Application of Eugenol in Poultry to Control Salmonella Colonization and Spread
Abstract
:Simple Summary
Abstract
1. Introduction
2. Effect of Salmonellosis on Humans
3. Use of Antibiotics to Contain Salmonella in Chicken
4. Use of Chicken Manure in Poultry Farming and Spread of Salmonella
5. Gut Microbiota in Chickens
6. EOs and Their Usage in Chicken Farming
6.1. Eugenol Oil from Clove, the Active Substance
6.1.1. Beneficial Effects of Eugenol on Chicken Gut
6.1.2. Antifungal, Antiparasitic, and Antiviral Effects of Eugenol
6.1.3. Antibacterial Effects of Eugenol
Anti-Salmonella Effects of Eugenol on Chickens
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USDA ERS—Food Availability and Consumption. Available online: https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/food-availability-and-consumption/ (accessed on 29 January 2023).
- Egg-STAT-Ic About Eggs. Available online: https://www.usda.gov/media/blog/2020/04/14/egg-stat-ic-about-eggs (accessed on 29 January 2023).
- Scharff, R.L. Food Attribution and Economic Cost Estimates for Meat- and Poultry-Related Illnesses. J. Food Prot. 2020, 83, 959–967. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Baek, K.-H.; Kang, S.C. Control of Salmonella in Foods by Using Essential Oils: A Review. Food Res. Int. 2012, 45, 722–734. [Google Scholar] [CrossRef]
- USDA Launches New Effort to Reduce Salmonella Illnesses Linked to Poultry. Available online: https://www.usda.gov/media/press-releases/2021/10/19/usda-launches-new-effort-reduce-salmonella-illnesses-linked-poultry (accessed on 29 January 2023).
- Karabasanavar, N.; Madhavaprasad, C.; Gopalakrishna, S.; Hiremath, J.; Patil, G.; Barbuddhe, S. Prevalence of Salmonella Serotypes S. Enteritidis and S. Typhimurium in Poultry and Poultry Products. J. Food Saf. 2020, 40, e12852. [Google Scholar] [CrossRef]
- Saleh, S.; Van Puyvelde, S.; Staes, A.; Timmerman, E.; Barbé, B.; Jacobs, J.; Gevaert, K.; Deborggraeve, S. Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium Core Proteomes Reveal Differentially Expressed Proteins Linked to the Cell Surface and Pathogenicity. PLoS Negl. Trop. Dis. 2019, 13, e0007416. [Google Scholar] [CrossRef]
- Alghoribi, M.F.; Doumith, M.; Alrodayyan, M.; Al Zayer, M.; Köster, W.L.; Muhanna, A.; Aljohani, S.M.; Balkhy, H.H.; Desin, T.S. S. Enteritidis and S. Typhimurium Harboring SPI-1 and SPI-2 Are the Predominant Serotypes Associated With Human Salmonellosis in Saudi Arabia. Front. Cell. Infect. Microbiol. 2019, 9, 187. [Google Scholar] [CrossRef]
- Campos, M.J.; Palomo, G.; Hormeño, L.; Ugarte, M.; Porrero, M.C.; Herrera-León, S.; Vadillo, S.; Píriz, S.; Quesada, A. Co-Occurrence of ACSSuT and Cephalosporin Resistance Phenotypes Is Mediated by Int1-Associated Elements in Nontyphoidal Salmonella Enterica from Human Infections in Spain. Microb. Drug Resist. 2013, 19, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, M.; Simon, S.; Meinen, A.; Trost, E.; Banerji, S.; Pfeifer, Y.; Flieger, A. Third Generation Cephalosporin Resistance in Clinical Non-Typhoidal Salmonella Enterica in Germany and Emergence of Bla CTX-M-Harbouring pESI Plasmids. Microb. Genom. 2021, 7, 000698. [Google Scholar] [CrossRef]
- Rychlik, I.; Elsheimer-Matulova, M.; Kyrova, K. Gene Expression in the Chicken Caecum in Response to Infections with Non-Typhoid Salmonella. Vet. Res. 2014, 45, 119. [Google Scholar] [CrossRef] [PubMed]
