Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks
Abstract
:1. Introduction
- Develops a lightweight deep learning-based multi-branch model to classify EEG-MI signals.
- Applies attention mechanism to the proposed model to improve the accuracy.
- Develops a general model that can perform well with fixed hyperparameters.
- Investigates the effect of the fusion technique in the proposed model.
- Validates the efficiency and strength of the model in data variations by using multiple datasets.
2. Background
2.1. Related Work
2.2. Datasets
3. Method
3.1. EEG Data
3.2. EEGNet Block
3.3. CBAM Attention Block
3.4. Proposed Models
3.5. Training Procedure
4. Experiments
4.1. Performance Metrics
4.2. Overall Comparison
4.3. Results of MBEEGCBAM
4.4. Results of FMBEEGCBAM
4.5. Feature Discrimination Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Musallam, Y.K.; AlFassam, N.I.; Muhammad, G.; Amin, S.U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M.A.; Algabri, M. Electroencephalography-based motor imagery classification using temporal convolutional network fusion. Biomed. Signal Process. Control 2021, 69, 102826. [Google Scholar] [CrossRef]
- Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V.; Ren, J. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges. Sensors 2019, 19, 1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Ju, S.; Ren, F.; Fan, M.; Gu, Y. EEG emotion recognition model based on the LIBSVM classifier. Measurement 2020, 164, 108047. [Google Scholar] [CrossRef]
- Bakhshali, M.A.; Ebrahimi-Moghadam, A.; Khademi, M.; Moghimi, S. Coherence-based correntropy spectral density: A novel coherence measure for functional connectivity of EEG signals. Measurement 2019, 140, 354–364. [Google Scholar] [CrossRef]
- Caldwell, J.A.; Prazinko, B.; Caldwell, J. Body posture affects electroencephalographic activity and psychomotor vigilance task performance in sleep-deprived subjects. Clin. Neurophysiol. 2003, 114, 23–31. [Google Scholar] [CrossRef]
- Guideline Thirteen: Guidelines for Standard Electrode Position Nomenclature. J. Clin. Neurophysiol. 1994, 11, 111–113. [CrossRef]
- Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S.U.; Altuwaijri, G.A.; Abdul, W.; Bencherif, M.A.; Faisal, M. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Comput. Appl. 2021, 1–42. [Google Scholar] [CrossRef]
- Lotte, F.; Guan, C. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms. IEEE Trans. Biomed. Eng. 2011, 58, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Rodriguez, M.; Grosse-Wentrup, M.; Hill, J.; Gharabaghi, A.; Scholkopf, B.; Peters, J. Towards brain-robot interfaces in stroke rehabilitation. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Abiri, R.; Zhao, X.; Heise, G.; Jiang, Y.; Abiri, F. Brain computer interface for gesture control of a social robot: An offline study. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 113–117. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yu, Y.; Xu, M.; Liu, Y.; Yin, E.; Zhou, Z. Towards a Hybrid BCI Gaming Paradigm Based on Motor Imagery and SSVEP. Int. J. Hum.-Comput. Interact. 2019, 35, 197–205. [Google Scholar] [CrossRef]
- Altuwaijri, G.A.; Muhammad, G.; Altaheri, H.; Alsulaiman, M. A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification. Diagnostics 2022, 12, 995. [Google Scholar] [CrossRef]
- Müller-Putz, G.R.; Ofner, P.; Schwarz, A.; Pereira, J.; Luzhnica, G.; di Sciascio, C.; Veas, E.; Stein, S.; Williamson, J.; Murray-Smith, R.; et al. Moregrasp: Restoration of Upper Limb Function in Individuals with High Spinal Cord Injury by Multimodal Neuroprostheses for Interaction in Daily Activities; Verlag der Technischen Universität Graz: Graz, Austria, September 2017; pp. 338–343. Available online: https://eprints.gla.ac.uk/139948/ (accessed on 23 February 2021).
