Organic Acids in Varietal Red Wines: Influence of Grape Cultivar, Geographical Origin, and Aging
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Analytical Methods
- For each peak, the UV-VIS absorption spectrum was compared with the UV-VIS absorption patterns published of the corresponding standards.
- Grape cultivars: LN (Listán Negro), N (Negramoll), LP (Listán Prieto), B (Baboso), V (Vijariego), T (Tintilla), C (Castellana), R (Rubi Cabernet), M (Merlot), and S (Syrah).
- Denominations of origin (DO) from Tenerife: DO A (Abona), DO T (Tacoronte-Acentejo), DO O (Valle de La Orotava), DO Y (Ycoden-Daute-Isora), and DO G (Valle de Güímar).
- Islands: LP (La Palma), HI (El Hierro), GC (Gran Canaria), LZ (Lanzarote), and GO (La Gomera).
- Phenolic acids: Gall (gallic acid), Prot (protocatechuic acid), Syri (syringic acid), Caft (caftaric acid), Caff (caffeic acid), Cuta (cutaric acid), Coum (coumaric acid), and 2SGl (2-S-glutathionylcaftaric acid).
- Phenolic acid groupings: HBAs (hydroxybenzoic acids), HCAs (hydroxycinnamic acids), TE.HC (hydroxycinnamic acids esterified with tartaric acid), FR.HC (free hydroxycinnamic acids), and TPhe (total phenolic acids).
2.3. Statistics
3. Results
3.1. Overall Content
3.2. Univariate Analysis
3.2.1. Grape Cultivar
3.2.2. Geographical Origin
Island
Denomination of Origin from Tenerife Island
3.2.3. Aging
3.3. Correlations
3.4. Multivariate Analysis
3.4.1. Principal Compound Analysis
3.4.2. Linear Discriminant Analysis
4. Discussion
4.1. Overall Content
4.2. Univariate Analysis
4.2.1. Cultivar
4.2.2. Geographical Origin
4.2.3. Aging
4.3. Correlations
4.4. Discriminant Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chidi, B.S.; Bauer, F.F.; Rossouw, D. Organic acid metabolism and the impact of fermentation practices on wine acidity: A review. S. Afr. J. Enol. Vitic. 2018, 39, 1–15. [Google Scholar] [CrossRef]
- Mairata, A.; Pou, A.; Martínez, J.; Puelles, M.; Labarga, D.; Portu, J. Organic mulches slightly influence the wine phenolic profile and sensory evaluation. Food Chem. 2024, 457, 140045. [Google Scholar] [CrossRef] [PubMed]
- Grainger, K. Wine Faults and Flaws: A Practical Guide; Wiley Online Library: Hoboken, NJ, USA, 2021. [Google Scholar]
- Sponholz, W. Wine spoilage by microorganisms. In Wine Microbiology and Biotechnology; CRC Press: Boca Raton, FL, USA, 1993; pp. 395–420. [Google Scholar]
- Kim, J.; Choi, S.; Hong, Y.; Kim, D.; Lee, W.; Rhee, C.; Park, H. Isolation and characterization of tartaric acid-degrading bacteria from Korean grape wine pomace. Food Sci. Preserv. 2008, 15, 483–490. [Google Scholar]
- Volschenk, H.; Van Vuuren, H.; Viljoen-Bloom, M. Malic acid in wine: Origin, function and metabolism during vinification. S. Afr. J. Enol. Vitic. 2006, 27, 123–136. [Google Scholar] [CrossRef]
- Kučerová, J.; Široký, J. Study of changes organic acids in red wines during malolactic fermentation. Acta Univ. Agric. Silvic. Mendel. Brun. 2011, 5, 145–150. [Google Scholar] [CrossRef]
- Mendes Ferreira, A.; Mendes-Faia, A. The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef]