- Dunn, L.L.; Sharma, V.; Chapin, T.K.; Friedrich, L.M.; Larson, C.C.; Rodrigues, C.; Jay-Russell, M.; Schneider, K.R.; Danyluk, M.D. The Prevalence and Concentration of Salmonella Enterica in Poultry Litter in the Southern United States. PLoS ONE 2022, 17, e0268231. [Google Scholar] [CrossRef]
- Ngogang, M.P.; Ernest, T.; Kariuki, J.; Mouliom Mouiche, M.M.; Ngogang, J.; Wade, A.; van der Sande, M.A.B. Microbial Contamination of Chicken Litter Manure and Antimicrobial Resistance Threat in an Urban Area Setting in Cameroon. Antibiotics 2020, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Chinivasagam, H.N.; Tran, T.; Blackall, P.J. Impact of the Australian Litter Reuse Practice on Salmonella in the Broiler Farming Environment. Food Res. Int. 2012, 45, 891–896. [Google Scholar] [CrossRef]
- Bierer, B.W. The Use of Nihydrazone Against Salmonella Typhimurium and Salmonella Gallinarum Infections in Turkeys. Poult. Sci. 1963, 42, 465–468. [Google Scholar] [CrossRef]
- Venkitanarayanan, K.; Kollanoor-Johny, A.; Darre, M.J.; Donoghue, A.M.; Donoghue, D.J. Use of Plant-Derived Antimicrobials for Improving the Safety of Poultry Products. Poult. Sci. 2013, 92, 493–501. [Google Scholar] [CrossRef]
- Acevedo-Villanueva, K.Y.; Renu, S.; Shanmugasundaram, R.; Akerele, G.O.; Gourapura, R.J.; Selvaraj, R.K. Salmonella Chitosan Nanoparticle Vaccine Administration Is Protective against Salmonella Enteritidis in Broiler Birds. PLoS ONE 2021, 16, e0259334. [Google Scholar] [CrossRef]
- Hofacre, C.L.; Rosales, A.G.; Costa, M.D.; Cookson, K.; Schaeffer, J.; Jones, M.K. Immunity and Protection Provided by Live Modified Vaccines Against Paratyphoid Salmonella in Poultry—An Applied Perspective. Avian Dis. 2021, 65, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, B. Historical Review of Medicinal Plants′ Usage. Pharmacogn. Rev. 2012, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Mussarat, S.; Ali, R.; Ali, S.; Mothana, R.A.; Ullah, R.; Adnan, M. Medicinal Animals and Plants as Alternative and Complementary Medicine in Southern Regions of Khyber Pakhtunkhwa, Pakistan. Front. Pharmacol. 2021, 12, 801234. [Google Scholar] [CrossRef]
- Borges, A.; Abreu, A.; Dias, C.; Saavedra, M.; Borges, F.; Simões, M. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules 2016, 21, 877. [Google Scholar] [CrossRef]
- Song, F.; Liu, J.; Zhao, W.; Huang, H.; Hu, D.; Chen, H.; Zhang, H.; Chen, W.; Gu, Z. Synergistic Effect of Eugenol and Probiotic Lactobacillus Plantarum Zs2058 against Salmonella Infection in C57bl/6 Mice. Nutrients 2020, 12, 1611. [Google Scholar] [CrossRef]
- Ahmed, A.O.; Raji, M.A.; Mamman, P.H.; Kwanashie, C.N.; Raufu, I.A.; Aremu, A.; Akorede, G.J. Salmonellosis: Serotypes, Prevalence and Multi-Drug Resistant Profiles of Salmonella Enterica in Selected Poultry Farms, Kwara State, North Central Nigeria. Onderstepoort J. Vet. Res. 2019, 86, 1–8. [Google Scholar] [CrossRef]
- Baird-Parker, A.C. Foodborne Salmonellosis. Lancet 1990, 336, 1231–1235. [Google Scholar] [CrossRef]
- Andino, A.; Hanning, I. Salmonella Enterica: Survival, Colonization, and Virulence Differences among Serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [PubMed]
- Punchihewage-Don, A.J.; Hawkins, J.; Adnan, A.M.; Hashem, F.; Parveen, S. The Outbreaks and Prevalence of Antimicrobial Resistant Salmonella in Poultry in the United States: An Overview. Heliyon 2022, 8, e11571. [Google Scholar] [CrossRef]
- Williams, M.S.; Ebel, E.D. Temporal Changes in the Proportion of Salmonella Outbreaks Associated with 12 Food Commodity Groups in the United States. Epidemiol. Infect. 2022, 150, e126. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, J.M.; Totton, S.C.; Plishka, M.; Vriezen, E.R. Salmonella in Animal Feeds: A Scoping Review. Front. Vet. Sci. 2021, 8, 727495. [Google Scholar] [CrossRef]