- Siuly, S.; Wang, H.; Zhang, Y. Detection of motor imagery EEG signals employing Naïve Bayes based learning process. Measurement 2016, 86, 148–158. [Google Scholar] [CrossRef]
- Taran, S.; Bajaj, V.; Sharma, D.; Siuly, S.; Sengur, A. Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications. Measurement 2018, 116, 68–76. [Google Scholar] [CrossRef]
- Aamir, K.M.; Ramzan, M.; Skinadar, S.; Khan, H.U.; Tariq, U.; Lee, H.; Nam, Y.; Khan, M.A. Automatic Heart Disease Detection by Classification of Ventricular Arrhythmias on ECG Using Machine Learning. Comput. Mater. Contin. 2021, 71, 17–33. [Google Scholar] [CrossRef]
- Muhammad, G.; Hossain, M.S. COVID-19 and Non-COVID-19 Classification using Multi-layers Fusion From Lung Ultrasound Images. Inf. Fusion 2021, 72, 80–88. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [Green Version]
- Bashivan, P.; Rish, I.; Yeasin, M.; Codella, N. Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks. arXiv 2015, arXiv:1511.06448. [Google Scholar]
- Tabar, Y.R.; Halici, U. A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 2017, 14, 016003. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Sun, S. Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik 2017, 130, 11–18. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, H.; Zhu, G.; You, F.; Kuang, S.; Sun, L. A Multi-Branch 3D Convolutional Neural Network for EEG-Based Motor Imagery Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2164–2177. [Google Scholar] [CrossRef]
- Amin, S.U.; Altaheri, H.; Muhammad, G.; Abdul, W.; Alsulaiman, M. Attention-Inception and Long- Short-Term Memory-Based Electroencephalography Classification for Motor Imagery Tasks in Rehabilitation. IEEE Trans. Ind. Inform. 2022, 18, 5412–5421. [Google Scholar] [CrossRef]
- Sakhavi, S.; Guan, C.; Yan, S. Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5619–5629. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Chin, Z.Y.; Wang, C.; Guan, C.; Zhang, H. Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b. Front. Neurosci. 2012, 6, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecotti, H.; Graser, A. Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riyad, M.; Khalil, M.; Adib, A. Incep-EEGNet: A ConvNet for Motor Imagery Decoding. In Proceedings of the International Conference on Image and Signal Processing, Marrakech, Morocco, 4–6 June 2020; pp. 103–111. [Google Scholar] [CrossRef]
- Ingolfsson, T.M.; Hersche, M.; Wang, X.; Kobayashi, N.; Cavigelli, L.; Benini, L. EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded Motor-Imagery Brain–Machine Interfaces. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 2958–2965. [Google Scholar] [CrossRef]
- Amin, S.U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M.A.; Hossain, M.S. Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Gen. Comput. Syst. 2019, 101, 542–554. [Google Scholar] [CrossRef]
- Amin, S.U.; Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Abdul, W. Attention based Inception model for robust EEG motor imagery classification. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, X.; Zhang, H.; Kuang, S. The Mechanism of a Multi-Branch Structure for EEG-Based Motor Imagery Classification. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 2473–2477. [Google Scholar] [CrossRef]
- Jin, J.; Dundar, A.; Culurciello, E. Flattened Convolutional Neural Networks for Feedforward Acceleration. arXiv 2015, arXiv:1412.5474. [Google Scholar]
- Li, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G.; Guo, Y.-Z. A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1170–1180. [Google Scholar] [CrossRef]
- Liu, X.; Shen, Y.; Liu, J.; Yang, J.; Xiong, P.; Lin, F. Parallel Spatial–Temporal Self-Attention CNN-Based Motor Imagery Classification for BCI. Front. Neurosci. 2020, 14, 587520. [Google Scholar] [CrossRef]
- Dai, G.; Zhou, J.; Huang, J.; Wang, N. HS-CNN: A CNN with hybrid convolution scale for EEG motor imagery classification. J. Neural Eng. 2020, 17, 016025. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; Liu, Y.; Liu, J.; Meng, F. A Temporal-Spectral-Based Squeeze-and-Excitation Feature Fusion Network for Motor Imagery EEG Decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1534–1545. [Google Scholar] [CrossRef]
- Li, D.; Xu, J.; Wang, J.; Fang, X.; Ji, Y. A Multi-Scale Fusion Convolutional Neural Network Based on Attention Mechanism for the Visualization Analysis of EEG Signals Decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2615–2626. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Lin, Y.; Wang, J.; Yang, K.; Liu, T.; Zhang, X. MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Motor Imagery Classification. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Bilbao, Spain, 14–18 September 2021; pp. 736–751. [Google Scholar] [CrossRef]
- Altuwaijri, G.A.; Muhammad, G. A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification. Biosensors 2022, 12, 22. [Google Scholar] [CrossRef]
- Brunner, C.; Leeb, R.; Muller-Putz, G.; Schlogl, A.; Pfurtscheller, G. BCI Competition 2008—Graz Data Set A; Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology: Graz, Austria, 2008; Volume 16, pp. 1–6. [Google Scholar]
- Muhammad, G.; Hossain, M.S. Emotion Recognition for Cognitive Edge Computing Using Deep Learning. IEEE Internet Things J. 2021, 8, 16894–16901. [Google Scholar] [CrossRef]
- Muhammad, G.; Hossain, M.S.; Kumar, N. EEG-Based Pathology Detection for Home Health Monitoring. IEEE J. Sel. Areas Commun. 2021, 39, 603–610. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift; PMLR: Lille, France, 2015; Volume 37, pp. 448–456. [Google Scholar]
- Larochelle, H.; Hinton, G. Learning to combine foveal glimpses with a third-order Boltzmann machine. In Proceedings of the Advances in Neural Information Processing Systems 23 (NIPS 2010), Vancouver, BC, Canada, 6–11 December 2010; p. 9. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. 2018, pp. 3–19. Available online: https://openaccess.thecvf.com/content_ECCV_2018/html/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.html (accessed on 5 December 2021).