- Hausinger, K.; Lipps, M.; Raddatz, H.; Rosch, A.; Scholten, G.; Schrenk, D. Automated optical grape-sorting of rotten grapes: Effects of rot infections on gluconic acid concentrations and glycerol/gluconic acid ratios in must and wine. J. Wine Res. 2015, 26, 18–28. [Google Scholar] [CrossRef]
- Bouzanquet, Q.; Barril, C.; Clark, A.C.; Dias, D.A.; Scollary, G.R. A novel glutathione-hydroxycinnamic acid product generated in oxidative wine conditions. J. Agric. Food Chem. 2012, 60, 12186–12195. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Díaz-Romero, C.; Darias-Martín, J. What gives a wine its strong red color? Main correlations affecting copigmentation. J. Agric. Food Chem. 2016, 64, 6567–6574. [Google Scholar] [CrossRef]
- de Lima, A.N.; Magalhães, R.; Campos, F.M.; Couto, J.A. Survival and metabolism of hydroxycinnamic acids by Dekkera bruxellensis in monovarietal wines. Food Microbiol. 2021, 93, 103617. [Google Scholar]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Brás, N.F.; Vale, N.; Gomes, P.; Mateus, N.; De Freitas, V.; Heredia, F.J.; Escribano-Bailón, M.T. Interaction between wine phenolic acids and salivary proteins by saturation-transfer difference nuclear magnetic resonance spectroscopy (STD-NMR) and molecular dynamics simulations. J. Agric. Food Chem. 2017, 65, 6434–6441. [Google Scholar] [CrossRef] [PubMed]
- Bubola, M.; Rusjan, D.; Lukić, I. Crop level vs. leaf removal: Effects on Istrian Malvasia wine aroma and phenolic acids composition. Food Chem. 2020, 312, 126046. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Oliveira, C.; Santos, C.; Campos, F.M.; Couto, J.A. Phenolic composition of monovarietal red wines regarding volatile phenols and its precursors. Eur. Food Res. Technol. 2018, 244, 1985–1994. [Google Scholar] [CrossRef]
- Baiano, A.; Terracone, C. Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the south of Italy based on chemometrics. J. Agric. Food Chem. 2011, 59, 9815–9826. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jiang, Z.; Tan, J.; Li, R. Geographical origin traceability of red wines based on chemometric classification via organic acid profiles. J. Food Qual. 2017, 2017, 2038073. [Google Scholar] [CrossRef]
- Tang, K.; Ma, L.; Han, Y.; Nie, Y.; Li, J.; Xu, Y. Comparison and chemometric analysis of the phenolic compounds and organic acids composition of Chinese wines. J. Food Sci. 2015, 80, C20–C28. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Díaz-Romero, C.; Darias-Rosales, J.; Darias-Martín, J. Volcanic Terroirs: Exploring Minerals in Canary Red Wine. Beverages 2024, 10, 107. [Google Scholar] [CrossRef]
- Alonso González, P.; Parga Dans, E.; Hernández González, M.M.; Arribas Blázquez, P.; Acosta Dacal, A.C.; Pérez Luzardo, O. Unveiling terroir: Evaluating the magnitude of the heterogeneity and its main drivers in the Canary Islands wines. Cogent Food Agric. 2024, 10, 2334997. [Google Scholar] [CrossRef]
- Díaz Romero, C.; Tort, S.; Díaz, E.; Pérez-Trujillo, J.P. Chemical characterization of bottled sweet wines from the Canary Islands (Spain). Acta Aliment. 2003, 32, 247–256. [Google Scholar] [CrossRef]