- Wotzka, S.Y.; Nguyen, B.D.; Hardt, W.-D. Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange. Cell Host Microbe 2017, 21, 443–454. [Google Scholar] [CrossRef]
- Thames, H.T.; Theradiyil Sukumaran, A. A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures. Foods 2020, 9, 776. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, S.; Kim, H.; Kim, Y.; Kim, B.; Beuchat, L.R.; Ryu, J.-H. Fate of Mesophilic Aerobic Bacteria and Salmonella Enterica on the Surface of Eggs as Affected by Chicken Feces, Storage Temperature, and Relative Humidity. Food Microbiol. 2015, 48, 200–205. [Google Scholar] [CrossRef]
- Trampel, D.W.; Holder, T.G.; Gast, R.K. Integrated Farm Management to Prevent Salmonella Enteritidis Contamination of Eggs. J. Appl. Poult. Res. 2014, 23, 353–365. [Google Scholar] [CrossRef]
- Nam, I.S.; Kim, H.S.; Seo, K.M.; Ahn, J.H. Analysis of HACCP System Implementation on Productivity, Advantage and Disadvantage of Laying Hen Farm in Korea. Korean J. Poult. Sci. 2014, 41, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Castanon, J.I.R. History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to Antibiotics for Maximizing Growth Performance and Feed Efficiency in Poultry: A Review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Salim, H.M.D.; Huque, K.S.; Kamaruddin, K.M.; Haque Beg, A. Global Restriction of Using Antibiotic Growth Promoters and Alternative Strategies in Poultry Production. Sci. Prog. 2018, 101, 52–75. [Google Scholar] [CrossRef]
- Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J. Food Prot. 2018, 81, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Cogliani, C.; Goossens, H.; Greko, C. Restricting Antimicrobial Use in Food Animals: Lessons from Europe: Banning Nonessential Antibiotic Uses in Food Animals Is Intended to Reduce Pools of Resistance Genes | Scinapse. Available online: https://www.scinapse.io/papers/2330428806 (accessed on 29 January 2023).
- Castro-Vargas, R.E.; Herrera-Sánchez, M.P.; Rodríguez-Hernández, R.; Rondón-Barragán, I.S. Antibiotic Resistance in Salmonella spp. Isolated from Poultry: A Global Overview. Vet. World 2020, 13, 2070–2084. [Google Scholar] [CrossRef]
- Sethiya, N.K. Review on Natural Growth Promoters Available for Improving Gut Health of Poultry: An Alternative to Antibiotic Growth Promoters. Asian J. Poult. Sci. 2015, 10, 1–29. [Google Scholar] [CrossRef]
- Sheffield, C.L.; Crippen, T.L.; Beier, R.C.; Byrd, J.A. Salmonella Typhimurium in Chicken Manure Reduced or Eliminated by Addition of LT1000. J. Appl. Poult. Res. 2014, 23, 116–120. [Google Scholar] [CrossRef]
- Abougabal, M. Possibility of broiler Production on reused litter. Egypt. Poult. Sci. J. 2019, 39, 405–421. [Google Scholar] [CrossRef]
- Kyakuwaire, M.; Olupot, G.; Amoding, A.; Nkedi-Kizza, P.; Ateenyi Basamba, T. How Safe Is Chicken Litter for Land Application as an Organic Fertilizer?: A Review. Int. J. Environ. Res. Public Health 2019, 16, 3521. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Ren, S.; Niu, T.; Guo, Y.; Qi, S.; Han, X.; Liu, D.; Pan, F. Distribution of Antibiotic-Resistant Bacteria in Chicken Manure and Manure-Fertilized Vegetables. Environ. Sci. Pollut. Res. 2013, 21, 1231–1241. [Google Scholar] [CrossRef]
- Mazza, L.; Xiao, X.; ur Rehman, K.; Cai, M.; Zhang, D.; Fasulo, S.; Tomberlin, J.K.; Zheng, L.; Soomro, A.A.; Yu, Z.; et al. Management of Chicken Manure Using Black Soldier Fly (Diptera: Stratiomyidae) Larvae Assisted by Companion Bacteria. Waste Manag. 2020, 102, 312–318. [Google Scholar] [CrossRef]