- Muhammad, G.; Alshehri, F.; Karray, F.; El Saddik, A.; Alsulaiman, M.; Falk, T.H. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf. Fusion 2021, 76, 355–375. [Google Scholar] [CrossRef]
- Alshehri, F.; Muhammad, G. A Comprehensive Survey of the Internet of Things (IoT) and AI-Based Smart Healthcare. IEEE Access 2021, 9, 3660–3678. [Google Scholar] [CrossRef]
- Azam, M.A.; Khan, K.B.; Salahuddin, S.; Rehman, E.; Khan, S.A.; Khan, M.A.; Kadry, S.; Gandomi, A.H. A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics. Comput. Biol. Med. 2022, 144, 105253. [Google Scholar] [CrossRef]
- van der Maaten, L. Accelerating t-SNE using Tree-Based Algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245. [Google Scholar]
Branch | Block | Activation Function | Hyperparameter | Value |
---|---|---|---|---|
First branch | EEGNet Block | elu | Number of temporal filters | 4 |
Kernel size | 16 | |||
Dropout rate | 0 | |||
Attention Block | relu | Ratio | 2 | |
Kernel size | 2 | |||
Second branch | EEGNet Block | elu | Number of temporal filters | 8 |
Kernel size | 32 | |||
Dropout rate | 0.1 | |||
Attention Block | relu | Ratio | 8 | |
Kernel size | 4 | |||
Third branch | EEGNet Block | elu | Number of temporal filters | 16 |
Kernel size | 64 | |||
Dropout rate | 0.2 | |||
Attention Block | relu | Ratio | 8 | |
Kernel size | 2 |
Datasets | Methods | Accuracy (%) | Kappa | F1 Score |
---|---|---|---|---|
BCI-IV2a | FBCSP [25] | 67.80 | Not Available (NA) | 0.675 |
ShallowConvNet [18] | 72.92 | 0.639 | 0.728 | |
DeepConvNet [18] | 71.99 | 0.627 | 0.719 | |
EEGNet [27] | 72.40 | 0.630 | - | |
CP-MixedNet [34] | 74.60 | NA | 0.743 | |
TS-SEFFNet [37] | 74.71 | 0.663 | 0.757 | |
MBEEGNet [40] | 82.01 | 0.760 | 0.822 | |
MBShallowCovNet [40] | 81.15 | 0.749 | 0.814 | |
MBEEGCBAM (proposed) | 82.85 | 0.771 | 0.830 | |
FMBEEGCBAM (proposed) | 83.68 | 0.782 | 0.838 | |
HGD | FBCSP [25] | 90.90 | NA | 0.914 |
ShallowConvNet [18] | 88.69 | 0.849 | 0.887 | |
DeepConvNet [18] | 89.51 | 0.860 | 0.893 | |
EEGNet [27] | 93.47 | 0.921 | 0.935 | |
CP-MixedNet [34] | 93.70 | NA | 0.937 | |
TS-SEFFNet [37] | 93.25 | 0.910 | 0.901 | |
MBEEGNet [40] | 95.30 | 0.937 | 0.954 | |
MBShallowCovNet [40] | 95.11 | 0.935 | 0.951 | |
MBEEGCBAM (proposed) | 95.45 | 0.939 | 0.955 | |
FMBEEGCBAM (proposed) | 95.74 | 0.943 | 0.958 |
Methods | Accuracy (%) |
---|---|
EEGCBAM1 | 74.83 |
EEGCBAM2 | 78.02 |
EEGCBAM3 | 79.92 |
MBEEGNet [40] | 82.01 |