- Díaz, C.; Conde, J.; Méndez, J.; Pérez Trujillo, J. Chemometric studies of bottled wines with denomination of origin from the Canary Islands (Spain). Eur. Food Res. Technol. 2002, 215, 83–90. [Google Scholar] [CrossRef]
- Díaz, C.; Conde, J.E.; Claverie, C.; Díaz, E.; Trujillo, J.P.P. Conventional enological parameters of bottled wines from the Canary Islands (Spain). J. Food Compos. Anal. 2003, 16, 49–56. [Google Scholar] [CrossRef]
- Pérez-Trujillo, J.P.; Hernández, Z.; López-Bellido, F.J.; Hermosín-Gutiérrez, I. Characteristic phenolic composition of single-cultivar red wines of the Canary Islands (Spain). J. Agric. Food Chem. 2011, 59, 6150–6164. [Google Scholar] [CrossRef] [PubMed]
- Darias-Martín, J.J.; Andrés-Lacueva, C.; Díaz-Romero, C.; Lamuela-Raventós, R.M. Phenolic profile in varietal white wines made in the Canary Islands. Eur. Food Res. Technol. 2008, 226, 871–876. [Google Scholar] [CrossRef]
- Master, O.; Patronage, O. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Dijon, France, 2024. [Google Scholar]
- Almela, L.; Lázaro, I.; Lopez-Roca, J.M.; Fernandez-Lopez, J.A. Tartaric acid in frozen musts and wines. Optimization of Rebelein’s method and validation by HPLC. Food Chem. 1993, 47, 357–361. [Google Scholar] [CrossRef]
- Ibern-Gómez, M.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M.; Waterhouse, A.L. Rapid HPLC analysis of phenolic compounds in red wines. Am. J. Enol. Vitic. 2002, 53, 218–221. [Google Scholar] [CrossRef]
- Ginjom, I.; D’Arcy, B.; Caffin, N.; Gidley, M. Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process. Food Chem. 2011, 125, 823–834. [Google Scholar] [CrossRef]
- Meng, J.; Fang, Y.; Qin, M.; Zhuang, X.; Zhang, Z. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China). Food Chem. 2012, 134, 2049–2056. [Google Scholar] [CrossRef]
- Hernández, T.; Estrella, I.; Carlavilla, D.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V. Phenolic compounds in red wine subjected to industrial malolactic fermentation and ageing on lees. Anal. Chim. Acta 2006, 563, 116–125. [Google Scholar] [CrossRef]
- Lima, M.M.; Choy, Y.Y.; Tran, J.; Lydon, M.; Runnebaum, R.C. Organic acids characterization: Wines of Pinot noir and juices of ‘Bordeaux grape varieties’. J. Food Compos. Anal. 2022, 114, 104745. [Google Scholar] [CrossRef]
- Darias-Martín, J.; Socas-Hernández, A.; Díaz-Romero, C.; Díaz-Díaz, E. Comparative study of methods for determination of titrable acidity in wine. J. Food Compos. Anal. 2003, 16, 555–562. [Google Scholar] [CrossRef]
- Frioni, T.; Collivasone, R.; Canavera, G.; Gatti, M.; Gabrielli, M.; Poni, S. Identifying the best parameters to determine genotype capability to retain adequate malic acid at harvest and in final wines. OENO One 2023, 57, 247–256. [Google Scholar] [CrossRef]
- Mendoza, S.N.; Canon, P.M.; Contreras, Á.; Ribbeck, M.; Agosin, E. Genome-scale reconstruction of the metabolic network in Oenococcus oeni to assess wine malolactic fermentation. Front. Microbiol. 2017, 8, 534. [Google Scholar] [CrossRef] [PubMed]
