Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair
Abstract
:1. Introduction
2. Application of Electrical Stimulation in Biomaterials for Peripheral Nerve Injury Repair
2.1. Self-Powered Nerve Scaffold
2.2. Wireless Nerve Stimulator
3. Application of Mechanical Energy in Biomaterials for Peripheral Nerve Injury Repair
4. Application of Light Stimulation in Biomaterials for Peripheral Nerve Injury Repair
5. Application of Magnetic Composite Biomaterials in Peripheral Nerve Injury Repair
6. Application of Magnetic Fields in Biomaterials for Peripheral Nerve Injury Repair
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, E.-M.F.; Nakanishi, S.T.; Hoghooghi, V.; Eaton, S.E.; Palmer, A.L.; Frederick, A.; Stratton, J.A.; Stykel, M.G.; Whelan, P.J.; Zochodne, D.W. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc. Natl. Acad. Sci. USA 2017, 114, E1707–E1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magaz, A.; Faroni, A.; Gough, J.E.; Reid, A.J.; Li, X.; Blaker, J.J. Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair. Adv. Healthc. Mater. 2018, 7, 1800308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y.; Ng, J.H.; Keating, C.P.; Senthil-Kumar, P.; Zhao, J.; Randolph, M.A.; Winograd, J.M.; Evans, C.L. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model. PLoS ONE 2014, 9, e94054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanen, K.; Martens, W.; Georgiou, M.; Ameloot, M.; Lambrichts, I.; Phillips, J. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: Potential for peripheral nerve repair? J. Tissue Eng. Regen. Med. 2017, 11, 3362–3372. [Google Scholar] [CrossRef] [Green Version]
- Scheib, J.; Höke, A. Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 2013, 9, 668–676. [Google Scholar] [CrossRef]
- Gu, X.; Ding, F.; Williams, D.F. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014, 35, 6143–6156. [Google Scholar] [CrossRef]
- Daly, W.; Yao, L.; Zeugolis, D.; Windebank, A.; Pandit, A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. J. R. Soc. Interface 2012, 9, 202–221. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Huang, J.; Ye, Z.; Xia, L.; Li, M.; Lv, B.; Shen, X.; Luo, Z. A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration. Tissue Eng. Part A 2009, 15, 3297–3308. [Google Scholar] [CrossRef]
- Huang, C.; Ouyang, Y.; Niu, H.; He, N.; Ke, Q.; Jin, X.; Li, D.; Fang, J.; Liu, W.; Fan, C. Nerve guidance conduits from aligned nanofibers: Improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS Appl. Mater. Interfaces 2015, 7, 7189–7196. [Google Scholar] [CrossRef]
- Mohseni, M.; Ahmad Ramazani, S.A.; Shirazi, F.H.; Nemati, N.H. Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies. Int. J. Biol. Macromol. 2021, 167, 881–893. [Google Scholar]
- Augustine, R.; Dominic, E.; Reju, I.; Kaimal, B.; Kalarikkal, N.; Thomas, S. Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv. 2014, 4, 51528–51536. [Google Scholar] [CrossRef]
- Zhang, Z.; Jørgensen, M.L.; Wang, Z.; Amagat, J.; Wang, Y.; Li, Q.; Dong, M.; Chen, M. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration. Biomaterials 2020, 253, 120108. [Google Scholar] [CrossRef] [PubMed]