MBEEGCBAM (proposed) | 82.85 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Avg. | Std. Div. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | 91.09 | 65.87 | 94.52 | 77.88 | 81.87 | 64.48 | 93.38 | 89.84 | 86.69 | 82.85 | 0.113 | |
K value | 0.881 | 0.545 | 0.927 | 0.705 | 0.758 | 0.526 | 0.912 | 0.865 | 0.822 | 0.771 | 0.151 | |
F1 score | 0.912 | 0.662 | 0.945 | 0.782 | 0.821 | 0.644 | 0.937 | 0.899 | 0.869 | 0.830 | 0.113 | |
Precision | LH | 0.941 | 0.601 | 0.968 | 0.84 | 0.919 | 0.562 | 0.982 | 0.914 | 0.904 | 0.848 | 0.157 |
RH | 0.943 | 0.539 | 0.958 | 0.795 | 0.777 | 0.584 | 0.84 | 0.899 | 0.827 | 0.796 | 0.147 | |
F | 0.936 | 0.764 | 0.915 | 0.634 | 0.724 | 0.714 | 0.958 | 0.847 | 0.862 | 0.817 | 0.113 | |
Tou. | 0.824 | 0.729 | 0.94 | 0.848 | 0.854 | 0.719 | 0.955 | 0.935 | 0.876 | 0.853 | 0.086 | |
Avg. | 0.911 | 0.658 | 0.945 | 0.779 | 0.819 | 0.645 | 0.934 | 0.899 | 0.867 | 0.828 | 0.114 | |
Recall | LH | 0.909 | 0.580 | 0.932 | 0.762 | 0.842 | 0.606 | 0.838 | 0.956 | 0.854 | 0.809 | 0.135 |
RH | 0.94 | 0.535 | 0.986 | 0.716 | 0.909 | 0.630 | 0.979 | 0.913 | 0.785 | 0.821 | 0.163 | |
F | 0.870 | 0.882 | 0.937 | 0.856 | 0.795 | 0.636 | 0.970 | 0.875 | 0.876 | 0.855 | 0.096 | |
Tou. | 0.929 | 0.669 | 0.928 | 0.807 | 0.748 | 0.703 | 0.972 | 0.856 | 0.967 | 0.842 | 0.116 | |
Avg. | 0.912 | 0.667 | 0.946 | 0.785 | 0.823 | 0.644 | 0.940 | 0.90 | 0.870 | 0.832 | 0.113 |
Subject/Metric | Accuracy (%) | K Value | Precision | Recall | F1 Score |
---|---|---|---|---|---|
S1 | 96.43 | 0.952 | 0.964 | 0.965 | 0.965 |
S2 | 93.52 | 0.914 | 0.935 | 0.939 | 0.937 |
S3 | 100 | 1 | 1 | 1 | 1 |
S4 | 96.90 | 0.959 | 0.969 | 0.969 | 0.969 |
S5 | 97.52 | 0.967 | 0.975 | 0.975 | 0.975 |
S6 | 98.80 | 0.984 | 0.988 | 0.988 | 0.988 |
S7 | 95.25 | 0.937 | 0.953 | 0.955 | 0.954 |
S8 | 96.90 | 0.959 | 0.969 | 0.969 | 0.969 |
S9 | 98.20 | 0.976 | 0.982 | 0.982 | 0.982 |
S10 | 89.93 | 0.866 | 0.899 | 0.903 | 0.901 |
S11 | 90.50 | 0.873 | 0.905 | 0.907 | 0.906 |
S12 | 96.35 | 0.951 | 0.963 | 0.964 | 0.964 |
S13 | 96.90 | 0.959 | 0.969 | 0.969 | 0.969 |
S14 | 89.09 | 0.855 | 0.891 | 0.895 | 0.893 |
Average | 95.45 | 0.939 | 0.954 | 0.956 | 0.955 |
Std. Div. | 0.034 | 0.045 | 0.034 | 0.033 | 0.033 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Avg. | Std. Div. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | 92.96 | 68.33 | 96.75 | 80.39 | 79.78 | 69.73 | 91.18 | 88.77 | 85.21 | 83.68 | 0.099 | |
K value | 0.906 | 0.578 | 0.957 | 0.739 | 0.730 | 0.596 | 0.882 | 0.850 | 0.803 | 0.782 | 0.133 | |
F1 score | 0.931 | 0.684 | 0.968 | 0.806 | 0.800 | 0.699 | 0.915 | 0.889 | 0.853 | 0.838 | 0.099 | |