- Bartowsky, E.J.; Francis, I.L.; Bellon, J.R.; Henschke, P.A. Is buttery aroma perception in wines predictable from the diacetyl concentration? Aust. J. Grape Wine Res. 2002, 8, 180–185. [Google Scholar] [CrossRef]
- Grigoryan, B.; Mikayelyan, M. The investigation of bioactive compounds in the Charentsi grape variety and its derived wines. Bioact. Compd. Health Dis. 2023, 6, 303–314. [Google Scholar] [CrossRef]
- Vilela-Moura, A.; Schuller, D.; Mendes-Faia, A.; Silva, R.D.; Chaves, S.R.; Sousa, M.J.; Côrte-Real, M. The impact of acetate metabolism on yeast fermentative performance and wine quality: Reduction of volatile acidity of grape musts and wines. Appl. Microbiol. Biotechnol. 2011, 89, 271–280. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; González-Centeno, M.R. Phenolic Compounds of Grapes and Wines: Key Compounds and Implications in Sensory Perception. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; IntechOpen: London, UK, 2021; Chapter 1. [Google Scholar]
- Petropulos, V.I.; Ricci, A.; Nedelkovski, D.; Dimovska, V.; Parpinello, G.P.; Versari, A. Influence of Yeast Strains on Phenolic Composition and Antioxidant Activity of Vranec wines. In Proceedings of the XXIII Congress of Chemists and Technologists of Macedonia, Ohrid, Republic of Macedonia, 8–11 October 2014; p. 80. [Google Scholar]
- Vallverdú-Queralt, A.; Verbaere, A.; Meudec, E.; Cheynier, V.; Sommerer, N. Straightforward method to quantify GSH, GSSG, GRP, and hydroxycinnamic acids in wines by UPLC-MRM-MS. J. Agric. Food Chem. 2015, 63, 142–149. [Google Scholar] [CrossRef]
- Vichapong, J.; Santaladchaiyakit, Y.; Burakham, R.; Srijaranai, S. Cloud-point extraction and reversed-phase high performance liquid chromatography for analysis of phenolic compounds and their antioxidant activity in Thai local wines. J. Food Sci. Technol. 2014, 51, 664–672. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, R.; He, F.; Zhou, P.; Duan, C. Copigmentation of malvidin-3-O-glucoside with five hydroxybenzoic acids in red wine model solutions: Experimental and theoretical investigations. Food Chem. 2015, 170, 226–233. [Google Scholar] [CrossRef]
- Zgardan, D.; Mitina, I.; Sturza, R.; Mitin, V.; Rubtov, S.; Grajdieru, C.; Behta, E.; Inci, F.; Haciosmanoglu, N. A survey on acetic acid bacteria levels and volatile acidity in several wines of the Republic of Moldova. Biol. Life Sci. Forum 2023, 26, 79. [Google Scholar]
- Zyprian, E.; Richter, R.; Rossmann, S.; Theres, K.; Töpfer, R. Molecular Analysis of Bunch Architecture in Grapevine. In Proceedings of the XII International Conference on Grapevine Breeding and Genetics, Bordeaux, France, 15–20 July 2018; pp. 327–330. [Google Scholar]
- Kocsis, M.; Csikász-Krizsics, A.; Szata, B.E.; Kovács, S.; Nagy, A.; Mátai, A.; Jakab, G. Regulation of cluster compactness and resistance to Botrytis cinerea with β-aminobutyric acid treatment in field-grown grapevine. Vitis 2018, 57, 35. [Google Scholar]