- Vaz, C.S.L.; Voss-Rech, D.; de Avila, V.S.; Coldebella, A.; Silva, V.S. Interventions to Reduce the Bacterial Load in Recycled Broiler Litter. Poult. Sci. 2017, 96, 2587–2594. [Google Scholar] [CrossRef]
- Kempf, F.; Menanteau, P.; Rychlik, I.; Kubasová, T.; Trotereau, J.; Virlogeux-Payant, I.; Schaeffer, S.; Schouler, C.; Drumo, R.; Guitton, E.; et al. Gut Microbiota Composition before Infection Determines the Salmonella Super- and Low-shedder Phenotypes in Chicken. Microb. Biotechnol. 2020, 13, 1611–1630. [Google Scholar] [CrossRef] [PubMed]
- Lawley, T.D.; Bouley, D.M.; Hoy, Y.E.; Gerke, C.; Relman, D.A.; Monack, D.M. Host Transmission of Salmonella Enterica Serovar Typhimurium Is Controlled by Virulence Factors and Indigenous Intestinal Microbiota. Infect. Immun. 2008, 76, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Menanteau, P.; Kempf, F.; Trotereau, J.; Virlogeux-Payant, I.; Gitton, E.; Dalifard, J.; Gabriel, I.; Rychlik, I.; Velge, P. Role of Systemic Infection, Cross Contaminations and Super-Shedders in Salmonella Carrier State in Chicken. Environ. Microbiol. 2018, 20, 3246–3260. [Google Scholar] [CrossRef] [PubMed]
- Black, Z.; Balta, I.; Black, L.; Naughton, P.J.; Dooley, J.S.G.; Corcionivoschi, N. The Fate of Foodborne Pathogens in Manure Treated Soil. Front. Microbiol. 2021, 12, 3873. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.J.; Dye, C.; Etard, J.-F.; Smith, T.; Charlwood, J.D.; Garnett, G.P.; Hagan, P.; Hii, J.L.K.; Ndhlovu, P.D.; Quinnell, R.J.; et al. Heterogeneities in the Transmission of Infectious Agents: Implications for the Design of Control Programs. Proc. Natl. Acad. Sci. USA 1997, 94, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chousalkar, K.K. Salmonella Typhimurium Infection Disrupts but Continuous Feeding of Bacillus Based Probiotic Restores Gut Microbiota in Infected Hens. J. Anim. Sci. Biotechnol. 2020, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Y.; Zhong, T.; Pandya, Y.; Joerger, R.D. 16S rRNA-Based Analysis of Microbiota from the Cecum of Broiler Chickens. Appl. Environ. Microbiol. 2002, 68, 124–137. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, L.; Doyle, M.P. Potential Competitive Exclusion Bacteria from Poultry Inhibitory to Campylobacter Jejuni and Salmonella. J. Food Prot. 2007, 70, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Choct, M. Managing Gut Health through Nutrition. Br. Poult. Sci. 2009, 50, 9–15. [Google Scholar] [CrossRef]
- Broom, L.J.; Kogut, M.H. The Role of the Gut Microbiome in Shaping the Immune System of Chickens. Vet. Immunol. Immunopathol. 2018, 204, 44–51. [Google Scholar] [CrossRef]
- Kohl, K.D. Diversity and Function of the Avian Gut Microbiota. J. Comp. Physiol. B 2012, 182, 591–602. [Google Scholar] [CrossRef]
- Santos, R.L. Pathobiology of Salmonella, Intestinal Microbiota, and the Host Innate Immune Response. Front. Immunol. 2014, 5, 252. [Google Scholar] [CrossRef]
- Pan, D.; Yu, Z. Intestinal Microbiome of Poultry and Its Interaction with Host and Diet. Gut Microbes 2013, 5, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Ricke, S.C.; Kiess, A.S. Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease. Front. Vet. Sci. 2018, 5, 216. [Google Scholar] [CrossRef]
