Changes in Immune Response during Pig Gestation with a Focus on Cytokines
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immune Cells in the Pig Placenta
2.1. NK and T-Cells
2.2. Polymorphonuclear Neutrophils (PMNNs), Dendritic Cells, and Other Cells
3. Cytokines in the Pig Placenta
4. Interleukins
4.1. Interleukin 1 β (IL-1β)
4.2. Interleukin 2 (IL-2)
4.3. Interleukin 4 (IL-4)
4.4. Interleukin 6 (IL-6)
4.5. Interleukin 10 (IL-10)
4.6. Interleukin 12 (IL-12)
4.7. Interleukin 15 (IL-15)
4.8. Interleukin 18 (IL-18)
4.9. Interleukin 23 (IL-23)
4.10. Interferon Gamma (IFN-γ)
4.11. Tumor Necrosis Factor Alpha (TNF-α)
4.12. Leukemia Inhibitory Factor (LIF)
4.13. Transforming Growth Factor Beta (TGFß)
5. Humoral Immunity in Pregnancy
5.1. Asymmetric IgG Antibodies
5.2. Fc Gamma Receptor
6. Extracellular Vesicles and Mirna in Pig Gestation
7. Conclusions: Immune Response during Different Pig Pregnancy Periods
8. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schroeder, K.; Drews, B.; Roellig, K.; Goeritz, F.; Hildebrandt, T.B. Embryonic Resorption in Context to Intragestational Corpus Luteum Regression: A Longitudinal Ultrasonographic Study in the European Brown Hare (Lepus europaeus PALLAS, 1778). Theriogenology 2013, 80, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Barbeito, C.G.; Acuña, F.; Miglino, M.A.; Portiansky, E.L.; Flamini, M.A. Placentation and Embryo Death in the Plains Viscacha (Lagostomus maximus). Placenta 2021, 108, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Acuña, F.; Barbeito, C.G.; Portiansky, E.L.; Ranea, G.; Miglino, M.A.; Flamini, M.A. Spontaneous Embryonic Death in Plains Viscacha (Lagostomus maximus-Rodentia), a Species with Unique Reproductive Characteristics. Theriogenology 2022, 185, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Bidarimath, M.; Tayade, C. Pregnancy and Spontaneous Fetal Loss: A Pig Perspective. Mol. Reprod. Dev. 2017, 84, 856–869. [Google Scholar] [CrossRef] [PubMed]
- FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). FAOSTAT. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 17 August 2023).
- Petroff, M.G.; Nguyen, S.L.; Ahn, S.H. Fetal-Placental Antigens and the Maternal Immune System: Reproductive Immunology Comes of Age. Immunol. Rev 2022, 308, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Medawar, P.B. Some Immunological and Endocrinological Problems Raised by Evolution of Viviparity in Vertebrates. Symp. Soc. Exp. Biol 1953, 7, 320–338. [Google Scholar]
- Rendell, V.; Bath, N.M.; Brennan, T.V. Medawar’s Paradox and Immune Mechanisms of Fetomaternal Tolerance. OBM Transpl. 2020, 4, 26. [Google Scholar] [CrossRef]
- Wegmann, T.G. Bidirectional Cytokine Interactions in the Maternal-Fetal Relationship: Is Successful Pregnancy a TH2 Phenomenon? Immunol. Today 1993, 14, 353–356. [Google Scholar] [CrossRef]
- Raghupathy, R. Pregnancy: Success and Failure within the Th1/Th2/Th3 Paradigm. Semin. Immunol. 2001, 13, 219–227. [Google Scholar] [CrossRef]
- Engelhardt, H.; King, G.J. Uterine Natural Killer Cells in Species with Epitheliochorial Placentation. Nat. Immun 1996, 15, 53–69. [Google Scholar]
- Aplin, J.D.; Beristain, A.; DaSilva-Arnold, S.; Dunk, C.; Duzyj, C.; Golos, T.G.; Kemmerling, U.; Knöfler, M.; Mitchell, M.D.; Olson, D.M. IFPA Meeting 2016 Workshop Report III: Decidua-Trophoblast Interactions; Trophoblast Implantation and Invasion; Immunology at the Maternal-Fetal Interface; Placental Inflammation. Placenta 2017, 60 (Suppl. S1), 15–19. [Google Scholar] [CrossRef]
- Griffith, O.W.; Chavan, A.R.; Protopapas, S.; Maziarz, J.; Romero, R.; Wagner, G.P. Embryo Implantation Evolved from an Ancestral Inflammatory Attachment Reaction. Proc. Natl. Acad. Sci. USA 2017, 114, E6566–E6575. [Google Scholar] [CrossRef]
- Mika, K.; Marinić, M.; Singh, M.; Muter, J.; Brosens, J.J.; Lynch, V.J. Evolutionary Transcriptomics Implicates New Genes and Pathways in Human Pregnancy and Adverse Pregnancy Outcomes. eLife 2020, 10, 69584. [Google Scholar] [CrossRef]
- Han, D.; Sun, P.; Hu, Y.; Wang, J.; Hua, G.; Chen, J.; Shao, C.; Tian, F.; Darwish, H.; Tai, Y. The Immune Barrier of Porcine Uterine Mucosa Differs Dramatically at Proliferative and Secretory Phases and Could Be Positively Modulated by Colonizing Microbiota. Front. Immunol. 2021, 12, 750808. [Google Scholar] [CrossRef]
- Engelhardt, H.; Croy, B.A.; King, G.J. Conceptus Influences the Distribution of Uterine Leukocytes during Early Porcine Pregnancy. Biol. Reprod. 2002, 66, 1875–1880. [Google Scholar] [CrossRef]
- Engelhardt, H.; Croy, B.A.; King, G.J. Evaluation of Natural Killer Cell Recruitment to Embryonic Attachment Sites during Early Porcine Pregnancy. Biol. Reprod 2002, 66, 1185–1192. [Google Scholar] [CrossRef]
- Dimova, T.; Mihaylova, A.; Spassova, P.; Georgieva, R. Superficial Implantation in Pigs Is Associated with Decreased Numbers and Redistribution of Endometrial NK-Cell Populations. Am. J. Reprod. Immunol. 2008, 59, 359–369. [Google Scholar] [CrossRef]
- Croy, B.A.; Wessels, J.; Linton, N.; Tayade, C. Comparison of Immune Cell Recruitment and Function in Endometrium during Development of Epitheliochorial (Pig) and Hemochorial (Mouse and Human) Placentas. Placenta 2009, 30 (Suppl. A), S26–S31. [Google Scholar] [CrossRef]
- Han, J.; Gu, M.J.; Yoo, I.; Choi, Y.; Jang, H.; Kim, M.; Yun, C.H.; Ka, H. Analysis of Cysteine-X-Cysteine Motif Chemokine Ligands 9, 10, and 11, Their Receptor CXCR3, and Their Possible Role on the Recruitment of Immune Cells at the Maternal-Conceptus Interface in Pigs. Biol. Reprod. 2017, 97, 69–80. [Google Scholar] [CrossRef]
- Robson, A.; Lash, G.E.; Innes, B.A.; Zhang, J.Y.; Robson, S.C.; Bulmer, J.N. Uterine Spiral Artery Muscle Dedifferentiation. Hum. Reprod. 2019, 34, 1428–1438. [Google Scholar] [CrossRef]
- Rätsep, M.T.; Felker, A.M.; Kay, V.R.; Tolusso, L.; Hofmann, A.P.; Croy, B.A. Uterine Natural Killer Cells: Supervisors of Vasculature Construction in Early Decidua Basalis. Reproduction 2015, 149, 91–102. [Google Scholar] [CrossRef]
- Flamini, M.A.; Portiansky, E.L.; Favaron, P.O.; Martins, D.S.; Ambrósio, C.E.; Mess, A.M.; Miglino, M.A.; Barbeito, C.G. Chorioallantoic and Yolk Sac Placentation in the Plains Viscacha (Lagostomus maximus) a Caviomorph Rodent with Natural Polyovulation. Placenta 2011, 32, 963–968. [Google Scholar] [CrossRef]
