W.C.; Roush, J.K.; Milliken, G.A.; Weiss, M.L. Effects of administration of adipose-derived stromal vascular fraction and platelet-rich plasma to dogs with osteoarthritis of the hip joints. Am. J. Vet. Res. 2016, 77, 940–951. [Google Scholar] [CrossRef]
- Mehranfar, S.; Abdi Rad, I.; Mostafavi, E.; Akbarzadeh, A. The use of stromal vascular fraction (SVF), platelet-rich plasma (PRP) and stem cells in the treatment of osteoarthritis: An overview of clinical trials. Artif. Cells Nanomed. Biotechnol. 2019, 47, 882–890. [Google Scholar] [CrossRef]
- Black, L.L.; Gaynor, J.; Adams, C.; Dhupa, S.; Sams, A.E.; Taylor, R.; Harman, S.; Gingerich, D.A.; Harman, R. Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet. Ther. 2008, 9, 192–200. [Google Scholar]
- Black, L.L.; Gaynor, J.; Gahring, D.; Adams, C.; Aron, D.; Harman, S.; Gingerich, D.A.; Harman, R. Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: A randomized, double-blinded, multicenter, controlled trial. Vet. Ther. 2007, 8, 272–284. [Google Scholar]
- Cuervo, B.; Rubio, M.; Sopena, J.; Dominguez, J.M.; Vilar, J.; Morales, M.; Cugat, R.; Carrillo, J.M. Hip osteoarthritis in dogs: A randomized study using mesenchymal stem cells from adipose tissue and plasma rich in growth factors. Int. J. Mol. Sci. 2014, 15, 13437–13460. [Google Scholar] [CrossRef]
- Marx, C.; Silveira, M.D.; Selbach, I.; da Silva, A.S.; Braga, L.M.; Camassola, M.; Nardi, N.B. Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs. Stem Cells Int. 2014, 2014, 391274. [Google Scholar] [CrossRef]
- Vilar, J.M.; Batista, M.; Morales, M.; Santana, A.; Cuervo, B.; Rubio, M.; Cugat, R.; Sopena, J.; Carrillo, J.M. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet. Res. 2014, 10, 143. [Google Scholar] [CrossRef]
- Guercio, A.; Di Marco, P.; Casella, S.; Cannella, V.; Russotto, L.; Purpari, G.; Di Bella, S.; Piccione, G. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol. Int. 2012, 36, 189–194. [Google Scholar] [CrossRef]
- Pak, J.; Lee, J.H.; Kartolo, W.A.; Lee, S.H. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications. BioMed Res. Int. 2016, 2016, 4702674. [Google Scholar] [CrossRef]
- Pers, Y.M.; Ruiz, M.; Noel, D.; Jorgensen, C. Mesenchymal stem cells for the management of inflammation in osteoarthritis: State of the art and perspectives. Osteoarthr. Cartil. 2015, 23, 2027–2035. [Google Scholar] [CrossRef]
- Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol. Sci. 2020, 41, 653–664. [Google Scholar] [CrossRef]
- Van Buul, G.M.; Villafuertes, E.; Bos, P.K.; Waarsing, J.; Kops, N.; Narcisi, R.; Weinans, H.; Verhaar, J.; Bernsen, M.; van Osch, G. Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthr. Cartil. 2012, 20, 1186–1196. [Google Scholar] [CrossRef]
- Hunakova, K.; Hluchy, M.; Spakova, T.; Matejova, J.; Mudronova, D.; Kuricova, M.; Rosocha, J.; Ledecky, V. Study of bilateral elbow joint osteoarthritis treatment using conditioned medium from allogeneic adipose tissue-derived MSCs in Labrador retrievers. Res. Vet. Sci. 2020, 132, 513–520. [Google Scholar] [CrossRef]
- Villatoro, A.J.; Alcoholado, C.; Martin-Astorga, M.C.; Fernandez, V.; Cifuentes, M.; Becerra, J. Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet. Immunol. Immunopathol. 2019, 208, 6–15. [Google Scholar] [CrossRef]
- Olsen, A.; Johnson, V.; Webb, T.; Santangelo, K.S.; Dow, S.; Duerr, F.M. Evaluation of Intravenously Delivered Allogeneic Mesenchymal Stem Cells for Treatment of Elbow Osteoarthritis in Dogs: A Pilot Study. Vet. Comp. Orthop. Traumatol. 2019, 32, 173–181. [Google Scholar] [CrossRef]