- Jensen, J.S.; Demiray, S.; Egebo, M.; Meyer, A.S. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera). J. Agric. Food Chem. 2008, 56, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Palade, L.M.; Popa, M.E. Polyphenol fingerprinting approaches in wine traceability and authenticity: Assessment and implications of red wines. Beverages 2018, 4, 75. [Google Scholar] [CrossRef]
- Ramos, M.C.; de Toda, F.M. Variability in the potential effects of climate change on phenology and on grape composition of Tempranillo in three zones of the Rioja DOCa (Spain). Eur. J. Agron. 2020, 115, 126014. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef]
- Honisch, C.; Osto, A.; de Matos, A.D.; Vincenzi, S.; Ruzza, P. Isolation of a tyrosinase inhibitor from unripe grapes juice: A spectrophotometric study. Food Chem. 2020, 305, 125506. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
Mean ± SD | Min–Max | |
---|---|---|
Wine acidity | ||
pH (pH Units) | 3.73 ± 0.18 | 3.23–4.54 |
Total Acidity (g tart./L) | 5.20 ± 0.73 | 3.93–7.59 |
Major organic acids (g/L) | ||
Tartaric | 1.73 ± 1.06 | 0.06–4.89 |
Malic | 0.37 ± 0.67 | <0.02–3.62 |
Lactic | 1.78 ± 1.02 | 0.07–5.53 |
Acetic | 0.61 ± 0.24 | 0.15–1.53 |
Gluconic | 0.37 ± 0.42 | <0.02–2.29 |
Citric | 0.14 ± 0.10 | <0.02–0.46 |
Phenolic acids (mg/L) | ||
TPhe | 151.20 ± 33.3 | 66.28–246.20 |
Gall | 37.41 ± 21.66 | 3.23–113.21 |
Prot | 3.29 ± 3.56 | 0.44–33.83 |
Syri | 13.16 ± 4.76 | 3.60–30.06 |
HBAs | 53.86 ± 23.91 | 9.04–140.20 |
Caft | 47.94 ± 15.59 | 4.42–73.12 |
Caff | 12.23 ± 9.34 | 0.71–55.35 |
Cuta | 28.62 ± 12.69 | 3.74–65.85 |
Coum | 7.55 ± 7.25 | 0.26–51.10 |
2SGl | 0.95 ± 0.70 | 0.07–4.06 |
HCAs | 97.29 ± 19.17 | 30.43–155.38 |
TE.HC | 77.52 ± 19.04 | 26.32–121.18 |
FR.HC | 19.77 ± 14.07 | 3.37–72.54 |
V | N | LP | B | T | LN | M | S | C | R | |
---|---|---|---|---|---|---|---|---|---|---|
pH (pH Units) | 3.75 ab (0.15) | 3.71 ab (0.16) | 3.66 a (0.18) | 3.77 ab (0.12) | 3.85 b (0.18) | 3.69 a (0.13) | 3.74 ab (0.19) | 3.73 ab (0.25) | 4.13 c (0.33) | 3.82 ab (0.14) |
Total Acidity (g Tartaric/L) | 5.34 b (0.81) | 5.02 ab (0.61) | 5.13 b (0.80) | 5.64 b (0.87) | 5.56 b (0.98) | 5.01 ab (0.52) | 5.59 b (0.54) | 5.46 b (0.85) | 4.47 a (0.48) | 5.50 b (0.81) |
Tartaric (g/L) | 2.32 a (1.02) | 2.35 a (1.03) | 2.10 a (0.40) | 1.49 a (1.01) | 2.06 a (1.45) | 1.56 a (1.04) | 2.31 a (0.71) | 1.53 a (1.24) | 1.36 a (0.84) | 1.40 a (1.11) |
Malic (g/L) | 0.56 ab (0.94) | 0.16 a (0.20) | 0.35 ab (0.44) | 0.63 ab (0.97) | 0.17 a (0.16) | 0.31 ab (0.57) | 0.89 b (1.39) | 0.34 ab (0.53) | 0.05 a (0.03) | 0.42 ab (0.46) |
Lactic (g/L) | 1.51 ab (0.67) | 1.57 ab (0.54) | 1.33 a (0.91) | 2.33 bcd (1.37) | 2.56 cd (0.78) | 1.53 ab (0.82) | 1.54 ab (0.85) | 1.99 abc (0.92) | 3.19 d (1.38) | 2.17 abc (0.92) |
Acetic (g/L) | 0.68 abc (0.14) | 0.62 ab (0.16) | 0.63 ab (0.20) | 0.78 bc (0.28) | 0.85 c (0.29) | 0.51 a (0.21) | 0.66 abc (0.13) | 0.67 abc (0.09) | 0.68 abc (0.25) | 0.61 ab (0.20) |
Gluconic (g/L) | 0.50 bc (0.41) | 0.25 ab (0.19) | 0.14 ab (0.32) | 0.73 c (0.66) | 0.13 ab (0.21) | 0.34 ab (0.32) | 0.47 bc (0.51) | 0.17 ab (0.18) | 0.05 a (0.06) | 0.36 ab (0.43) |