- Croy, B.A.; Waterfield, A.; Wood, W.; King, G.J. Normal Murine and Porcine Embryos Recruit NK Cells to the Uterus. Cell. Immunol. 1988, 115, 471–480. [Google Scholar] [CrossRef]
- Yu, Z.; Croy, B.A.; Chapeau, C.; King, G.J. Elevated Endometrial Natural Killer Cell Activity during Early Porcine Pregnancy Is Conceptus-Mediated. J. Reprod. Immunol 1993, 24, 153–164. [Google Scholar] [CrossRef]
- Moffett, A.; Loke, C. Immunology of Placentation in Eutherian Mammals. Nat. Rev. Immunol. 2006, 6, 584–594. [Google Scholar] [CrossRef]
- Tayade, C.; Fang, Y.; Croy, B.A. A Review of Gene Expression in Porcine Endometrial Lymphocytes, Endothelium and Trophoblast during Pregnancy Success and Failure. J. Reprod. Dev. 2007, 53, 455–463. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, H.; Saravia, F.; Wallgren, M.; Martinez, E.A.; Sanz, L.; Roca, J.; Vazquez, J.M.; Calvete, J.J. Spermadhesin PSP-I/PSP-II Heterodimer Induces Migration of Polymorphonuclear Neutrophils into the Uterine Cavity of the Sow. J. Reprod. Immunol. 2010, 84, 57–65. [Google Scholar] [CrossRef]
- Stas, M.R.; Koch, M.; Stadler, M.; Sawyer, S.; Sassu, E.L.; Mair, K.H.; Saalmüller, A.; Gerner, W.; Ladinig, A. NK and T Cell Differentiation at the Maternal-Fetal Interface in Sows during Late Gestation. Front. Immunol. 2020, 11, 582065. [Google Scholar] [CrossRef]
- Karniychuk, U.U.; Spiegelaere, W.; Nauwynck, H.J. Porcine Reproductive and Respiratory Syndrome Virus Infection Is Associated with an Increased Number of Sn-Positive and CD8-Positive Cells in the Maternal-Fetal Interface. Virus Res. 2013, 176, 285–291. [Google Scholar] [CrossRef]
- Karniychuk, U.U.; Saha, D.; Vanhee, M.; Geldhof, M.; Cornillie, P.; Caij, A.B.; Regge, N.; Nauwynck, H.J. Impact of a Novel Inactivated PRRS Virus Vaccine on Virus Replication and Virus-Induced Pathology in Fetal Implantation Sites and Fetuses upon Challenge. Theriogenology 2012, 78, 1527–1537. [Google Scholar] [CrossRef]
- Krop, J.; Heidt, S.; Claas, F.H.J.; Eikmans, M. Regulatory T Cells in Pregnancy: It Is Not All About FoxP3. Front. Immunol. 2020, 11, 1182. [Google Scholar] [CrossRef]
- Silva-Campa, E.; Flores-Mendoza, L.; Reséndiz, M.; Pinelli-Saavedra, A.; Mata-Haro, V.; Mwangi, W.; Hernández, J. Induction of T Helper 3 Regulatory Cells by Dendritic Cells Infected with Porcine Reproductive and Respiratory Syndrome Virus. Virology 2009, 387, 373–379. [Google Scholar] [CrossRef]
- Croy, B.A.; Wessels, J.M.; Linton, N.F.; van den Heuvel, M.; Edwards, A.K.; Tayade, C. Cellular and Molecular Events in Early and Mid Gestation Porcine Implantation Sites: A Review. Soc. Reprod. Fertil. Suppl. 2009, 66, 233–244. [Google Scholar] [CrossRef]
- Dimova, T.; Mihaylova, A.; Spassova, P.; Georgieva, R. Establishment of the Porcine Epitheliochorial Placenta Is Associated with Endometrial T-Cell Recruitment. Am. J. Reprod. Immunol. 2007, 57, 250–261. [Google Scholar] [CrossRef]
- Jalali, B.M.; Kitewska, A.; Wasielak, M.; Bodek, G.; Bogacki, M. Effects of Seminal Plasma and the Presence of a Conceptus on Regulation of Lymphocyte-Cytokine Network in Porcine Endometrium. Mol. Reprod. Dev. 2014, 81, 270–281. [Google Scholar] [CrossRef]
- Stas, M.R.; Kreutzmann, H.; Stadler, J.; Sassu, E.L.; Mair, K.H.; Koch, M.; Knecht, C.; Stadler, M.; Dolezal, M.; Balka, G. Influence of PRRSV-1 Vaccination and Infection on Mononuclear Immune Cells at the Maternal-Fetal Interface. Front. Immunol. 2022, 13, 1055048. [Google Scholar] [CrossRef]
- Zambrano, F.; Namuncura, C.; Uribe, P.; Schulz, M.; Pezo, F.; Burgos, R.A.; Taubert, A.; Hermosilla, C.; Sanchez, R. Swine Spermatozoa Trigger Aggregated Neutrophil Extracellular Traps Leading to Adverse Effects on Sperm Function. J. Reprod. Immunol. 2021, 146, 103339. [Google Scholar] [CrossRef]
- Linton, N.F.; Wessels, J.M.; Cnossen, S.A.; Croy, B.A.; Tayade, C. Immunological Mechanisms Affecting Angiogenesis and Their Relation to Porcine Pregnancy Success. Immunol. Invest. 2008, 37, 611–629. [Google Scholar] [CrossRef]
- Wessels, J.M.; Linton, N.F.; Croy, B.A.; Tayade, C. A Review of Molecular Contrasts between Arresting and Viable Porcine Attachment Sites. Am. J. Reprod. Immunol. 2007, 58, 470–480. [Google Scholar] [CrossRef]
- Teamsuwan, Y.; Kaeoket, K.; Tienthai, P.; Tummaruk, P. Morphological Changes and Infiltration of Immune Cells in the Endometrium of Anoestrus Gilt in Relation to the Ovarian Appearance and Serum Progesterone. Thai J. Vet. Med. 2010, 40, 31–40. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, Z.H.; Wang, H.; Kwak-Kim, J.; Liao, A.H. Cutting Edge: The Regulatory Mechanisms of Macrophage Polarization and Function during Pregnancy. J. Reprod. Immunol. 2022, 151, 103627. [Google Scholar] [CrossRef]
- Mathew, D.J.; Lucy, M.C.; Geisert, R.D. Interleukins, Interferons, and Establishment of Pregnancy in Pigs. Reproduction 2016, 151, R111–R122. [Google Scholar] [CrossRef]
- Cencič, A.; Henry, C.; Lefèvre, F.; Huet, J.; Koren, S.; Bonnardière, C. The Porcine Trophoblastic Interferon-γ, Secreted by a Polarized Epithelium, Has Specific Structural and Biochemical Properties. Eur. J. Biochem. 2002, 269, 2772–2781. [Google Scholar] [CrossRef]
- Kim, M.; Seo, H.; Choi, Y.; Shim, J.; Bazer, F.W.; Ka, H. Swine Leukocyte Antigen-DQ Expression and Its Regulation by Interferon-Gamma at the Maternal-Fetal Interface in Pigs. Biol. Reprod. 2012, 86, 43. [Google Scholar] [CrossRef]
- Joyce, M.M.; Burghardt, J.R.; Burghardt, R.C.; Hooper, R.N.; Bazer, F.W.; Johnson, G.A. Uterine MHC Class I Molecules and Beta 2-Microglobulin Are Regulated by Progesterone and Conceptus Interferons during Pig Pregnancy. J. Immunol. 2008, 181, 2494–2505. [Google Scholar] [CrossRef]
- Bazer, F.; Spencer, T.; Johnson, G. Interferons and Uterine Receptivity. Semin. Reprod. Med. 2009, 27, 090–102. [Google Scholar] [CrossRef]
- Geisert, R.D.; Lucy, M.C.; Whyte, J.J.; Ross, J.W.; Mathew, D.J. Cytokines from the Pig Conceptus: Roles in Conceptus Development in Pigs. J. Anim. Sci. Biotechnol. 2014, 5, 51. [Google Scholar] [CrossRef]
- Kridli, R.T.; Khalaj, K.; Bidarimath, M.; Tayade, C. Placentation, Maternal—Fetal Interface, and Conceptus Loss in Swine. Theriogenology 2016, 85, 135–144. [Google Scholar] [CrossRef]