- Lucarelli, E.; Beccheroni, A.; Donati, D.; Sangiorgi, L.; Cenacchi, A.; Del Vento, A.M.; Meotti, C.; Bertoja, A.Z.; Giardino, R.; Fornasari, P.M.; et al. Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials 2003, 24, 3095–3100. [Google Scholar] [CrossRef]
- Bansal, H.; Leon, J.; Pont, J.L.; Wilson, D.A.; Bansal, A.; Agarwal, D.; Preoteasa, I. Platelet-rich plasma (PRP) in osteoarthritis (OA) knee: Correct dose critical for long term clinical efficacy. Sci. Rep. 2021, 11, 3971. [Google Scholar] [CrossRef]
- Lai, L.P.; Stitik, T.P.; Foye, P.M.; Georgy, J.S.; Patibanda, V.; Chen, B. Use of Platelet Rich Plasma in Intra-Articular Knee Injections for Osteoarthritis: A Systematic Review. PM R 2015, 7, 637–648. [Google Scholar] [CrossRef]
- Fahie, M.A.; Ortolano, G.A.; Guercio, V.; Schaffer, J.A.; Johnston, G.; Au, J.; Hettlich, B.A.; Phillips, T.; Allen, M.J.; Bertone, A.L. A randomized controlled trial of the efficacy of autologous platelet therapy for the treatment of osteoarthritis in dogs. J. Am. Vet. Med. Assoc. 2013, 243, 1291–1297. [Google Scholar] [CrossRef]
- Centeno, C.J.; Busse, D.; Kisiday, J.; Keohan, C.; Freeman, M.; Karli, D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 2008, 11, 343–353. [Google Scholar]
- Kjörk Granström, M.; Roepstorff, L.; Pettersson, K.; Ljungvall, I.; Dimopoulou, M.; Peck, C.; Bergstrom, A. Evaluation of front limb gait variation overground at a walk in sound and lame dogs using a combination of diagnostic techniques. ACTA Vet. Scand. 2024, 66, 25. [Google Scholar] [CrossRef]
- Lorinson, K.; Lorinson, D.; Millis, D.; Egner, D.; Mikail, S.; Diniz, R. Examination of the physiotherapy patient. In Essential Fact of Physical Medicine, Rehabilitation and Sports Medicine in Companion Animals; Bockstahler, B., Ed.; VBS GmbH: Munchen, Germany, 2019; pp. 83–106. [Google Scholar]
- Blumhagen, E.M.; Spector, D.I.; Fischetti, A.J. Impact of arthroscopy on post-procedure intra-articular elbow injections: A cadaveric study. Vet. Surg. 2024; ahead of print. [Google Scholar] [CrossRef]
- Lai, F.; Kakudo, N.; Morimoto, N.; Taketani, S.; Hara, T.; Ogawa, T.; Kusumoto, K. Platelet-rich plasma enhances the proliferation of human adipose stem cells through multiple signaling pathways. Stem Cell Res. Ther. 2018, 9, 107. [Google Scholar] [CrossRef]
- Mlacnik, E.; Bockstahler, B.A.; Müller, M.; Tetrick, M.A.; Nap, R.C.; Zentek, J. Effects of caloric restriction and a moderate or intense physiotherapy program for treatment of lameness in overweight dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 2006, 229, 1756–1760. [Google Scholar] [CrossRef]
- Maki, C.B.; Beck, A.; Wallis, C.C.C.; Choo, J.; Ramos, T.; Tong, R.; Borjesson, D.L.; Izadyar, F. Intra-articular Administration of Allogeneic Adipose Derived MSCs Reduces Pain and Lameness in Dogs With Hip Osteoarthritis: A Double Blinded, Randomized, Placebo Controlled Pilot Study. Front. Vet. Sci. 2020, 7, 570. [Google Scholar] [CrossRef]
OADs at Inclusion before Treatment (n = 19) | OADs 6 Months (n = 19) | OADs ≥ 12 Months (n = 11) | CDs at Inclusion (n = 8) | CDs 6 Months (n = 8) | |
---|---|---|---|---|---|
Age (years) | 4.2 ± 2.9 | - | - | 5.8 ± 2.8 | - |
Sex (female/male) | 10/9 | 10/9 | 7/4 | 4/4 | 4/4 |
Bodyweight (kg) | 35.3 ± 9.1 | 35.7 ± 9.7 | 33 ± 9.0 | 27.0 ± 6.6 * | 27.6 ± 6.6 |