- Rabsch, W. Competitive Exclusion of Salmonella Enteritidis by Salmonella Gallinarum in Poultry. Emerg. Infect. Dis. 2000, 6, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Schneitz, C.; Koivunen, E.; Tuunainen, P.; Valaja, J. The Effects of a Competitive Exclusion Product and Two Probiotics on Salmonella Colonization and Nutrient Digestibility in Broiler Chickens. J. Appl. Poult. Res. 2016, 25, 396–406. [Google Scholar] [CrossRef]
- Litvak, Y.; Mon, K.K.Z.; Nguyen, H.; Chanthavixay, G.; Liou, M.; Velazquez, E.M.; Kutter, L.; Alcantara, M.A.; Byndloss, M.X.; Tiffany, C.R.; et al. Commensal Enterobacteriaceae Protect against Salmonella Colonization through Oxygen Competition. Cell Host Microbe 2019, 25, 128–139.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugasundaram, R.; Kogut, M.H.; Arsenault, R.J.; Swaggerty, C.L.; Cole, K.; Reddish, J.M.; Selvaraj, R.K. Effect of Salmonella Infection on Cecal Tonsil Regulatory T Cell Properties in Chickens. Poult. Sci. 2015, 94, 1828–1835. [Google Scholar] [CrossRef] [PubMed]
- Moharreri, M.; Vakili, R.; Oskoueian, E.; Rajabzadeh, G. Effects of Microencapsulated Essential Oils on Growth Performance and Biomarkers of Inflammation in Broiler Chickens Challenged with Salmonella Enteritidis. J. Saudi Soc. Agric. Sci. 2022, 21, 349–357. [Google Scholar] [CrossRef]
- Micciche, A.; Rothrock, M.J.; Yang, Y.; Ricke, S.C. Essential Oils as an Intervention Strategy to Reduce Campylobacter in Poultry Production: A Review. Front. Microbiol. 2019, 10, 1058. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Saad, A.M.; Salem, H.M.; Ashry, N.M.; Abo Ghanima, M.M.; Shukry, M.; Swelum, A.A.; Taha, A.E.; El-Tahan, A.M.; et al. Essential Oils and Their Nanoemulsions as Green Alternatives to Antibiotics in Poultry Nutrition: A Comprehensive Review. Poult. Sci. 2022, 101, 101584. [Google Scholar] [CrossRef]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.-M. Potential of Essential Oils for Poultry and Pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef]
- Khalil, A.A.; ur Rahman, U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential Oil Eugenol: Sources, Extraction Techniques and Nutraceutical Perspectives. RSC Adv. 2017, 7, 32669–32681. [Google Scholar] [CrossRef]
- Moon, S.H.; Waite-Cusic, J.; Huang, E. Control of Salmonella in Chicken Meat Using a Combination of a Commercial Bacteriophage and Plant-Based Essential Oils. Food Control 2020, 110, 106984. [Google Scholar] [CrossRef]
- Mahboub, R. Structural Conformational Study of Eugenol Derivatives Using Semiempirical Methods. Adv. Chem. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Pramod, K.; Ansari, S.H.; Ali, J. Eugenol: A Natural Compound with Versatile Pharmacological Actions. Nat. Prod. Commun. 2010, 5, 1999–2006. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Bhatia, S.; Bruze, M.; Calow, P.; Dagli, M.L.; Dekant, W.; Fryer, A.D.; Kromidas, L.; La Cava, S.; et al. RIFM Fragrance Ingredient Safety Assessment, Ethylene Brassylate, CAS Registry Number 105-95-3. Food Chem. Toxicol. 2016, 97, S192–S200. [Google Scholar] [CrossRef]
- Scientific Opinion on the Safety and Efficacy of Liderfeed® (Eugenol) for Chickens for Fattening. EFSA J. 2015, 13, 4273. [CrossRef]
- Kumar, A.; Sharma, N.K.; Kheravii, S.K.; Keerqin, C.; Ionescu, C.; Blanchard, A.; Wu, S.-B. Potential of a Mixture of Eugenol and Garlic Tincture to Improve Performance and Intestinal Health in Broilers under Necrotic Enteritis Challenge. Anim. Nutr. 2022, 8, 26–37. [Google Scholar] [CrossRef]
- Agostini, P.S.; Solà-Oriol, D.; Nofrarías, M.; Barroeta, A.C.; Gasa, J.; Manzanilla, E.G. Role of In-Feed Clove Supplementation on Growth Performance, Intestinal Microbiology, and Morphology in Broiler Chicken. Livest. Sci. 2012, 147, 113–118. [Google Scholar] [CrossRef]