- Williamson, D.; Riesco, O.; Vélez, C.; Koncurat, M. Determinación de La Concentración de IFN-γ, IL-6, IL-12, IL-15 e IL-18 En Suero, Extractos Placentarios Maternos y Fetales a Través de La Gestación Porcina. Cienc. Vet. 2011, 13, 31–41. [Google Scholar] [CrossRef]
- Vélez, C.; Clauzure, M.; Williamson, D.; Koncurat, M.; Santa-Coloma, T.; Barbeito, C. IL-1β, IL-2 and IL-4 Concentration during Porcine Gestation. Theriogenology 2019, 128, 133–139. [Google Scholar] [CrossRef]
- Vélez, C.; Clauzure, M.; Williamson, D.; Koncurat, M.A.; Barbeito, C. IFN-γ and IL-10: Seric and Placental Profile during Pig Gestation Seric and Placental Cytokines in Pig Gestation. An. Acad. Bras. Ciências 2023, 95, 20201160. [Google Scholar] [CrossRef] [PubMed]
- Tuo, W.; Bazer, F.W. Expression of Oncofetal Fibronectin in Porcine Conceptuses and Uterus throughout Gestation. Reprod. Fertil. Dev. 1996, 8, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.W.; Malayer, J.R.; Ritchey, J.W.; Geisert, R.D. Characterization of the Interleukin-1 System During Porcine Trophoblastic Elongation and Early Placental Attachment. Biol. Reprod. 2003, 69, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Waclawik, A. Novel Insights into the Mechanisms of Pregnancy Establishment: Regulation of Prostaglandin Synthesis and Signaling in the Pig. Reproduction 2011, 142, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Mathew, D.J. Characterization of Interleukin-1 Beta 2, a Novel Interleukin-1 Expressed By the Early Pig Conceptus during Establishment of Pregnancy. Ph.D. Thesis, University of Missouri-Columbia, Columbia, MI, USA, 2014. [Google Scholar]
- Ka, H.; Seo, H.; Choi, Y.; Yoo, I.; Han, J. Endometrial Response to Conceptus-Derived Estrogen and Interleukin-1β at the Time of Implantation in Pigs. J. Anim. Sci. Biotechnol 2018, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Whyte, J.J.; Meyer, A.E.; Spate, L.D.; Benne, J.A.; Cecil, R.; Samuel, M.S.; Murphy, C.N.; Prather, R.S.; Geisert, R.D. Inactivation of Porcine Interleukin-1β Results in Failure of Rapid Conceptus Elongation. Proc. Natl. Acad. Sci. USA 2018, 115, 307–312. [Google Scholar] [CrossRef]
- Lee, S.; Yoo, I.; Cheon, Y.; Ka, H. Conceptus-Derived Cytokines Interleukin-1β and Interferon-γ Induce the Expression of Acute Phase Protein Serum Amyloid A3 in Endometrial Epithelia at the Time of Conceptus Implantation in Pigs. Anim. Biosci. 2023, 36, 441–450. [Google Scholar] [CrossRef]
- Modric, T.; Kowalski, A.A.; Green, M.L.; Simmen, R.C.M.; Simmen, F.A. Pregnancy-Dependent Expression of Leukaemia Inhibitory Factor (LIF), LIF Receptor- and Interleukin-6 (IL-6) Messenger Ribonucleic Acids in the Porcine Female Reproductive Tract. Placenta 2000, 6, 345–353. [Google Scholar] [CrossRef]
- Koncurat, M.; Williamson, D.; Velez, C.; Riesco, O. Concentration of IL-6, IL-12 and IFNg in Serum and Placental Extracts during Porcine Gestation. In Proceedings of the First French-Argentine Immunology Congress. LVIII Reunión Anual de la Sociedad Argentina de Inmunología, Buenos Aires, Argentina, 2–5 November 2010. [Google Scholar]
- Garro, A.; Gentile, M.; Koncurat, M. Valoración de Anticuerpos IgG Asimétricos En Suero Sanguíneo y Extractos Placentarios Porcinos. Arch Latinoam Prod Anim. 2014, 22, 87–92. [Google Scholar]
- Williamson, D.M.; Riesco, O.F.; Barbeito, C.G.; Koncurat, M.A. Perfil y rol de citoquinas en suero, homogenatos placentarios maternos y fetales a través de la gestación porcina. Rev. Electrónica Vet. 2015, 16, 1–14. [Google Scholar]
- Svensson, A.; Jiwakanon, J.; Fossum, C.; Dalin, A.M. Expression of IL-23 in Gilt Endometrium and Oviduct after Insemination with Seminal Plasma, Spermatozoa or Semen Extender. BMC Res. Notes 2021, 14, 221. [Google Scholar] [CrossRef] [PubMed]
- Tayade, C.; Black, G.P.; Fang, Y.; Croy, B.A. Differential Gene Expression in Endometrium, Endometrial Lymphocytes, and Trophoblasts during Successful and Abortive Embryo Implantation. J. Immunol. 2006, 176, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Gordon, J.R.; Kendall, J.; Thacker, P.A. Elevation in Tumour Necrosis Factor-Alpha (TNF-α) Messenger RNA Levels in the Uterus of Pregnant Gilts after Oestrogen Treatment. Anim. Reprod. Sci. 1998, 50, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Jana, B.; Kozłowska, A.; Andronowska, A.; Jedlińska-Krakowska, M. The Effect of Tumor Necrosis Factor-Alpha (TNF-Alpha), Interleukin (IL)-1 Beta and IL-6 on Chorioamnion Secretion of Prostaglandins (PG)F 2 Alpha and E2 in Pigs. Reprod. Biol. 2008, 8, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Franczak, A.; Wojciechowicz, B.; Kolakowska, J.; Kotwica, G. The Effect of Interleukin-1β, Interleukin-6, and Tumor Necrosis Factor-α on Estradiol-17β Release in the Myometrium: The In vitro Study on the Pig Model. Theriogenology 2014, 81, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, C.; Yoshioka, K.; Yamada, M.; Miyamoto, T.; Manabe, N. Expressions of Tumor Necrosis Factor-α, Its Receptor I, II and Receptor-Associated Factor 2 in the Porcine Corpus Luteum during the Estrous Cycle and Early Pregnancy. Vet. Res. Commun. 2014, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.A.; Rubér, M.; Rodriguez-Martinez, H.; Alvarez-Rodriguez, M. Pig Pregnancies after Transfer of Allogeneic Embryos Show a Dysregulated Endometrial/Placental Cytokine Balance: A Novel Clue for Embryo Death? Biomolecules 2020, 10, 554. [Google Scholar] [CrossRef]
- Jana, B.; Koszykowska, M.; Andronowska, A. The Effect of Tumor Necrosis Factor-Alpha (TNF-Alpha, Interleukin (IL)-1beta and IL-6 on Prostaglandins (PG)F2alpha and E2 Secretion from Maternal Placenta in Pigs. Pol. J. Vet. Sci. 2008, 11, 315–322. [Google Scholar]
- Blitek, A.; Morawska, E.; Ziecik, A.J. Regulation of Expression and Role of Leukemia Inhibitory Factor and Interleukin-6 in the Uterus of Early Pregnant Pigs. Theriogenology 2012, 78, 951–964. [Google Scholar] [CrossRef]
- Goryszewska, E.; Kaczynski, P.; Baryla, M.; Waclawik, A. Pleiotropic role of prokineticin 1 in the porcine endometrium during pregnancy establishment and embryo implantation. Biol. Reprod. 2021, 104, 181–196. [Google Scholar] [CrossRef]