- Glaser, T.; Bueno, V.B.; Cornejo, D.R.; Petri, D.F.; Ulrich, H. Neuronal adhesion, proliferation and differentiation of embryonic stem cells on hybrid scaffolds made of xanthan and magnetite nanoparticles. Biomed. Mater. 2015, 10, 045002. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhu, L.; Shi, X.; Xia, B.; Liu, Z.; Zhu, S.; Yang, Y.; Ma, T.; Cheng, P.; Luo, K. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater. 2018, 68, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Begum, R.; Barber, T.; Ibba, V.; Tee, N.; Hussain, M.; Arastoo, M.; Yang, Q.; Robson, L.; Lesage, S. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 2012, 33, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhang, P.; Zhang, D.; Fu, Z.; Yin, X.; Zhang, H. Study on small gap sleeve bridging peripheral nerve injury. Artif. Cells Blood Substit. Biotechnol. 2006, 34, 55–74. [Google Scholar] [CrossRef]
- Jiang, J.; Carlson, M.A.; Teusink, M.J.; Wang, H.; MacEwan, M.R.; Xie, J. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique. ACS Biomater. Sci. Eng. 2015, 1, 991–1001. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Z.; Wang, H.; Wang, Y.; Carlson, M.A.; Teusink, M.J.; MacEwan, M.R.; Gu, L.; Xie, J. Expanded 3D nanofiber scaffolds: Cell penetration, neovascularization, and host response. Adv. Healthc. Mater. 2016, 5, 2993–3003. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhu, J.-X.; Fang, Z.-Y.; Zeng, C.-G.; Zhang, C.; Qi, G.-L.; Li, M.-H.; Zhang, W.; Quan, D.-P.; Wan, J. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers. Int. J. Nanomed. 2012, 7, 1977. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Frank, C.W.; Park, J. Directed Axonal Outgrowth Using a Propagating Gradient of IGF-1. Adv. Mater. 2014, 26, 4936–4940. [Google Scholar] [CrossRef]
- Koser, D.E.; Thompson, A.J.; Foster, S.K.; Dwivedy, A.; Pillai, E.K.; Sheridan, G.K.; Svoboda, H.; Viana, M.; da Costa, L.F.; Guck, J.; et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 2016, 19, 1592–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; MacEwan, M.R.; Liu, W.; Jesuraj, N.; Li, X.; Hunter, D.; Xia, Y. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl. Mater. Interfaces 2014, 6, 9472–9480. [Google Scholar] [CrossRef]
- Dervan, A.; Franchi, A.; Almeida-Gonzalez, F.R.; Dowling, J.K.; Kwakyi, O.B.; McCoy, C.E.; O’Brien, F.J.; Hibbitts, A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021, 13, 2161. [Google Scholar] [CrossRef]
- Thompson, B.C.; Moulton, S.E.; Richardson, R.T.; Wallace, G.G. Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein. Biomaterials 2011, 32, 3822–3831. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Li, M.; Dong, K.; Ren, J.; Qu, X. NIR-Responsive Upconversion Nanoparticles Stimulate Neurite Outgrowth in PC12 Cells. Small 2014, 10, 3655–3661. [Google Scholar] [CrossRef]
- Abidian, M.R.; Corey, J.M.; Kipke, D.R.; Martin, D.C. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment and neurite outgrowth of neural electrodes. Small 2010, 6, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Bai, W.-F.; Xu, W.-C.; Feng, Y.; Huang, H.; Li, X.-P.; Deng, C.-Y.; Zhang, M.-S. Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Cytotherapy 2013, 15, 961–970. [Google Scholar] [CrossRef]
- Nix, W.A.; Hopf, H. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 1983, 272, 21–25. [Google Scholar] [CrossRef]
- Al-Majed, A.A.; Brushart, T.M.; Gordon, T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur. J. Neurosci. 2000, 12, 4381–4390. [Google Scholar]
- Zuo, K.J.; Gordon, T.; Chan, K.M.; Borschel, G.H. Electrical stimulation to enhance peripheral nerve regeneration: Update in molecular investigations and clinical translation. Exp. Neurol. 2020, 332, 113397. [Google Scholar] [CrossRef]
