Understanding Consumer Acceptability and Sensory Drivers of Liking in Montepulciano Wines from Brazil and Beyond
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Sample Selection
2.2. Consumer Study
2.2.1. Participants
2.2.2. Ethical Approval
2.2.3. Product Evaluation Sessions
2.2.4. Experimental Design
2.3. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Overall Liking and Sensory Characterization
4. Discussion
4.1. Consumer Liking of Montepulciano Wines
4.2. Sensory Drivers of Liking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CATA | check-all-that-apply |
CA | Correspondence Analysis |
SC | Santa Catarina |
References
- de Mello, L.M.R.; Machado, C.A.E. Brazilian Winemaking: 2021 Overview; Technical Communication; EMBRAPA (Brazilian Agricultural Research Corporation): Bento Gonçalves, Brazil, 2022. [Google Scholar]
- Melz, T.; Rossi, R.C. Montepulciano: The traditional italian grape gaining ground in Brazil. Atena 2023, 3, 175–182. [Google Scholar]
- Pandolfo, C.; Vianna, L.F.N. High-Altitude Wines from Santa Catarina: Characterization of the Producing Region, Indicators and Instruments for Proposing Geographical Indication; Epagri (Agricultural Research and Rural Extension Company of Santa Catarina): Florianópolis, Brazil, 2022; p. 200. ISBN 978-65-990745-0-9.
- Brighenti, A.F.; da Silva, A.L.; Brighenti, E.; Porro, D.; Stefanini, M. Viticultural performance of Italian autochthonous varieties under high altitude conditions in Southern Brazil. Braz. Agric. Res. 2014, 49, 465–474. [Google Scholar] [CrossRef]
- Mezei, L.V.; Johnson, T.E.; Goodman, S.; Collins, C.; Bastian, S.E. Meeting the demands of climate change: Australian consumer acceptance and sensory profiling of red wines produced from non-traditional red grape varieties. OENO One 2021, 55, 29–46. [Google Scholar] [CrossRef]
- Suzzi, G.; Schirone, M.; Sergi, M.; Marianella, R.M.; Fasoli, G.; Aguzzi, I.; Tofalo, R. Multistarter from organic viticulture for red wine Montepulciano d’Abruzzo production. Front. Microbiol. 2012, 3, 135. [Google Scholar] [PubMed]
- INPI (National Institute of Industrial Property). Brazil. Order INPI No. 29, of June 14, 2021. Geographical Indications—Section IV; Industrial Property Journal No. 2634; INPI: Rio de Janeiro, Brazil, 2021; section IV; p. 3.
- Rauscedo, Vivai Cooperativi. Catalogo Generale Vitis Rauscedo; Vivai Cooperativi Rauscedo sca: Rauscedo, Italy, 2011; p. 209. Available online: https://www.vivairauscedo.com/downloads/ (accessed on 5 December 2023).
- Porro, D.; Stefanini, M. Technologies for the Development of Winemaking in Santa Catarina: Report on Activities Carried Out; Provincia autonoma di Trento: Trento, Italy, 2016; ISBN 978-88-7702-420-6. [Google Scholar]
- Palladini, L.A.; Brighenti, A.F.; Souza, A.L.K.; Silva, A.L. Potential of Wine Grape Varieties in the High Altitude Regions of Santa Catarina; Epagri (Agricultural Research and Rural Extension Company of Santa Catarina): Florianópolis, Brazil, 2021; p. 212. ISBN 978-65-990745-2-3.