- Blitek, A.; Kaczmarek, M.M.; Kiewisz, J.; Ziecik, A.J. Endometrial and Conceptus Expression of HoxA10, Transforming Growth Factor Beta1, Leukemia Inhibitory Factor, and Prostaglandin H Synthase-2 in Early Pregnant Pigs with Gonadotropin-Induced Estrus. Domest. Anim. Endocrinol. 2010, 38, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Jiwakanon, J.; Persson, E.; Berg, M.; Dalin, A.M. Influence of Seminal Plasma, Spermatozoa and Semen Extender on Cytokine Expression in the Porcine Endometrium after Insemination. Anim. Reprod. Sci. 2011, 123, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.; Arend, W.; Sims, J.; Smith, D. IL-1 Family Nomenclature. Nat. Immunol. 2010, 11, 973. [Google Scholar] [CrossRef] [PubMed]
- Garlanda, C.; Dinarello, C.A.; Mantovani, A. The interleukin-1 family: Back to the future. Immunity 2013, 39, 1003–1018. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Pellicer, A.; Polan, M.L. Interleukin-1 System Crosstalk between Embryo and Endometrium in Implantation. Hum. Reprod. 1995, 10, 43–54. [Google Scholar] [CrossRef]
- Paulesu, L.; Romagnoli, R.; Bigliardi, E. Materno-Fetal Immunotolerance: Is Interleukin-1 a Fundamental Mediator in Placental Viviparity? Dev. Comp. Immunol. 2005, 29, 409–415. [Google Scholar] [CrossRef]
- Simón, C.; Frances, A.; Piquette, G.; Hendrickson, M.; Milki, A.; Polan, M.L. Interleukin-1 System in the Materno-Trophoblast Unit in Human Implantation: Immunohistochemical Evidence for Autocrine/Paracrine Function. J. Clin. Endocrinol. Metab. 1994, 78, 847–854. [Google Scholar]
- Simon, C.; Mercader, A.; Gimeno, M.J.; Pellicer, A. The Interleukin-1 System and Human Implantation. Am. J. Reprod. Immunol. 1997, 37, 64–72. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9138454%255Cnhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9138454 (accessed on 1 October 2023). [CrossRef]
- Simon, C.; Valbuena, D.; Krüssel, J.; Bernal, A.; Murphy, C.R.; Shaw, T.; Pellicer, A.; Polan, M.L. Interleukin-1 Receptor Antagonist Prevents Embryonic Implantation by a Direct Effect on the Endometrial Epithelium. Fertil. Steril. 1998, 70, 896–906. [Google Scholar] [CrossRef]
- King, A.E.; Collins, F.; Klonisch, T.; Sallenave, J.-M.; Critchley, H.O.D.; Saunders, P.T.K. An Additive Interaction between the NF B and Estrogen Receptor Signalling Pathways in Human Endometrial Epithelial Cells. Hum. Reprod. 2010, 25, 510–518. [Google Scholar] [CrossRef]
- Cristofolini, A.; Sanchis, G.; Moliva, M.; Alonso, L.; Chanique, A.; Koncurat, M.; Merkis, C. Cellular Remodelling by Apoptosis during Porcine Placentation. Reprod. Domest. Anim. 2013, 48, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Lin, J.X.; Leonard, W.J. Interleukin-2 at the Crossroads of Effector Responses, Tolerance, and Immunotherapy. Immunity 2013, 38, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Tezabwala, B.U.; Johnson, P.M.; Rees, R.C. Inhibition of Pregnancy Viability in Mice Following IL-2 Administration. Immunology 1989, 67, 115–119. [Google Scholar] [PubMed]
- Verma, S.; Hiby, S.; Loke, Y.W.; King, A. Human Decidual Natural Killer Cells Express the Receptor for and Respond to the Cytokine Interleukin 15. Biol. Reprod. 2000, 62, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Marzi, M.; Vigano, A.; Trabattoni, D.; Villa, M.L.; Salvaggio, A.; Clerici, E. Characterization of Type 1 and Type 2 Cytokine Production Profile in Physiologic and Pathologic Human Pregnancy. Clin. Exp. Immunol. 1996, 106, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.J.H.; Odukoya, O.A.; Ajjan, R.A.; Li, T.C.; Weetman, A.P.; Cooke, I.D. The Role of T-Helper Cytokines in Human Reproduction. Fertil. Steril 2000, 73, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Wooding, P.; Burton, G. Comparative Placentation: Structures, Functions and Evolution; Springer: Cambridge, UK, 2008. [Google Scholar]
- Romero-Adrian, T.; Molina-Vilchez, R.; González, E.; Taborda, J.; Estévez, J.; Ruíz, A. Concentraciones séricas de interleucina-2 en el embarazo normal. Rev. Obs. Ginecol. Venez. 1999, 59, 3–6. [Google Scholar]
- Romero-Adrian, T.; Ruiz, A.; Molina-Vilchez, R.; Estevez, J.; Atencio, R. Interleukin-2 receptor serum concentrations in normal pregnancy and pre-eclampsia. Investig. Clin. 2002, 43, 73–78. [Google Scholar]
- Sykes, L.; MacIntyre, D.A.; Yap, X.J.; Teoh, T.G.; Bennett, P.R. The Th1: Th2 Dichotomy of Pregnancy and Preterm Labour. Mediat. Inflamm. 2012, 2012, 967629. [Google Scholar] [CrossRef]
- Molina Vílchez, R.; Adrián, T.R.; Ruiz, A.; Heredia, W.; Atencio, R.; Taborda, J.L. Interleucina 4 en el suero de embarazadas normales y preeclámpticas. Rev. Obs. Ginecol. Venez. 2000, 60, 77–80. [Google Scholar]
- Dealtry, G.B.; O’Farrell, M.K.; Fernandez, N. The Th2 Cytokine Environment of the Placenta. Int. Arch. Allergy Immunol. 2000, 123, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Omu, A.E.; Al-Qattan, F.; Diejomaoh, M.E.; Al-Yatama, M. Differential Levels of T Helper Cytokines in Preeclampsia: Pregnancy, Labor and Puerperium. Acta Obstet. Gynecol. Scand. 1999, 78, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Hanna, N.; Hanna, I.; Hleb, M.; Wagner, E.; Dougherty, J.; Balkundi, D.; Padbury, J.; Sharma, S. Gestational Age-Dependent Expression of IL-10 and Its Receptor in Human Placental Tissues and Isolated Cytotrophoblasts. J. Immunol. 2000, 164, 5721–5728. [Google Scholar] [CrossRef] [PubMed]
- Clauzure, M.; Valdivieso, Á.G.; Massip-Copiz, M.M.; Mori, C.; Dugour, A.V.; Figueroa, J.M.; Santa-Coloma, T.A. Intracellular Chloride Concentration Changes Modulate IL-1β Expression and Secretion in Human Bronchial Epithelial Cultured Cells. J. Cell Biochem. 2017, 118, 2131–2140. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, G.; Junovich, G.; Dubinsky, V.; Pasqualini, R.S.; Gentile, M.T. El rol de la interleuquina 6 en el éxito gestacional. Saegre 2008, 15, 43–47. [Google Scholar]
- Margni, R.; Zenclussen, A. During Pregnancy, in the Context of a Th2-Type Cytokine Profile, Serum IL-6 Levels Might Condition the Quality of the Synthesized Antibodies. Am. J. Reprod. Immunol. 2001, 46, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Girasole, G.; Jilka, R.L.; Passeri, G.; Boswell, S.; Boder, G.; Williams, D.C.; Manolagas, S.C. 17b-Estradiol Inhibits Interleukin-6 Production by Bone Marrow-Derived Stromal Cells and Osteoblasts 22 In Vitro: A Potential Mechanism for the Antiosteoporotic Effect of Estrogen. J. Clin. Investig. 1992, 89, 883–891. [Google Scholar] [CrossRef]