- Ransom, S.C.; Shahrestani, S.S.; Lien, B.V.; Taftrshi, A.R.; Brown, N.J.; Hanst, B.; Lechrich, B.M.; Ransom, R.C.; Sahyouni, R. Translational Approaches to Electrical Stimulation for Peripheral Nerve Regeneration. Neurorehabilit. Neural Repair 2020, 34, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Quan, Q.; Meng, H.; Zheng, Y.; Peng, J.; Hu, Y.; Feng, Z.; Sang, X.; Qiao, K.; He, W. Enhanced Neurite Outgrowth on a Multiblock Conductive Nerve Scaffold with Self-Powered Electrical Stimulation. Adv. Healthc. Mater. 2019, 8, 1900127. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Hsueh, Y.-Y.; Koo, J.; Yang, Q.; Avila, R.; Hu, B.; Xie, Z.; Lee, G.; Ning, Z.; Liu, C. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 2020, 11, 5990. [Google Scholar] [CrossRef] [PubMed]
- Kao, F.C.; Ho, H.H.; Chiu, P.Y.; Hsieh, M.K.; Liao, J.C.; Lai, P.L.; Huang, Y.F.; Dong, M.Y.; Tsai, T.T.; Lin, Z.H. Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Sci. Technol. Adv. Mater. 2022, 23, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, C.; Yang, S.; Sun, P.; Wang, Y.; Guan, Y.; Liu, S.; Cheng, D.; Meng, H.; Wang, Q.; et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 2020, 6, eabc6686. [Google Scholar] [CrossRef]
- Chen, C.; Bai, X.; Ding, Y.; Lee, I.S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater. Res. 2019, 23, 25. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.Q.; Wang, T.; Zhao, B.; Li, J.; Jin, L. Soft graphene nanofibers designed for the acceleration of nerve growth and development. Adv. Mater. 2015, 27, 6462–6468. [Google Scholar] [CrossRef]
- Koppes, A.N.; Seggio, A.M.; Thompson, D.M. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields. J. Neural Eng. 2011, 8, 046023. [Google Scholar] [CrossRef]
- Santiago, Ó.; Navarro, E.; Raso, M.A.; Leo, T.J. Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts. Appl. Energy 2016, 179, 497–522. [Google Scholar] [CrossRef]
- MacEwan, M.R.; Gamble, P.; Stephen, M.; Ray, W.Z. Therapeutic electrical stimulation of injured peripheral nerve tissue using implantable thin-film wireless nerve stimulators. J. Neurosurg. 2018, 130, 486–495. [Google Scholar] [CrossRef]
- Han, F.; Ma, X.; Zhai, Y.; Cui, L.; Yang, L.; Zhu, Z.; Hao, Y.; Cheng, G. Strategy for Designing a Cell Scaffold to Enable Wireless Electrical Stimulation for Enhanced Neuronal Differentiation of Stem Cells. Adv. Healthc. Mater. 2021, 10, e2100027. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Reynoso, A.G.; Nandam, S.; O’Brien, J.M.; Kanneganti, A.; Cogan, S.F.; Freeman, D.K.; Romero-Ortega, M.I. Miniature electroparticle-cuff for wireless peripheral neuromodulation. J. Neural Eng. 2019, 16, 046002. [Google Scholar] [CrossRef] [PubMed]
- Charthad, J.; Chang, T.C.; Liu, Z.; Sawaby, A.; Weber, M.J.; Baker, S.; Gore, F.; Felt, S.A.; Arbabian, A. A mm-Sized Wireless Implantable Device for Electrical Stimulation of Peripheral Nerves. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, K.; Gradinaru, V.; Anikeeva, P.; Grill, W.M.; Pikov, V.; McLaughlin, B.; Pasricha, P.; Weber, D.; Ludwig, K.; Famm, K. Bioelectronic medicines: A research roadmap. Nat. Rev. Drug Discov. 2014, 13, 399–400. [Google Scholar] [CrossRef] [Green Version]
- Cuttaz, E.A.; Chapman, C.A.; Syed, O.; Goding, J.A.; Green, R.A. Stretchable, fully polymeric electrode arrays for peripheral nerve stimulation. Adv. Sci. 2021, 8, 2004033. [Google Scholar] [CrossRef]
- McAvoy, M.; Tsosie, J.; Vyas, K.; Khan, O.; Sadtler, K.; Langer, R.; Anderson, D. Flexible Multielectrode Array for Skeletal Muscle Conditioning, Acetylcholine Receptor Stabilization and Epimysial Recording after Critical Peripheral Nerve Injury. Theranostics 2019, 9, 7099–7107. [Google Scholar] [CrossRef]