- Francis, I.L.; Williamson, P.O.; Bramley, B.; King, E.S.; O’Brien, V.; Curtin, C.; Waters, E.J.; Jeffrey, D.; Herderich, M.; Pretorius, I.S. Linking wine flavor components, sensory properties and consumer quality perceptions. Aust. N. Z. Wine Ind. J. 2010, 25, 18–23. [Google Scholar]
- Lésschaeve, I.; Bowen, A.; Bruwer, J. Determining the impact of consumer characteristics to project sensory preferences in commercial white wines. Am. J. Enol. Vitic. 2012, 63, 487–493. [Google Scholar] [CrossRef]
- Lattey, K.A.; Bramley, B.R.; Francis, I.L. Consumer acceptability, sensory properties and expert quality judgements of Australian Cabernet Sauvignon and Shiraz wines. Aust. J. Grape Wine Res. 2010, 16, 189–202. [Google Scholar] [CrossRef]
- Araujo, L.D.; Parr, W.V.; Grose, C.; Hedderley, D.; Masters, O.; Kilmartin, P.A.; Valentin, D. In-mouth attributes driving perceived quality of pinot noir wines: Sensory and chemical characterisation. Food Res. Int. 2021, 149, 110665. [Google Scholar] [CrossRef]
- Tiwari, P.; Bhardwaj, P.; Somin, S.; Parr, W.V.; Harrison, R.; Kulasiri, D. Understanding Quality of Pinot Noir Wine: Can Modelling and Machine Learning Pave the Way? Foods 2022, 11, 3072. [Google Scholar] [CrossRef]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Noble, A.C.; Arnold, R.A.; Buechsenstein, J.; Leach, E.J.; Schmidt, J.O.; Stern, P.M. Modification of a Standardized System of Wine Aroma Terminology. Am. J. Enol. Vitic. 1987, 38, 143–146. [Google Scholar] [CrossRef]
- Tofalo, R.; Patrignani, F.; Lanciotti, R.; Perpetuini, G.; Schirone, M.; Di Gianvito, P.; Pizzoni, D.; Arfelli, G.; Suzzi, G. Aroma Profile of Montepulciano d’Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts. Front. Microbiol. 2016, 7, 610. [Google Scholar] [CrossRef] [PubMed]
- Rabitti, N.S.; Cattaneo, C.; Appiani, M.; Proserpio, C.; Laureati, M. Describing the sensory complexity of Italian wines: Application of the Rate-All-That-Apply (RATA) method. Foods 2022, 11, 2417. [Google Scholar] [CrossRef] [PubMed]
- Meyners, M.; Castura, J.C.; Carr, B.T. Existing and new approaches for the analysis of CATA data. Food Qual. Prefer. 2013, 30, 309–319. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S. Check-all-that-apply (CATA) questions with consumers in practice. Experimental considerations and impact on outcome. In Rapid Sensory Profiling Techniques and Related Methods; Delarue, P., Lawlor, J.B., Rogeaux, M., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 227–245. [Google Scholar]
- Hopfer, H.; Heymann, H. Judging wine quality: Do we need experts, consumers or trained panelists? Food Qual. Prefer. 2014, 32, 221–233. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J. The effect of extrinsic cues on consumer perception: A study using milk tea products. Food Qual. Prefer. 2019, 71, 343–353. [Google Scholar] [CrossRef]
- Nandorfy, D.E.; Likos, D.; Lewin, S.; Barter, S.; Kassara, S.; Wang, S.; Kulcsar, A.; Williamson, P.; Bindon, K.; Bekker, M.; et al. Enhancing the sensory properties and consumer acceptance of warm climate red wine through blending. OENO One 2023, 57, 1–18. [Google Scholar] [CrossRef]
- Choi, W.-S.; Seo, H.-S. Effects of Age Group, Gender, and Consumption Frequency on Texture Perception and Liking of Cooked Rice or Bread. Foods 2023, 12, 1793. [Google Scholar] [CrossRef]
- Robinson, J.; Harding, J.; Vouillamoz, J. Wine Grapes: A Complete Guide to 1,368 Vine Varieties, Including Their Origins and Flavors; Collins, H., Ed.; Ecco: New York, NY, USA, 2013; p. 1580. [Google Scholar]