- Dilillo, D.J.; Matsushita, T.; Tedder, T.F. B10 Cells and Regulatory B Cells Balance Immune Responses during Inflammation, Autoimmunity, and Cancer. Ann. N. Y. Acad. Sci. 2010, 1183, 38–57. [Google Scholar] [CrossRef]
- Jensen, F.; Muzzio, D.; Soldati, R.; Fest, S.; Zenclussen, A.C. Regulatory B10 Cells Restore Pregnancy Tolerance in a Mouse Model. Biol. Reprod. 2013, 89, 1–7. [Google Scholar] [CrossRef]
- Makris, A.; Xu, B.; Yu, B.; Thornton, C.; Hennessy, A. Placental Deficiency of Interleukin-10 (IL-10) in Preeclampsia and Its Relationship to an IL10 Promoter Polymorphism. Placenta 2006, 27, 445–451. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, T.; Wu, Y.; Wei, H.; Peng, J. Oxidative Stress and Inflammation in Sows with Excess Backfat: Up-Regulated Cytokine Expression and Elevated Oxidative Stress Biomarkers in Placenta. Animals 2019, 9, 796. [Google Scholar] [CrossRef] [PubMed]
- Van Engelen, E.; De Groot, M.W.; Breeveld-Dwarkasing, V.N.A.; Everts, M.E.; Van Der Weyden, G.C.; Taverne, M.A.M.; Rutten, V.P.M.G. Cervical Ripening and Parturition in Cows Are Driven by a Cascade of Pro-Inflammatory Cytokines. Reprod. Domest. Anim. 2009, 44, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Najjam, S.; Gordon, M.Y.; Gibbs, R.V.; Rider, C.C. IL-12 is a heparin-binding cytokine. J. Immunol. 1999, 162, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Kenji, N.; Tomohiro, Y.; Hiroko, T.; Haruki, O. Interleukin-18 regulates both th1 and Th2 responses. Annu. Rev. Immunol. 2001, 19, 423–474. [Google Scholar]
- Oh, M.J.; Croy, B.A. A Map of Relationships Between Uterine Natural Killer Cells and Progesterone Receptor Expressing Cells During Mouse Pregnancy. Placenta 2008, 29, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, K.; Yasuda, J.; Yagi, I.; Tada, Y.; Fushiki, S.; Honjo, H. IL-15 expression at human endometrium and decidua. Biol. Reprod. 2000, 63, 683–687. [Google Scholar] [CrossRef]
- Ashkar, A.A.; Black, G.P.; Wei, Q.; He, H.; Liang, L.; Head, J.R.; Croy, B.A. Assesment of Requirements for IL-15 and IFN Regulatory Factors in Uterine NK Cell Differentiation and Function during Pregnancy. J. Immunol. 2003, 171, 2937–2944. [Google Scholar] [CrossRef]
- Boomsma, C.M.; Kavelaars, A.; Eijkemans, M.J.; Amarouchi, K.; Tklenburg, G.; Gutknecht, D.; Fauser, B.J.; Heijnen, C.J.; Macklon, N.S. Cytokine Profiling in Endometrial Secretions: A Non-Invasive Window on Endometrial Receptivity. Reprod. Biomed. Online 2009, 18, 85–94. [Google Scholar] [CrossRef]
- Okada, H.; Nakajima, T.; Sanezumi, M.; Ikuta, A.; Yasuda, K.; Kanzaki, H. Progesterone enhances interleukin-15 production in human endometrial stromal cells in vitro. J. Clin. Endocrinol. Metab. 2000, 85, 4765–4770. [Google Scholar] [CrossRef]
- Huang, H.Y. The cytokine network during embryo implantation. Chang. Gung Med. J. 2006, 29, 25–36. [Google Scholar]
- Male, D.; Brostoff, J.; Roth, D.; Roitt, I.M.I. Fundamentos, 11th ed.; Panamericana SA: Madrid, Spain, 2008. [Google Scholar]
- Ashworth, M.D.; Ross, J.W.; Stein, D.R.; White, F.J.; DeSilva, U.W.; Geisert, R.D. Endometrial Caspase 1 and Interleukin-18 Expression during the Estrous Cycle and Peri-Implantation Period of Porcine Pregnancy and Response to Early Exogenous Estrogen Administration. Reprod. Biol. Endocrinol. 2010, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Casazza, R.L.; Lazear, H.M. Why Is IFN-λ Less Inflammatory? One IRF Decides. Immunity 2019, 51, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Tayade, C.; Ashkar, A.A.; Hatta, K.; Zhang, J.; Croy, B.A. Interferon Gamma in Successful Pregnancies. Biol. Reprod. 2009, 80, 848–859. [Google Scholar] [CrossRef] [PubMed]
- La Bonnardière, C.; Lefèvre, F.; Charley, B. Interferon Response in Pigs: Molecular and Biological Aspects. Vet. Immunol. Immunopathol. 1994, 43, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, F.; Martinat-Botté, F.; Guillomot, M.; Zouari, K.; Charley, B.; Bonnardière, C.L. Interferon-Gamma Gene and Protein Are Spontaneously Expressed by the Porcine Trophectoderm Early in Gestation. Eur. J. Immunol. 1990, 20, 2485–2490. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Nakashima, A.; Shima, T.; Ito, M. Th1/Th2/Th17 and Regulatory T-Cell Paradigm in Pregnancy. Am. J. Reprod. Immunol. 2010, 63, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Giroir, B.P.; Johnson, J.H.; Brown, T.; Allen, G.L.; Beutler, B. The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J. Clin. Investig. 1992, 90, 693–698. [Google Scholar] [CrossRef]
- Hunt, J.S.; Chen, H.L.; Miller, L. Tumor Necrosis Factors: Pivotal Components of Pregnancy? Biol. Reprod. 1996, 54, 554–562. [Google Scholar] [CrossRef]
- Toder, V.; Fein, A.; Carp, H.; Torchinsky, A. TNF-α in Pregnancy Loss and Embryo Maldevelopment: A Mediator of Detrimental Stimuli or a Protector of the Fetoplacental Unit? J. Assist. Reprod. Genet 2003, 20, 73–81. [Google Scholar] [CrossRef]
- Dimitriadis, E.; White, C.A.; Jones, R.L.; Salamonsen, L.A. Cytokines, Chemokines and Growth Factors in Endometrium Related to Implantation. Hum. Reprod. Updat. 2005, 11, 613–630. [Google Scholar] [CrossRef]
- McEwan, M.; Lins, R.J.; Munro, S.K.; Vincent, Z.L.; Ponnampalam, A.P.; Mitchell, M.D. Cytokine Regulation during the Formation of the Fetal-Maternal Interface: Focus on Cell-Cell Adhesion and Remodelling of the Extra-Cellular Matrix. Cytokine Growth Factor Rev. 2009, 20, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Van Mourik, M.S.; Macklon, N.S.; Heijnen, C.J. Embryonic implantation: Cytokines, adhesion molecules, and immune cells in establishing an implantation environment. J. Leukoc Biol. 2009, 85, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Yoo, I.; Chae, S.; Han, J.; Lee, S.; Kim, H.J.; Ka, H. Leukemia Inhibitory Factor and Its Receptor: Expression and Regulation in the Porcine Endometrium throughout the Estrous Cycle and Pregnancy. Asian-Australas J. Anim. Sci. 2019, 32, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.R.; Cheng, J.G.; Shatzer, T.; Sewell, L.; Hernandez, L.; Stewart, C.L. Leukemia Inhibitory Factor Can Substitute for Nidatory Estrogen and Is Essential to Inducing a Receptive Uterus for Implantation but Is Not Essential for Subsequent Embryogenesis. Endocrinology 2000, 141, 4365–4372. [Google Scholar] [CrossRef] [PubMed]