Citric (g/L) | 0.11 a (0.08) | 0.13 a (0.10) | 0.08 a (0.07) | 0.14 a (0.12) | 0.07 a (0.09) | 0.16 a (0.09) | 0.16 a (0.17) | 0.14 a (0.10) | 0.09 a (0.05) | 0.09 a (0.09) |
Gall (mg/L) | 42.42 bcd (18.66) | 53.31 d (21.24) | 31.76 abc (19.75) | 39.14 abcd (23.32) | 47.64 cd (36.47) | 37.43 abcd (21.15) | 33.7 abcd (8.7) | 24.75 ab (9.39) | 24.80 ab (6.45) | 18.20 a (10.03) |
Prot (mg/L) | 2.99 a (1.60) | 3.46 a (1.74) | 2.69 a (1.58) | 4.27 a (5.92) | 3.01 a (1.83) | 3.27 a (3.61) | 5.21 a (5.68) | 2.78 a (1.20) | 1.63 a (0.62) | 2.37 a (1.13) |
Syri (mg/L) | 11.10 a (3.27) | 12.17 a (3.76) | 13.53 a (4.48) | 14.61 a (5.30) | 15.77 a (7.00) | 13.31 a (4.52) | 11.29 a (4.49) | 11.15 a (5.13) | 14.04 a (6.13) | 10.96 a (2.23) |
Caft (mg/L) | 57.99 cde (8.87) | 58.95 de (6.94) | 64.61 e (5.69) | 46.81 bcd (12.95) | 26.69 a (9.85) | 48.36 bcd (14.01) | 43.95 b (8.74) | 30.23 a (17.77) | 46.03 bc (12.0) | 24.88 a (16.97) |
Caff (mg/L) | 11.46 ab (7.57) | 11.92 ab (8.90) | 7.43 ab (3.06) | 6.82 a (3.25) | 13.42 ab (10.25) | 13.98 ab (10.43) | 16.14 b (9.11) | 12.87 ab (11.05) | 9.82 ab (3.47) | 24.59 c (11.31) |
Cuta (mg/L) | 19.16 a (7.19) | 26.40 ab (4.87) | 28.87 ab (12.47) | 18.37 a (9.16) | 20.55 a (10.94) | 35.62 b (12.02) | 24.78 a (9.49) | 28.90 ab (11.34) | 21.97 a (8.47) | 24.33 a (11.02) |
Coum (mg/L) | 5.36 a (3.85) | 3.90 a (2.18) | 2.12 a (1.22) | 6.99 a (9.11) | 13.95 b (6.17) | 7.62 a (6.43) | 6.87 a (2.51) | 14.23 b (7.57) | 4.82 a (4.54) | 18.61 b (14.81) |
2SGl (mg/L) | 0.97 abc (0.55) | 0.68 ab (0.40) | 0.58 a (0.57) | 1.62 d (0.96) | 1.45 cd (0.89) | 0.74 ab (0.47) | 1.03 abcd (0.60) | 1.23 bcd (0.62) | 0.74 ab (0.81) | 1.26 bcd (0.47) |
TPhe (mg/L) | 151.5 abc (19.77) | 170.8 c (28.50) | 151.6 abc (32.56) | 138.6 ab (34.53) | 142.5 abc (52.95) | 160.3 bc (31.88) | 142.4 abc (26.08) | 126.1 a (17.17) | 123.8 a (27.4) | 125.2 a (14.49) |
HBAs (mg/L) | 56.51 bc (21.02) | 68.93 c (23.23) | 47.98 abc (22.54) | 58.02 bc (25.08) | 66.42 c (42.83) | 54.00 abc (22.89) | 49.67 abc (11.12) | 38.68 ab (12.00) | 40.5 ab (9.58) | 31.53 a (12.35) |
HCAs (mg/L) | 94.94 bcd (9.37) | 101.85 cd (11.10) | 103.61 d (15.19) | 80.60 ab (16.19) | 76.06 a (17.33) | 106.32 d (17.54) | 92.76 bcd (15.15) | 87.46 abc (13.40) | 83.4 ab (21.3) | 93.7 bcd (19.6) |
TE.HC (mg/L) | 78.12 cd (8.10) | 86.03 de (8.78) | 94.06 e (12.43) | 66.80 bc (15.41) | 48.68 a (12.46) | 84.72 de (17.51) | 69.76 bc (12.69) | 60.36 ab (12.68) | 68.73 bc (19.9) | 50.48 a (8.23) |
FR.HC (mg/L) | 16.82 abc (10.05) | 15.81 abc (10.51) | 9.55 a (3.52) | 13.81 ab (11.19) | 27.37 c (15.05) | 21.60 abc (14.49) | 23.01 bc (11.27) | 27.11 c (12.79) | 14.6 abc (6.85) | 43.20 d (25.49) |
pH | T.A. | Tartaric | Malic | Lactic | Acetic | Gluc. | Citric | Gall | Prot | Syri | Caft | Caff | Cuta | Coum | 2SGl | TPhe | HBAs | HCAs | TE.HC | FR.HC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | −0.319 | −0.145 | −0.171 | 0.586 | 0.224 | 0.031 | −0.222 | −0.030 | −0.186 | 0.155 | −0.333 | 0.024 | −0.103 | 0.194 | 0.185 | −0.160* | −0.024 | −0.247 | −0.334 | 0.116 |