- Sáenz-Navajas, M.P.; Ballester, J.; Pêcher, C.; Peyron, D.; Valentin, D. Sensory drivers of intrinsic quality of red wines: Effect of culture and level of expertise. Food Res. Int. 2013, 54, 1506–1518. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J. Current Research Related to Wine Sensory Perception Since 2010. Beverages 2020, 6, 47. [Google Scholar] [CrossRef]
- Alencar, N.M.M.; Ribeiro, T.G.; Baronea, B.; Barros, A.P.A.; Marquesc, A.T.B.; Behrens, J.H. Sensory profile and check-all-that-apply (cata) as tools for evaluating and characterizing syrah wines aged with oak chips. Food Res. Int. 2019, 124, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Poinot, P.; Arvisenet, G.; Ledauphin, J.; Gaillard, J.; Prost, C. How can aroma–related cross–modal interactions be analysed? A review of current methodologies. Food Qual. Prefer. 2013, 28, 304–316. [Google Scholar] [CrossRef]
- Gonzaga, L.S.; Bastian, S.E.P.; Capone, D.L.; Danner, L.; Jeffery, D.W. Consumer perspectives of wine typicity and impact of region information on the sensory perception of Cabernet Sauvignon wines. Food Res. Int. 2022, 152, 110719. [Google Scholar] [CrossRef] [PubMed]
- Crump, A.M.; Johnson, T.E.; Wilkinson, K.L.; Bastian, S.E.P. Influence of oak maturation regimen on composition, sensory properties, quality, and consumer acceptability of Cabernet Sauvignon wines. J. Agric. Food Chem. 2015, 63, 1593–1600. [Google Scholar] [CrossRef]
- De Castilhos, M.B.M.; Conti-Silva, A.C.; Del Bianchi, V.L. Effect of grape pre-drying and static pomace contact on physicochemical properties and sensory acceptance of Brazilian (Bordô and Isabel) red wines. Eur. Food Res. Technol. 2012, 235, 345–354. [Google Scholar] [CrossRef]
- Lago-Vanzela, E.S.; Rebello, L.P.G.; Ramos, A.M.; Stringheta, P.C.; Da-Silva, R.; Gárcia Romero, E.; Gómes-Alonso, S.; Hermosín-Gutiérrez, I. Chromatic characteristics and color-related phenolic composition of Brazilian young red wines made from the hybrid cultivar BRS-Violeta (“BRS-Rúbea” × “IAC1398-21”). Food Res. Int. 2013, 54, 33–43. [Google Scholar] [CrossRef]
- García-muñoz, S.; Muñoz-organero, G.; Fernández-fernández, E.; Cabello, F. Sensory characterisation and factors influencing quality of wines made from 18 minor varieties (Vitis vinifera L.). Food Qual. Prefer. 2014, 32, 241–252. [Google Scholar] [CrossRef]
- Issa-Issa, H.; Noguera-Artiaga, L.; Mora, M.; Carbonell-Barrachina, Á.A.; López-Lluch, D. Consumer Profile and Drivers Influencing Consumer Behavior towards Fondillón, a European Protected Naturally Sweet Red Wine. Foods 2021, 10, 2651. [Google Scholar] [CrossRef]
- Biasoto, A.C.; Netto, F.M.; Marques, E.J.; Silva, M.A. Acceptability and preference drivers of red wines produced from Vitis labrusca and hybrid grapes. Food Res. Int. 2014, 62, 456–466. [Google Scholar] [CrossRef]
- Mora, M.; D. de M., A.; Vázquez-Araújo, L.; Puente, V.; Hernando, J.; Chaya, C. Exploring young consumers’ attitudes and emotions to sensory and physicochemical properties of different red wines. Food Res. Int. 2021, 143, 110303. [Google Scholar] [CrossRef]
- Luo, J.; Ruan, X.; Ang, C.S.; Nolvachai, Y.; Marriott, P.J.; Zhang, P.; Howell, K. Variation of wine preference amongst consumers is influenced by the composition of salivary proteins. NPJ Sci. Food 2023, 51, 1–12. [Google Scholar] [CrossRef]
- Jiang, W.; Niimi, J.; Ristic, R.; Bastian, S.E.P. Effects of Immersive Context and Wine Flavor on Consumer Wine Flavor Perception and Elicited Emotions. Am. J. Enol. Vitic. 2017, 68, 1–10. [Google Scholar] [CrossRef]