- Cambra, J.M.; Jauregi-Miguel, A.; Alvarez-Rodriguez, M.; Parrilla, I.; Gil, M.A.; Martinez, E.A.; Cuello, C.; Rodriguez-Martinez, H.; Martinez, C.A. Allogeneic Embryos Disregulate Leukemia Inhibitory Factor (LIF) and Its Receptor in the Porcine Endometrium During Implantation. Front. Vet. Sci 2020, 7, 598–611. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P.; Haque, N. Reproductive immunomodulatory functions of B cells in pregnancy. Int. Rev. Immunol. 2020, 39, 53–66. [Google Scholar] [CrossRef]
- Milburn, J.V.; Hoog, A.; Villanueva-Hernández, S.; Mair, K.H.; Gerner, W. Identification of IL-10 Competent B Cells in Swine. Dev. Comp. Immunol. 2022, 135, 104488. [Google Scholar] [CrossRef]
- Margni, R.A.; Binaghi, R.A. Purification and Properties of Non-Precipitating Rabbit Antibodies. Immunology 1972, 22, 57–63. [Google Scholar]
- Gentile, M.T.; Llambias, P.; Dokmetjian, J.; Margni, R.A. Effect of Pregnancy and Placental Factors on the Quality of Humoral Immune Response. Immunol. Lett. 1998, 62, 151–157. [Google Scholar] [CrossRef]
- Malan Borel, I.; Gentile, M.T.; Angelucci, J.; Pividori, J.; Guala, M.C.; Binaghi, R.A.; Margni, R.A. IgG Asymmetric Molecules with Antipaternal Activity Isolated from Sera and Placenta of Pregnant Human. J. Reprod. Immunol. 1991, 20, 129–140. [Google Scholar] [CrossRef]
- Gentile, M.; Margni, R.; Williamson, D.; Garro, A.; Alonso, G.; Bruni, M.; Riesco, O.; Yaful, G.; Koncurat, M. Presencia de IgG Asimétricos En Sueros Porcinos. Estudio Preliminar; Jornada de Ciencia y Técnica, Facultad de Ciencias Veterinarias de la Universidad Nacional de La Pampa: La Pampa, Argentina, 2004. [Google Scholar]
- Kelemen, K.; Bognar, I.; Paal, M.; Szekeres-Bartho, J. A Progesterone-Induced Protein in-Creases the Synthesis of Asymmetric Antibodies. Cell Immunol. 1996, 167, 129–134. [Google Scholar] [CrossRef]
- Margni, R.A.; Malan Borel, I. Paradoxical behavior of asymmetric IgG antibodies. Immunol. Rev. 1998, 163, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, G.; Malal Borel, I.; Margni, R.A. The Placental Regulatory Factor Involved in the Asymmetric IgG Antibody Synthesis Responds to IL-6 Features. J. Reprod. Immunol. 2001, 49, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, V.; Junovich, G.; Gentile, M.T.; Gutiérrez, G. IL 6 as a Regulatory Factor of the Humoral Response during Pregnancy. Am. J. Reprod. Immunol. 2008, 60, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Canellada, A.; Gentile, M.T.; Dokmetjian, J.; Margni, R.A. Occurrence, Properties, and Function of Asymmetric IgG Molecules Isolated from Non-Immune Sera. Immunol. Investig. 2002, 31, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Canellada, A.; Alvarez, I.; Berod, L.; Gentile, M.T. Estrogen and Progesterone Regulate the IL-6 Signal Transduction Pathway in Antibody Secreting Cells. J. Biochem. Mol. 2008, 111, 255–261. [Google Scholar] [CrossRef]
- Garro, A.C.; Gómez, B.; Alonso, G.; Hernández, M.; Koncurat, M. IgG and Fc Receptor in Porcine Placenta. In Proceedings of the III Latin—American Symposium on Maternal—Fetal Interaction and placenta: Basic & Clinical Research, Los Cocos, Córdoba, Argentina, 4–7 November 2007; pp. 89–90. [Google Scholar]
- Garro, A.; Hernández, M.; García, M.; Koncurat, M. Igg and Fc Receptor during Porcine Placentation [Inmunoglobulina G y Su Receptor Fc Durante La Placentación Porcina]. Rev. Electron. Vet. 2014, 15, 1–14. [Google Scholar]
- Watson, D.L. Immunological Functions of the Mammary Gland and Its Secretion; Compara-Tive Review. Aust. J. Biol. Sci. 1980, 33, 4013–4022. [Google Scholar] [CrossRef]
- Wagstrom, E.A.; Yoon, K.J.; Zimmerman, J.J. Immune components in porcine mammary secretions. Viral Immunol. 2000, 13, 383–397. [Google Scholar] [CrossRef]
- Wilson, M.E.; Ford, S.P. Comparative Aspects of Placental Efficiency. Reproduction 2001, 58, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Merkis, C.I.; Cristofolini, A.L.; Franchino, M.; Moschetti, E.; Koncurat, M.A. Relación entre área total y área epitelial de vellosidades placentarias porcinas en diferentes estadios gestacionales. InVet 2005, 7, 47–54. [Google Scholar]
- Bazer, F.W.; Johnson, G.A. Pig Blastocyst—Uterine Interactions. Differentiation 2014, 87, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Merkis, C.; Cristofolini, A.; Sanchis, E.; Koncurat, M. Expression of Death Cellular Receptors FAS/CD95 and DR4 during Porcine Placentation [Expresión de Los Receptores de Muerte Celular Fas/Cd95 y Dr4 Durante La Placentación Porcina]. Int. J. Morphol. 2010, 28, 829–834. [Google Scholar] [CrossRef]
- Garro, A. Estudio de la Respuesta Inmune Humoral en la Gestación Porcina. Ph.D. Thesis, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina, 2015. [Google Scholar]
- Šinkora, M.; Sun, J.; Šinkorova, J.; Christenson, R.K.; Ford, S.P.; Butler, J.E. Antibody Repertoire Development in Fetal and Neonatal Piglets. VI. B Cell Lymphogenesis Occurs at Multiple Sites with Differences in the Frequency of Inframe Rearrangements. J. Immunol. 2003, 170, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Rothkötter, H. Anatomical Particularities of the Porcine Immune System a Physician’s View. Dev. Comp. Immunol. 2009, 33, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.E.; Lager, K.M.; Splichal, I.; Francis, D.; Kacskovics, I.; Sinkora, M.; Wertz, N.; Sun, J.; Zhao, Y.; Brown, W.R.; et al. The Piglet as a Model for B Cell and Immune System Development. Vet. Immunol. Immunopathol. 2009, 128, 147–170. [Google Scholar] [CrossRef]
- Akilesh, S.; Christianson, G.; Roopenian, D.; Shaw, A. Neonatal FcR Expression in Bone Marrow-Derived Cells Functions to Protect Serum IgG from Catabolism. J. Immunol. 2007, 179, 4580–4588. [Google Scholar] [CrossRef]
- Ghetie, V.; Sally Ward, E. Multiple Roles for the Major Histocompatibility Complex Class I- Related Receptor FcRn. Annu. Rev. Immunol. 2000, 18, 739–766. [Google Scholar] [CrossRef]
- Dickinson, B.L.; Badizadegan, K.; Wu, Z.; Ahouse, J.C.; Zhu, X.; Simister, N.E.; Blumberg, R.S.; Lencer, W.I. Bidirectional FcRn-Dependent IgG Transport in a Polarized Human Intestinal Epithelial Cell Line. J. Clin. Investig. 1999, 104, 903–911. [Google Scholar] [CrossRef]