T.A. | * | 1 | 0.128 | 0.440 | −0.083 | 0.378 | 0.376 | 0.236 | 0.116 | 0.003 | −0.084 | −0.019 | −0.044 | −0.241 | −0.010 | 0.285 | −0.045 | 0.089 | −0.190 | −0.166 | −0.034 |
Tartaric | *** | 1 | 0.076 | −0.288 | 0.167 | −0.029 | −0.088 | 0.422 | 0.122 | −0.102 | 0.134 | 0.302 | −0.092 | 0.015 | 0.020 | 0.389 | 0.380 | 0.202 | 0.049 | 0.208 | |
Malic | *** | * | 1 | −0.466 | −0.103 | 0.255 | 0.436 | 0.047 | 0.241 | 0.054 | 0.112 | 0.034 | −0.015 | −0.110 | 0.011 | 0.096 | 0.089 | 0.057 | 0.082 | −0.034 | |
Lactic | * | * | * | 1 | 0.346 | −0.034 | −0.317 | −0.158 | −0.233 | −0.029 | −0.350 | −0.201 | −0.193 | 0.176 | 0.206 | −0.383 | −0.183 | −0.436 | −0.408* | −0.042 | |
Acetic | ** | * | *** | * | 1 | 0.112 | −0.236 | 0.203 | 0.048 | −0.185 | −0.103 | −0.075 | −0.416 | 0.070 | 0.249 | −0.097 | 0.154 | −0.361 | −0.353 | −0.014 | |
Gluc. | * | * | 1 | 0.355 | 0.208 | 0.117 | 0.067 | 0.074 | −0.072 | −0.104 | −0.115 | 0.349 | 0.115 | 0.219 | −0.074 | 0.005 | −0.107 | ||||
Citric | ** | ** | * | * | ** | * | 1 | 0.157 | 0.214 | −0.002 | 0.099 | 0.061 | 0.111 | −0.089 | −0.033 | 0.210 | 0.173 | 0.149 | 0.154 | −0.005 | |
Gall | * | *** | ** | ** | *** | 1 | 0.170* | 0.221 | 0.078 | 0.170 | 0.023 | 0.013 | 0.074 | 0.797 | 0.975 | 0.169 | 0.082 | 0.120 | |||
Prot | ** | ** | ** | ** | *** | 1 | −0.129 | −0.028 | 0.029 | −0.073 | 0.078 | 0.115 | 0.186 | 0.277 | −0.023 | −0.067 | 0.060 | ||||
Syri | *** | ** | ** | 1 | 0.026 | 0.073 | 0.202 | −0.028 | −0.036 | 0.376 | 0.379 | 0.179* | 0.155 | 0.034 | |||||||
Caft | * | * | 1 | −0.286 | −0.063 | −0.769 | −0.516 | 0.237 | 0.072 | 0.323 | 0.758 | −0.586 | |||||||||
Caff | * | ** | *** | * | 1 | 0.115 | 0.429 | −0.127 | 0.405 | 0.173 | 0.488 | −0.162 | 0.885 | ||||||||
Cuta | * | ** | * | ** | 1 | 0.194 | −0.337 | 0.455 | 0.050 | 0.728 | 0.603 | 0.176 | |||||||||
Coum | ** | *** | * | * | ** | 1 | 0.279 | 0.071 | 0.018 | 0.100 | −0.490 | 0.800 | |||||||||
2SGl | ** | * | ** | * | * | * | * | * | 1 | −0.268 | 0.077 | −0.563 | −0.611 | 0.060 | |||||||
TPhe | *** | * | * | ** | * | ** | * | ** | * | * | * | 1 | 0.825 | 0.709 | 0.488 | 0.306 | |||||
HBAs | * | ** | *** | ** | *** | * | * | * | *** | * | 1 | 0.186 | 0.095 | 0.124 | |||||||
HCAs | * | ** | ** | * | * | *** | *** | *** | * | * | * | * | * | ** | 1 | 0.729 | 0.376 | ||||
TE.HC | * | *** | * | * | *** | *** | * | *** | * | * | * | * | * | 1 | −0.361 | ||||||
FR.HC | ** | * | * | *** | * | * | * | * | 1 |
Classification Factor | LDA Type | Classification Accuracy (% with Cross-Validation) | Variables Contributing to F1 and F2 |
---|---|---|---|
1. Cultivar | |||
All variables | 88.3 (68.8%) | F1: HCAs, Cuta, FR.HC F2: Caft, TE.HC, Coum | |
Stepwise | 61.0% (54.5%) | F1: TE.HC, Cuta, HCAs F2: Caft, FR.HC, Coum | |
2. Island | |||
All variables | 83.4% (76.6%) | F1: Caft, Gall, tartaric F2: Gluconic, 2SGl, HCAs | |
Stepwise | 74.6% (72.7%) | F1: Caft, gluconic, Gall F2: 2SGl, pH, lactic | |
3. Tenerife DO | |||
All variables | 69.2% (66.4%) | F1: TPhe, HBAs, TE.HC F2: Gluconic, malic, citric | |