- VT Nair, D.; Venkitanarayanan, K.; Kollanoor Johny, A. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018, 7, 167. [Google Scholar] [CrossRef]
- Matsumoto, S.; Nanno, M.; Watanabe, N.; Miyashita, M.; Amasaki, H.; Suzuki, K.; Umesaki, Y. Physiological Roles of Γδ T-cell Receptor Intraepithelial Lymphocytes in Cytoproliferation and Differentiation of Mouse Intestinal Epithelial Cells. Immunology 1999, 97, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Wlodarska, M.; Willing, B.P.; Bravo, D.M.; Finlay, B.B. Phytonutrient Diet Supplementation Promotes Beneficial Clostridia Species and Intestinal Mucus Secretion Resulting in Protection against Enteric Infection. Sci. Rep. 2015, 5, 9253. [Google Scholar] [CrossRef]
- Carrasco, H.; Raimondi, M.; Svetaz, L.; Liberto, M.D.; Rodriguez, M.V.; Espinoza, L.; Madrid, A.; Zacchino, S. Antifungal Activity of Eugenol Analogues. Influence of Different Substituents and Studies on Mechanism of Action. Molecules 2012, 17, 1002–1024. [Google Scholar] [CrossRef]
- Lane, T.; Anantpadma, M.; Freundlich, J.S.; Davey, R.A.; Madrid, P.B.; Ekins, S. The Natural Product Eugenol Is an Inhibitor of the Ebola Virus In Vitro. Pharm. Res. 2019, 36, 104. [Google Scholar] [CrossRef] [PubMed]
- Charan Raja, M.R.; Velappan, A.B.; Chellappan, D.; Debnath, J.; Kar Mahapatra, S. Eugenol Derived Immunomodulatory Molecules against Visceral Leishmaniasis. Eur. J. Med. Chem. 2017, 139, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial Activity of Eugenol and Essential Oils Containing Eugenol: A Mechanistic Viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wei, S.; Tian, Q.; Peng, W.; Tao, Y.; Bo, R.; Liu, M.; Li, J. Eugenol Exposure in Vitro Inhibits the Expressions of T3SS and TIF Virulence Genes in Salmonella Typhimurium and Reduces Its Pathogenicity to Chickens. Microb. Pathog. 2022, 162, 105314. [Google Scholar] [CrossRef]
- Kollanoor-Johny, A.; Upadhyay, A.; Baskaran, S.A.; Upadhyaya, I.; Mooyottu, S.; Mishra, N.; Darre, M.J.; Khan, M.I.; Donoghue, A.M.; Donoghue, D.J.; et al. Effect of Therapeutic Supplementation of the Plant Compounds Trans-Cinnamaldehyde and Eugenol on Salmonella Enterica Serovar Enteritidis Colonization in Market-Age Broiler Chickens. J. Appl. Poult. Res. 2012, 21, 816–822. [Google Scholar] [CrossRef]
- Charan Raja, M.R. Versatile and Synergistic Potential of Eugenol: A Review. Pharm. Anal. Acta 2015, 06, 1000367. [Google Scholar] [CrossRef]
- Purkait, S.; Bhattacharya, A.; Bag, A.; Chattopadhyay, R.R.. Evaluation of Antibiofilm Efficacy of Essential Oil Components Β-caryophyllene, Cinnamaldehyde and Eugenol Alone and in Combination against Biofilm Formation and Preformed Biofilms of Listeria Monocytogenes and Salmonella Typhimurium. Lett. Appl. Microbiol. 2020, 71, 195–202. [Google Scholar] [CrossRef]
- Pichika, M.; Mak, K.-K.; Kamal, M.; Ayuba, S.; Sakirolla, R.; Kang, Y.-B.; Mohandas, K.; Balijepalli, M.; Ahmad, S. A Comprehensive Review on Eugenol’s Antimicrobial Properties and Industry Applications: A Transformation from Ethnomedicine to Industry. Pharmacogn. Rev. 2019, 13, 1. [Google Scholar] [CrossRef]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an Essential Oil of Clove) Acts as an Antibacterial Agent against Salmonella Typhi by Disrupting the Cellular Membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef]
- Wagle, B.R.; Arsi, K.; Shrestha, S.; Upadhyay, A.; Upadhyaya, I.; Bhargava, K.; Donoghue, A.; Donoghue, D.J. Eugenol as an Antimicrobial Wash Treatment reducesCampylobacter Jejuniin Postharvest Poultry. J. Food Saf. 2019, 39, e12704. [Google Scholar] [CrossRef]