BCS: U/N/OU:
| 0/5/14 | 0/4/15 | 0/1/10 | 0/4/4 | 0/4/4 |
NSAIDs (Yes/No), NSAID% Descriptive only | 12/7 (63%) | 5/14 (26%) | 3/8 (37%) | 0/8 | 0/8 |
Orthopedic evaluations | |||||
Lameness score (trot), presented with number of dogs in each lameness grade 0–5: (0/1/2/3/4/5) | Dx 2/3/5/2/5/0 Sin 2/4/3/4/3/0 | D 8/3/3/3/0/0 Sin 5/9/0/2/0/0 | Dx 2/6/1/2/0/0 Sin 4/2/3/0/0/0 | All scored 0 | All scored 0 |
Orthopedic consensus score (normal/mild/moderate and severe) | Dx 3/8/8 Sin 4/9/6 | Dx 10/4/5 # Sin 11/6/2 # | Dx 3/6/2 Sin 7/3/1 | Dx 8/0/0 Sin 8/0/0 | Dx 8/0/0 Sin 8/0/0 |
Measured passive ROM elbow (degrees) | Dx 115.6 ± 11.3 a Sin 120.2 ± 7.3 a | Dx 16 ± 10.6 a Sin 119 ± 7.8 a | Dx 115 ± 10.5 a Sin 119 ± 10.7 a | Dx 125.6 ± 2.9 a Sin 125.4 ± 3.7 a | Dx 124.9 ± 2.5 a Sin 126.0 ± 2.5 a |
Measured muscle mass (cm) | Dx 28.7 ± 2.5 a Sin 29.5 ± 2.9 a | Dx 29.1 ± 2.5 a Sin 9.6 ± 2.6 a | Dx 28.7 ± 3.0 a Sin 29.1 ± 2.8 a | Dx 26.6 ± 2.1 a Sin 27.0 ± 1.98 a | Dx 27.6 ± 2.1 a Sin 28.3 ± 2.1 a |
Kinetic and kinematic evaluations | |||||
Total PF symmetry | −7.1 ± 4.92 a* | −5.65 ± 3.8 a | −3.99 ± 1.74 a | −1.63 ± 1.58 a* | −2.98 ± 1.13 a |
Fore–hind PF symmetry | −4.38 ± 3.44 a* | −3.29 ± 3.48 ab | −1.48 ± 2.75 b | −1.04 ± 1.51 a* | −1.55 ± 2.06 a |
Fore PF symmetry | 0.52 ± 5.36 a | 0.20 ± 3.3 a | −0.28 ±1.25 a | 0.24 ± 0.46 a | 0.07 ± 0.32 a |
Total Imp symmetry | −5.17 ± 3.72 a* | −4.27 ± 3.26 a | −2.55 ± 1.38 a | −1.62 ± 0.61 a* | −1.82 ± 1.12 a |
Fore–hind Imp symmetry | −1.71 ± 2.67 a* | −0.43 ± 2.86 a | −0.19 ± 1.70 a | 0.55 ± 0.92 a* | 0.38 ± 1.42 a |
Fore Imp symmetry | 0.55 ± 5.58 a | −1.04 ± 3.94 a | −0.76 ± 1.73 a | −0.05 ± 0.90 a | 0.68 ± 0.86 a |
ROM Dx at walk | 57.8 ± 6.1 a | 55.6 ± 8.5 a | 56.9 ± 6.6 a | 54.5 ± 6.3 a | 53.1 ± 5.1 a |
ROM Sin at walk | 58.2 ± 1.7 a | 56.6 ± 9.2 a | 58.3 ± 2.1 a | 57.5 ± 2.7 a | 54.8 ± 7.0 a |
Symmetry squares blinded evaluation: worse/unchanged/improved | Baseline (n = 19) | 5/5/9 (n = 19) | 1/3/7 (n = 11) | Baseline (n = 8) | 0/7/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergström, A.; Kjörk Granström, M.; Roepstorff, L.; Alipour, M.J.; Pettersson, K.; Ljungvall, I. Long-Term Effect of Intra-Articular Adipose-Derived Stromal Vascular Fraction and Platelet-Rich Plasma in Dogs with Elbow Joint Disease—A Pilot Study. Vet. Sci. 2024, 11, 296. https://doi.org/10.3390/vetsci11070296
Bergström A, Kjörk Granström M, Roepstorff L, Alipour MJ, Pettersson K, Ljungvall I. Long-Term Effect of Intra-Articular Adipose-Derived Stromal Vascular Fraction and Platelet-Rich Plasma in Dogs with Elbow Joint Disease—A Pilot Study. Veterinary Sciences. 2024; 11(7):296. https://doi.org/10.3390/vetsci11070296
Chicago/Turabian StyleBergström, Annika, Miriam Kjörk Granström, Lars Roepstorff, Mohammad J. Alipour, Kjerstin Pettersson, and Ingrid Ljungvall. 2024. "Long-Term Effect of Intra-Articular Adipose-Derived Stromal Vascular Fraction and Platelet-Rich Plasma in Dogs with Elbow Joint Disease—A Pilot Study" Veterinary Sciences 11, no. 7: 296. https://doi.org/10.3390/vetsci11070296
APA StyleBergström, A., Kjörk Granström, M., Roepstorff, L., Alipour, M. J., Pettersson, K., & Ljungvall, I. (2024). Long-Term Effect of Intra-Articular Adipose-Derived Stromal Vascular Fraction and Platelet-Rich Plasma in Dogs with Elbow Joint Disease—A Pilot Study. Veterinary Sciences, 11(7), 296. https://doi.org/10.3390/vetsci11070296