- Cameleyre, M.; Monsant, C.; Tempere, S.; Lytra, G.; Barbe, J.C. Toward a better understanding of perceptive interactions between volatile and nonvolatile compounds: The case of proanthocyanidic tannins and red wine fruity esters—Methodological, sensory, and physicochemical approaches. J. Agric. Food Chem. 2021, 69, 9895–9904. [Google Scholar] [CrossRef] [PubMed]
- Garbay, J.; Cameleyre, M.; Le Menn, N.; Riquier, L.; Barbe, J.C.; Lytra, G. Study of the fruity aroma of red wines made from grape varieties potentially adapted to climate change using a semi-preparative HPLC method. LWT 2024, 204, 116481. [Google Scholar] [CrossRef]
- Van leeuwen, C.; Barbe, J.C.; Darriet, P.; Destrac-irvine, A.; Gowdy, M.; Lytra, G.; Thibon, C. Aromatic maturity is a cornerstone of terroir expression in red wine. OENO One 2022, 56, 335–351. [Google Scholar] [CrossRef]
- Allamy, L.; Van Leeuwen, C.; Pons, A. Impact of harvest date on aroma compound composition of Merlot and Cabernet-Sauvignon must and wine in a context of climate change: A focus on cooked fruit molecular markers. OENO One 2023, 57, 99–112. [Google Scholar] [CrossRef]
- Frost, S.C.; Harbertson, J.F.; Heymann, H. A full factorial study on the effect of tannins, acidity, and ethanol on the temporal perception of taste and mouthfeel in red wine. Food Qual. Prefer. 2017, 62, 1–7. [Google Scholar] [CrossRef]
- Laaksonen, O.; Ahola, J.; Sandell, M. Explaining and predicting individually experienced liking of berry fractions by the hTAS2R38 taste receptor genotype. Appetite 2013, 61, 85–96. [Google Scholar] [CrossRef]
- Sokolowsky, M.; Fischer, U. Evaluation of bitterness in white wine applying descriptive analysis, time-intensity analysis, and temporal dominance of sensations analysis. Anal. Chim. Acta 2012, 732, 46–52. [Google Scholar] [CrossRef]
- Vidal, L.; Antúnez, L.; Giménez, A.; Medina, K.; Boido, E.; Ares, G. Astringency evaluation of Tannat wines: Comparison of assessments from trained assessors and experts. J. Sens. Stud. 2018, 33, e12330. [Google Scholar] [CrossRef]
- Mcrae, J.M.; Kennedy, J.A. Wine and grape tannin interactions with salivary proteins and their impact on astringency: A review of current research. Molecules 2011, 16, 2348–2364. [Google Scholar] [CrossRef] [PubMed]
- Fleming, E.E.; Ziegler, G.R.; Hayes, J.E. Salivary protein levels as a predictor of perceived astringency in model systems and solid foods. Physiol. Behav. 2016, 163, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Niimi, J.; Danner, L.; Li, L.; Bossan, H.; Bastian, S.E.P. Wine consumers’ subjective responses to wine mouthfeel and understanding of wine body. Food Res. Int. 2017, 99, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Behrens, J.H.; Silva, M.A.P.; Da Wakeling, I.N. Affective sensory tests and internal analysis of preference in acceptability assessment of Brazilian varietal white wines. Food Sci. Technol. 1999, 19, 214–220. [Google Scholar] [CrossRef]
- Cretin, B.N.; Dubourdieu, D.; Marchal, A. Influence of ethanol content on sweetness and bitterness perception in dry wines. LWT-Food Sci. Technol. 2018, 87, 61–66. [Google Scholar] [CrossRef]
- Bindon, K.; Holt, H.; Williamson, P.O.; Varela, C.; Herderich, M.; Francis, I.L. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 2. Wine sensory properties and consumer preference. Food Chem. 2014, 154, 90–101. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Chheang, S.L.; Jin, D.; Ryan, G.S.; Ares, G. How do CATA questions work? Relationship between likelihood of selecting a term and perceived attribute intensity. J. Sens. Stud. 2023, 38, e12833. [Google Scholar] [CrossRef]