- Kollanoor Johny, A.; Darre, M.J.; Donoghue, A.M.; Donoghue, D.J.; Venkitanarayanan, K. Antibacterial Effect of Trans-Cinnamaldehyde, Eugenol, Carvacrol, and Thymol on Salmonella Enteritidis and Campylobacter Jejuni in Chicken Cecal Contents in Vitro. J. Appl. Poult. Res. 2010, 19, 237–244. [Google Scholar] [CrossRef]
- Kollanoor Johny, A.; Frye, J.G.; Donoghue, A.; Donoghue, D.J.; Porwollik, S.; McClelland, M.; Venkitanarayanan, K. Gene Expression Response of Salmonella Enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol. Front. Microbiol. 2017, 8, 1828. [Google Scholar] [CrossRef]
- Kollanoor-Johny, A.; Mattson, T.; Baskaran, S.A.; Amalaradjou, M.A.; Babapoor, S.; March, B.; Valipe, S.; Darre, M.; Hoagland, T.; Schreiber, D.; et al. Reduction of Salmonella Enterica Serovar Enteritidis Colonization in 20-Day-Old Broiler Chickens by the Plant-Derived Compounds Trans -Cinnamaldehyde and Eugenol. Appl. Environ. Microbiol. 2012, 78, 2981–2987. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, G.; Llopis, N.; Peñalver, P. Efficacy of Eugenol Against a Salmonella Enterica Serovar Enteritidis Experimental Infection in Commercial Layers in Production. J. Appl. Poult. Res. 2008, 17, 376–382. [Google Scholar] [CrossRef]
- Upadhyaya, I.; Upadhyay, A.; Kollanoor-Johny, A.; Darre, M.; Venkitanarayanan, K. Effect of Plant Derived Antimicrobials on Salmonella Enteritidis Adhesion to and Invasion of Primary Chicken Oviduct Epithelial Cells in Vitro and Virulence Gene Expression. Int. J. Mol. Sci. 2013, 14, 10608–10625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment Method | Effect | Reference |
---|---|---|
Eugenol (250 ppm) supplemented commercial feed | Prevented S. Enterica cross-contamination in eggs and prevented intestinal colonization by S. enterica | [95] |
Eugenol treatment of chicken cecum in vitro model at 50 at 75 mM conc. | Reduced S. Enteritidis to <1.0 log10 cfu/mL (p ≤ 0.05) in chicken cecum | [92] |
Feed supplementation with 0.75 and 1% Eugenol | ≥3 log10 CFU/g reduction (p < 0.05) of S. Enteritidis in cecum | [94] |
1% Eugenol supplementation in feed | 1.5 log10 cfu/g reduction of S. Enterica in cecum and 2 log10 cfu/g in clocoa from >4 log10 cfu/g. Both results were statistically significant (p < 0.05) | [86] |
In vitro application of subinhibitory concentrations of eugenol on chicken oviduct epithelial cells (COEC) | Highly significant reduction (p < 0.01) in S. Enteritidis colonization of COEC. The results have significance for the control of S. Enteritidis colonization of eggs | [96] |
1/2 MIC eugenol pretreatment of chicken | Significantly decreased (p < 0.01) S. Typhimurium loads in various organs. It also improved chicken survival rate and weight gain at 1/2 eugenol MIC | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljuwayd, M.; Malli, I.A.; Kwon, Y.M. Application of Eugenol in Poultry to Control Salmonella Colonization and Spread. Vet. Sci. 2023, 10, 151. https://doi.org/10.3390/vetsci10020151
Aljuwayd M, Malli IA, Kwon YM. Application of Eugenol in Poultry to Control Salmonella Colonization and Spread. Veterinary Sciences. 2023; 10(2):151. https://doi.org/10.3390/vetsci10020151
Chicago/Turabian StyleAljuwayd, Mohammed, Israa Abdullah Malli, and Young Min Kwon. 2023. "Application of Eugenol in Poultry to Control Salmonella Colonization and Spread" Veterinary Sciences 10, no. 2: 151. https://doi.org/10.3390/vetsci10020151