- Stirling, C.; Charleston, B.; Takamatsu, H.; Claypool, S.; Lencer, W.; Blumberg, R.; Wileman, T. Characterization of the Porcine Neonatal Fc Receptor-Potential Use for Trans-Epithelial Protein Delivery. J. Immunol. 2005, 114, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Kusama, K.; Ideta, A.; Kimura, K.; Hori, M.; Imakawa, K. Effects of MiR-98 in Intrauterine Extracellular Vesicles on Maternal Immune Regulation during the Peri-Implantation Period in Cattle. Sci. Rep. 2019, 9, 20330. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.; Sultana, Z.; Fisher, J.J.; Maiti, K.; Smith, R. Extracellular Vesicles-Crucial Players in Human Pregnancy. Placenta 2023, 140, 30–38. [Google Scholar] [CrossRef]
- Hua, R.; Wang, Y.; Lian, W.; Li, W.; Xi, Y.; Xue, S.; Kang, T.; Lei, M. Small RNA-Seq Analysis of Extracellular Vesicles from Porcine Uterine Flushing Fluids during Peri-Implantation. Gene 2021, 766, 145117. [Google Scholar] [CrossRef] [PubMed]
- Hua, R.; Liu, Q.; Lian, W.; Gao, D.; Huang, C.; Lei, M. Transcriptome Regulation of Extracellular Vesicles Derived from Porcine Uterine Flushing Fluids during Peri-Implantation on Endometrial Epithelial Cells and Embryonic Trophoblast Cells. Gene 2022, 822, 146337. [Google Scholar] [CrossRef]
- Bidarimath, M.; Lingegowda, H.; Miller, J.E.; Koti, M.; Tayade, C. Insights into Extracellular Vesicle/Exosome and MiRNA Mediated Bi-Directional Communication during Porcine Pregnancy. Front. Vet. Sci. 2021, 8, 654–664. [Google Scholar] [CrossRef]
- Bidarimath, M.; Khalaj, K.; Kridli, R.T.; Kan, F.W.K.; Koti, M.; Tayade, C. Extracellular Vesicle Mediated Intercellular Communication at the Porcine Maternal-Fetal Interface: A New Paradigm for Conceptus-Endometrial Crosstalk. Sci. Rep. 2017, 7, 40476. [Google Scholar] [CrossRef]
- Guzewska, M.M.; Szuszkiewicz, J.; Kaczmarek, M.M. Extracellular Vesicles: Focus on Peri-Implantation Period of Pregnancy in Pigs. Mol. Reprod. Dev. 2023, 90, 634–645. [Google Scholar] [CrossRef]
- Parrilla, I.; Gil, M.A.; Cuello, C.; Cambra, J.M.; Gonzalez-Plaza, A.; Lucas, X.; Vazquez, J.L.; Vazquez, J.M.; Rodriguez-Martinez, H.; Martinez, E.A. Immunological Uterine Response to Pig Embryos before and during Implantation. Reprod. Domest. Anim. Zuchthyg 2022, 57 (Suppl. S5), 4–13. [Google Scholar] [CrossRef]
- O’Leary, S.; Jasper, M.J.; Warnes, G.M.; Armstrong, D.T.; Robertson, S.A. Seminal Plasma Regulates Endometrial Cytokine Expression, Leukocyte Recruitment and Embryo Development in the Pig. Reproduction 2004, 128, 237–247. [Google Scholar] [CrossRef]
- Lin, H.; Wang, H.; Wang, Y.; Liu, C.; Wang, C.; Guo, J. Transcriptomic Analysis of the Porcine Endometrium during Embryo Implantation. Genes 2015, 6, 1330–1346. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, E.G.; Cristofolini, A.L.; Fiorimanti, M.R.; Barbeito, C.G.; Merkis, C.I. Apoptosis and Cell Proliferation in Porcine Placental Vascularization. Anim. Reprod. Sci. 2017, 184, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Fiorimanti, M.R.; Cristofolini, A.L.; Moreira-Espinoza, M.J.; Rabaglino, M.B.; Barbeito, C.G.; Merkis, C.I. Placental Vascularization in Middle and Late Gestation in the Pig. Reprod. Fertil 2022, 3, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Vélez, C.; Barbeito, C.; Koncurat, M. Avβ3 Integrin and Fibronectin Expressions and Their Relation to Estrogen and Progesterone during Placentation in Swine. Biotech. Histochem. 2018, 93, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Vélez, C.; Williamson, D.; Clauzure, M.; Koncurat, M.; Barbeito, C. Inmunolocalización de La Integrina Avb1, La Laminina y El Colágeno Tipo V En Diferentes Etapas Gestacionales. InVet 2019, 21, 1–12. [Google Scholar]
- Vélez, C.; Clauzure, M.; Williamson, D.; Koncurat, M.A.; Barbeito, C. Are Integrins and Ligands Correlated at Pig Placental Interface during Pregnancy? Reprod. Fertil 2023, 4, 220079. [Google Scholar]
- Sennström, M.; Ekman, G.; Westergren-Thorsson, G.; Malmström, A.; Byström, B.; Endrésen, U.; Mlambo, N.; Norman, M.; Ståbi, B.; Brauner, A. Human Cervical Ripening, an Inflammatory Process Mediated by Cytokines. Mol Hum Reprod. 2000, 6, 375–381. [Google Scholar] [CrossRef] [PubMed]
- 175. Winkler, M.; Fischer, D.C.; Ruck, P.; Marx, T.; Kaiserling, E.; Oberpichler, A.; Tschesche, H.; Rath, W. Parturition at Term, Parallel Increases in Interleukin-8 and Proteinase Concentrations and Neutrophil Count in the Lower Uterine Segment. Hum. Reprod. 1999, 14, 1096–1100. [Google Scholar] [CrossRef]
- 176. Winkler, M.; Oberpichler, A.; Tschesche, H.; Ruck, P.; Fischer, D.C.; Rath, W. Collagenolysis in the Lower Uterine Segment during Parturition at Term, Correlations with Stage of Cervical Dilatation and Duration of Labor. Am. J. Obs. Gynecol. 1999, 181, 153–158. [Google Scholar] [CrossRef]
- 177. Young, A.; Thomson, A.J.; Ledingham, M.; Jordan, F.; Greer, I.A.; Norman, J.E. Immunolocalization of Proinflammatory Cytokines in Myometrium, Cervix, and Fetal Membranes during Human Parturition at Term. Biol. Reprod. 2002, 66, 445–449. [Google Scholar] [CrossRef]
Molecules | General Considerations | Pig | References |
---|---|---|---|
Cytokines | |||
IL-1β | A proinflammatory cytokine that acts as a central mediator of inflammation and innate immunity in mammals. | The porcine conceptus produces IL-1β during early development and elongation and is necessary for this process. This cytokine increases permeability of endometrial blood vessels, facilitating fetal–maternal hemotrophic exchange. Until day 14, the inhibition of this cytokine generates a failure in conceptus elongation. IL-1β concentration shows a peak within the fetal placenta at day 60 and in the maternal placenta at day 70, and decreases at day 114. | [51,53,54,55,56,57,58,59] |
IL-2 | A potent Th1- cytokine, primarily synthesized by diverse cell types. | The porcine placenta has two peaks in IL-2 concentration: a smaller one at 30 dg and a larger one at 70 dg. In both the maternal and fetal placenta, the values decrease to baseline levels, while serum IL-2 concentrations increase significantly. It has been suggested that the elevated serum levels of this cytokine at 114 days are necessary to trigger the molecular events that lead to labor and the expulsion of the placenta. | [51] |