Precision | LH | 0.957 | 0.639 | 0.984 | 0.915 | 0.800 | 0.618 | 0.982 | 0.902 | 0.918 | 0.918 | 0.141 |
RH | 0.971 | 0.555 | 0.945 | 0.691 | 0.813 | 0.643 | 0.870 | 0.923 | 0.772 | 0.772 | 0.145 | |
F | 0.965 | 0.831 | 0.970 | 0.741 | 0.814 | 0.789 | 0.955 | 0.822 | 0.857 | 0.857 | 0.083 | |
Tou. | 0.825 | 0.709 | 0.971 | 0.870 | 0.764 | 0.740 | 0.840 | 0.904 | 0.861 | 0.861 | 0.083 | |
Avg. | 0.929 | 0.684 | 0.968 | 0.804 | 0.798 | 0.697 | 0.912 | 0.888 | 0.852 | 0.852 | 0.099 | |
Recall | LH | 0.948 | 0.599 | 0.946 | 0.777 | 0.848 | 0.732 | 0.833 | 0.971 | 0.865 | 0.835 | 0.119 |
RH | 0.971 | 0.588 | 1.000 | 0.726 | 0.868 | 0.682 | 0.980 | 0.888 | 0.758 | 0.829 | 0.147 | |
F | 0.854 | 0.854 | 0.958 | 0.912 | 0.711 | 0.656 | 0.912 | 0.859 | 0.848 | 0.840 | 0.097 | |
Tou. | 0.959 | 0.697 | 0.969 | 0.820 | 0.784 | 0.732 | 0.949 | 0.841 | 0.947 | 0.855 | 0.105 | |
Avg. | 0.933 | 0.685 | 0.968 | 0.809 | 0.803 | 0.700 | 0.918 | 0.890 | 0.854 | 0.840 | 0.099 |
Subject/Metric | Accuracy (%) | K Value | Precision | Recall | F1 Score |
---|---|---|---|---|---|
S1 | 97.55 | 0.967 | 0.976 | 0.976 | 0.976 |
S2 | 96.29 | 0951 | 0.963 | 0.963 | 0.963 |
S3 | 100 | 1 | 1 | 1 | 1 |
S4 | 98.80 | 0.984 | 0.988 | 0.988 | 0.988 |
S5 | 98.20 | 0.976 | 0.982 | 0.982 | 0.982 |
S6 | 98.77 | 0.984 | 0.988 | 0.988 | 0.988 |
S7 | 94.43 | 0.926 | 0.944 | 0.944 | 0.944 |
S8 | 96.52 | 0.954 | 0.965 | 0.968 | 0.966 |
S9 | 98.77 | 0.984 | 0.988 | 0.988 | 0.988 |
S10 | 91.18 | 0.882 | 0.912 | 0.915 | 0.913 |
S11 | 88.82 | 0.851 | 0.888 | 0.890 | 0.889 |
S12 | 96.94 | 0.959 | 0.969 | 0.970 | 0.970 |
S13 | 96.52 | 0.954 | 0.965 | 0.968 | 0.966 |
S14 | 87.49 | 0.833 | 0.875 | 0.880 | 0.878 |
Average | 95.74 | 0.943 | 0.957 | 0.959 | 0.958 |
Std. Div. | 0.039 | 0.052 | 0.039 | 0.038 | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altuwaijri, G.A.; Muhammad, G. Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks. Bioengineering 2022, 9, 323. https://doi.org/10.3390/bioengineering9070323
Altuwaijri GA, Muhammad G. Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks. Bioengineering. 2022; 9(7):323. https://doi.org/10.3390/bioengineering9070323
Chicago/Turabian StyleAltuwaijri, Ghadir Ali, and Ghulam Muhammad. 2022. "Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks" Bioengineering 9, no. 7: 323. https://doi.org/10.3390/bioengineering9070323
APA StyleAltuwaijri, G. A., & Muhammad, G. (2022). Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks. Bioengineering, 9(7), 323. https://doi.org/10.3390/bioengineering9070323