Stepwise | 61.6% (54.8%) | F1: TPhe, malic, Gall F2: Gluconic, tartaric, citric | |
4. Wine Aging | |||
All variables | 86.8% (83.9%) | F1: Tartaric, Gall, HBAs F2: Prot, FR.HC, Caff | |
Stepwise | 83.4% (78.5%) | F1: Tartaric, TPhe, HBAs F2: Prot, FR.HC, Caff |
Original → | LN | N | B | LP | T | C | R | M | V | S | |
---|---|---|---|---|---|---|---|---|---|---|---|
↓ Predicted | |||||||||||
LN | 87.1 | 0.0 | 16.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.6 | 0.0 | |
N | 3.2 | 100.0 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
B | 2.2 | 0.0 | 76.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
LP | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
T | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
C | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 5.9 | 0.0 | |
R | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | |
M | 4.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 100.0 | 0.0 | 0.0 | |
V | 1.1 | 0.0 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 76.5 | 0.0 | |
S | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 |
Original → | DO T | DO O | DO Y | DO G | DO A | LP | HI | LZ | GO | GC | |
---|---|---|---|---|---|---|---|---|---|---|---|
↓ Predicted | |||||||||||
DO T | 62.2 | 7.4 | 11.1 | 0.0 | 4.3 | 0.0 | 5.6 | 0.0 | 0.0 | 7.7 | |
DO O | 11.1 | 85.2 | 5.6 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
DO Y | 2.2 | 0.0 | 72.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
DO G | 0.0 | 0.0 | 0.0 | 100.0 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
DO A | 8.9 | 3.7 | 5.6 | 0.0 | 87.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.7 | |
LP | 2.2 | 3.7 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
HI | 6.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 88.9 | 0.0 | 0.0 | 0.0 | |
LZ | 4.4 | 0.0 | 5.6 | 0.0 | 4.3 | 0.0 | 5.6 | 100.0 | 0.0 | 0.0 | |
GO | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | |
GC | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 84.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heras-Roger, J.; Díaz-Romero, C.; Darias-Rosales, J.; Darias-Martín, J. Organic Acids in Varietal Red Wines: Influence of Grape Cultivar, Geographical Origin, and Aging. Beverages 2025, 11, 102. https://doi.org/10.3390/beverages11040102
Heras-Roger J, Díaz-Romero C, Darias-Rosales J, Darias-Martín J. Organic Acids in Varietal Red Wines: Influence of Grape Cultivar, Geographical Origin, and Aging. Beverages. 2025; 11(4):102. https://doi.org/10.3390/beverages11040102
Chicago/Turabian StyleHeras-Roger, Jesús, Carlos Díaz-Romero, Javier Darias-Rosales, and Jacinto Darias-Martín. 2025. "Organic Acids in Varietal Red Wines: Influence of Grape Cultivar, Geographical Origin, and Aging" Beverages 11, no. 4: 102. https://doi.org/10.3390/beverages11040102
APA StyleHeras-Roger, J., Díaz-Romero, C., Darias-Rosales, J., & Darias-Martín, J. (2025). Organic Acids in Varietal Red Wines: Influence of Grape Cultivar, Geographical Origin, and Aging. Beverages, 11(4), 102. https://doi.org/10.3390/beverages11040102