Sample Name | Wine Name | Year | Time in Barrels | Alcohol (%) | Altitude (m) | Origin |
---|---|---|---|---|---|---|
ITA1 | Amaranta di Ulisse | 2019 | 12 months | 14.0 | 276 m | Abruzzo, Italy |
ITA2 | Amorino | 2018 | 12 months | 13.5 | 302 m | Abruzzo, Italy |
CHL | Estampa Inspiración | 2021 | 14 months | 13.5 | 120 m | Colchagua Coast, Chile |
BR-SC1 | Montepulciano | 2021 | 14 months | 14.7 | 1270 m | Santa Catarina, Brazil |
BR-SC2 | Mastino | 2019 | 24 months | 15.0 | 1270 m | Santa Catarina, Brazil |
BR-RS | Montepulciano | 2021 | 3 months | 12.5 | 800 m | Rio Grande do Sul, Brazil |
Sample Name | Overall Liking | Standard Deviation |
---|---|---|
BR-SC2 | 6.44 a | 2.09 |
CHL | 6.37 a | 2.09 |
ITA1 | 6.36 a | 2.10 |
ITA2 | 6.35 a | 2.09 |
BR-SC1 | 6.25 a | 2.10 |
BR-RS | 5.82 a | 2.10 |
Sensory Modality | Term | p-Value Associated with Cochran’s Q Test | Average Citation Frequency (%) | Mean Impact |
---|---|---|---|---|
Aroma | Floral | 0.118 | 19.26 | 1.035 *** |
Fresh red/dark berries | 0.028 | 19.26 | 0.650 ** | |
Ripe red/dark berries | 0.136 | 18.28 | 0.942 *** | |
Dried fruit | 0.631 | 8.74 | 0.744 n/a | |
Coconut | 0.066 | 3.72 | 0.492 n/a | |
Vanilla | 0.069 | 9.39 | 0.811 n/a | |
Chocolate | 0.539 | 4.37 | 0.303 n/a | |
Herbs/Spices | 0.573 | 14.72 | 0.385 ns | |
Woody | 0.019 | 23.46 | 0.383 ns | |
Herbaceous | 0.489 | 11.97 | −0.455 ns | |
Tobacco | 0.084 | 11.17 | −0.348 ns | |
Earthy | 0.914 | 12.62 | −0.274 ns | |
Leather | <0.0001 | 15.53 | −1.103 *** | |
Alcohol | 0.037 | 38.35 | −0.389 * | |
In−mouth (Taste/Flavor and Mouthfeel) | Sweet | 0.393 | 10.68 | 1.094 *** |
Sour | 0.049 | 23.30 | −0.862 *** | |
Bitter | 0.568 | 25.89 | −0.763 *** | |
Floral | 0.181 | 8.58 | 1.092 n/a | |
Fresh red/dark berries | 0.820 | 11.81 | 1.004 ** | |
Ripe red/dark berries | 0.053 | 9.39 | 1.058 n/a | |
Dried fruit | 0.755 | 7.12 | 0.399 n/a | |
Coconut | 0.070 | 2.75 | 1.300 n/a | |
Vanilla | 0.009 | 5.66 | 1.021 n/a | |
Chocolate | 0.404 | 3.56 | 0.762 n/a | |
Herbs/Spices | 0.736 | 9.22 | −0.099 n/a | |
Woody | 0.255 | 20.55 | 0.181 ns | |
Herbaceous | 0.045 | 7.44 | 0.042 n/a | |
Tobacco | 0.355 | 9.22 | −0.621 n/a | |
Earthy | <0.0001 | 8.74 | −0.920 n/a | |
Leather | 0.915 | 11.81 | 0.196 ns | |
Alcohol | 0.026 | 27.99 | −0.120 ns | |
Hard tannins | 0.110 | 21.52 | −0.147 ns | |
Soft tannins | 0.273 | 17.15 | 0.944 *** | |
Persistent | 0.730 | 24.11 | −0.305 ns | |
. | Astringent | 0.157 | 23.14 | −0.864 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melz, T.C.; Rossi, R.C.; Ziegler, V.; Dupas de Matos, A. Understanding Consumer Acceptability and Sensory Drivers of Liking in Montepulciano Wines from Brazil and Beyond. Beverages 2025, 11, 72. https://doi.org/10.3390/beverages11030072
Melz TC, Rossi RC, Ziegler V, Dupas de Matos A. Understanding Consumer Acceptability and Sensory Drivers of Liking in Montepulciano Wines from Brazil and Beyond. Beverages. 2025; 11(3):72. https://doi.org/10.3390/beverages11030072
Chicago/Turabian StyleMelz, Tamara Cristina, Rochele Cassanta Rossi, Valmor Ziegler, and Amanda Dupas de Matos. 2025. "Understanding Consumer Acceptability and Sensory Drivers of Liking in Montepulciano Wines from Brazil and Beyond" Beverages 11, no. 3: 72. https://doi.org/10.3390/beverages11030072
APA StyleMelz, T. C., Rossi, R. C., Ziegler, V., & Dupas de Matos, A. (2025). Understanding Consumer Acceptability and Sensory Drivers of Liking in Montepulciano Wines from Brazil and Beyond. Beverages, 11(3), 72. https://doi.org/10.3390/beverages11030072