IL-4 | Also known as B-cell-stimulating factor, this is a Th2 cytokine that has pleiotropic effects during immune response. It is secreted by CD4 Th2 lymphocytes, mast cells, and some CD8 cells. | Its levels in the maternal placenta remain low and constant throughout pregnancy, but they are elevated in the fetal placenta, particularly at 30 dg and 70 dg. Serum IL-4 levels peak in concentration at 30 and 70 dg. At term, it decreases back to basal levels in the placenta with a concomitant significant increase in serum. | [51] |
IL-6 | Regulates various aspects of the immune response. It is considered that IL-6 shifts the Th1/Th2 balance towards a Th2 response. | IL-6 gene expression increases on days 11/12 of conceptus development and in the endometrium and fetal placenta during the post-implantation phase (days 30 and 60 of gestation). Concentration is higher at 32 gd in the fetal placenta. | [60,61,62] |
IL-10 | An immunosuppressive cytokine that generates immunotolerance, preventing the rejection of the fetal allograft by the maternal immune system. | In both maternal and fetal porcine placenta tissue, the levels of this cytokine were nearly undetectable. In pregnant pig serum, three significant peaks in IL-10 concentration were observed at 17, 60, and 114 dg. | [52] |
IL-12 | Enhances the activity of cytotoxic T lymphocytes and NK cells, is involved in the differentiation of naïve T cells into the Th1 subset, and induces the synthesis of IFN-gamma. | IIL-12 expression in the pregnant uterus was high in the pre-implantational stage. Concentration peaks of IL-12 at 70 and 90 dg were detected in serum. In maternal placenta, the concentration remained high and constant throughout the pregnancy. In fetal placental homogenates, a concentration peak was found only during the 32–44 dg period. | [15,61] |
IL-15 | Influences uNK cytotoxicity and proliferation. | The serum concentration of IL-15 in pregnant sows was high, except at 70 days when it decreased significantly. At 70 dg, there was an increase in maternal and fetal porcine placental components. | [63] |
IL-18 | Induces a Th1 response. | IL-18 is expressed in fetal but not in maternal placenta throughout the gestation period. | [63] |
IL-23 | A cytokine proinflammatory that stimulates Th17 cells. | IL-23 is present in the uterus but only some hours after mating, and is found in relation to the inflammatory reactions that occur in this moment. | [64] |
IFN-γ | A proinflammatory cytokine Th1, primarily produced by stimulated lymphocytes. | In pigs this is also secreted by trophoblast cells. The concentration of this cytokine rises at 17 dg and then remains at basal levels in the later stages of pregnancy, both in maternal and fetal placenta. In serum, a significant increase in IFN-γ levels was found at 60 dg. | [52,65] |
TNF- α | A pleiotropic proinflammatory cytokine synthesized by diverse cell populations. | TNF-α is involved in the early stages of porcine gestation in regulating the expression of progesterone and estrogens. Peak TNF-α expression was found in the endometrium at 15 gd. It is involved in cell differentiation, tissue remodeling, and apoptosis in the early phase of porcine gestation. | [43,66,67,68,69,70,71] |
LIF | Regulates cell proliferation, differentiation, and survival during embryo development and implantation. | LIF is secreted by the conceptus and the endometrium between days 10 and 14 of gestation, suggesting a crucial role during implantation. Some authors found mRNA and protein expression of LIF and its receptor in the endometrium of pig placenta during the implantational and post-implantational periods (18 and 24 dg). | [60,72,73] |
TGF-β1 | A pleiotropic growth factor and an immunomodulatory cytokine. | TGF-β1 is expressed in the surface and glandular epithelia of porcine endometrium after insemination. mRNA TGF-β1 increased between 10 and 15 dg in the endometrium and conceptus. | [74,75] |
Gestational Period | Principal Local Events | Predominant Cytokines |
---|---|---|
Four days post mating | Proinflammatory stages. Estrogen predominant hormone. Infiltration of neutrophils, dendritic cells, macrophages, and T cells. | Proinflammatory |
Pre-implantation (5–12 gd) | Increases progesterone and decreases estrogen. Anti-inflammatory stages. Increases macrophages. | Decreases proinflammatory and increases anti-inflammatory effects. |
Implantational stage (12–25 gd) | Conceptus production of estrogen with increases in NK cells. | Initially, Il-ß1 and 2 are the most important. Some days later, other proinflammatory cytokines such as IL-18, IFN-γ, and TNF-α increase. |
Final implantational stage (25–28 days) | There is a remodeling of uterine vasculature and angiogenesis begins in embryonic placenta. | Increases in anti-inflammatory cytokines such as IL-4, IL-6 and IL-10. |
Rest of the pregnancy (except for 60–90 dg) | Placentation is established. The conceptus grows. | Th2 anti-inflammatory cytokines are predominant, |
60–90 gd | Placenta remodeling with cell death, angiogenesis, and changes in adhesion molecules. | Increases in diverse cytokines, including some Th1. |
Peripartum (114 gd) | Inflammatory response to eliminate conceptus. | There is not an increase in local Th1 cytokine, as in other mammals; however, some proinflammatory ones such as IL-ß1 increase in serum. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velez, C.; Williamson, D.; Cánovas, M.L.; Giai, L.R.; Rutland, C.; Pérez, W.; Barbeito, C.G. Changes in Immune Response during Pig Gestation with a Focus on Cytokines. Vet. Sci. 2024, 11, 50. https://doi.org/10.3390/vetsci11010050
Velez C, Williamson D, Cánovas ML, Giai LR, Rutland C, Pérez W, Barbeito CG. Changes in Immune Response during Pig Gestation with a Focus on Cytokines. Veterinary Sciences. 2024; 11(1):50. https://doi.org/10.3390/vetsci11010050
Chicago/Turabian StyleVelez, Carolina, Delia Williamson, Mariela Lorena Cánovas, Laura Romina Giai, Catrin Rutland, William Pérez, and Claudio Gustavo Barbeito. 2024. "Changes in Immune Response during Pig Gestation with a Focus on Cytokines" Veterinary Sciences 11, no. 1: 50. https://doi.org/10.3390/vetsci11010050
APA StyleVelez, C., Williamson, D., Cánovas, M. L., Giai, L. R., Rutland, C., Pérez, W., & Barbeito, C. G. (2024). Changes in Immune Response during Pig Gestation with a Focus on Cytokines. Veterinary Sciences, 11(1), 50. https://doi.org/10.3390/vetsci11010050