- Guo, H.; D’Andrea, D.; Zhao, J.; Xu, Y.; Qiao, Z.; Janes, L.E.; Murthy, N.K.; Li, R.; Xie, Z.; Song, Z. Advanced Materials in Wireless, Implantable Electrical Stimulators that Offer Rapid Rates of Bioresorption for Peripheral Axon Regeneration. Adv. Funct. Mater. 2021, 31, 2102724. [Google Scholar] [CrossRef]
- Mar, F.M.; Bonni, A.; Sousa, M.M. Cell intrinsic control of axon regeneration. EMBO Rep. 2014, 15, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Al-Majed, A.A.; Neumann, C.M.; Brushart, T.M.; Gordon, T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 2000, 20, 2602–2608. [Google Scholar] [CrossRef]
- Koo, J.; MacEwan, M.R.; Kang, S.-K.; Won, S.M.; Stephen, M.; Gamble, P.; Xie, Z.; Yan, Y.; Chen, Y.-Y.; Shin, J. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018, 24, 1830–1836. [Google Scholar] [CrossRef]
- Proto, A.; Penhaker, M.; Conforto, S.; Schmid, M. Nanogenerators for human body energy harvesting. Trends Biotechnol. 2017, 35, 610–624. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhao, C.; Tan, P.; Liu, R.; Chen, X.; Li, Z. Nanogenerator for biomedical applications. Adv. Healthc. Mater. 2018, 7, 1701298. [Google Scholar] [CrossRef]
- Qian, Y.; Zhao, X.; Han, Q.; Chen, W.; Li, H.; Yuan, W. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat. Commun. 2018, 9, 323. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, X.; Yu, X.; Wang, S.; Qiu, J.; Tang, W.; Li, L.; Liu, H.; Wang, Z.L. Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene–poly(3, 4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 2016, 10, 5086–5095. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Abidian, M.R. Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater. 2015, 27, 7620–7637. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Cheng, Y.; Song, J.; Xu, Y.; Yuan, W.E.; Fan, C.; Zheng, X. Mechano-Informed Biomimetic Polymer Scaffolds by Incorporating Self-Powered Zinc Oxide Nanogenerators Enhance Motor Recovery and Neural Function. Small 2020, 16, e2000796. [Google Scholar] [CrossRef]
- Senger, J.; Verge, V.; Macandili, H.; Olson, J.; Chan, K.; Webber, C. Electrical stimulation as a conditioning strategy for promoting and accelerating peripheral nerve regeneration. Exp. Neurol. 2018, 302, 75–84. [Google Scholar] [CrossRef]
- Jin, F.; Li, T.; Yuan, T.; Du, L.; Lai, C.; Wu, Q.; Zhao, Y.; Sun, F.; Gu, L.; Wang, T. Physiologically Self-Regulated, Fully Implantable, Battery-Free System for Peripheral Nerve Restoration. Adv. Mater. 2021, 33, 2104175. [Google Scholar] [CrossRef]
- Eftekhari, B.S.; Eskandari, M.; Janmey, P.A.; Samadikuchaksaraei, A.; Gholipourmalekabadi, M. Surface topography and electrical signaling: Single and synergistic effects on neural differentiation of stem cells. Adv. Funct. Mater. 2020, 30, 1907792. [Google Scholar] [CrossRef]
- Wu, C.; Liu, A.; Chen, S.; Zhang, X.; Chen, L.; Zhu, Y.; Xiao, Z.; Sun, J.; Luo, H.; Fan, H. Cell-laden electroconductive hydrogel simulating nerve matrix to deliver electrical cues and promote neurogenesis. ACS Appl. Mater. Interfaces 2019, 11, 22152–22163. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.; George, M.N.; Park, S.; Gaihre, B.; Terzic, A.; Lu, L. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. J. Biomed. Mater. Res. Part A 2021, 109, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Hwang, T.I.; Lee, J.C.; Park, C.H.; Kim, C.S. Regulating electrical cue and mechanotransduction in topological gradient structure modulated piezoelectric scaffolds to predict neural cell response. Adv. Funct. Mater. 2020, 30, 1907330. [Google Scholar] [CrossRef]
- Xu, J.; Wong, C.-W.; Hsu, S.-H. An injectable, electroconductive hydrogel/scaffold for neural repair and motion sensing. Chem. Mater. 2020, 32, 10407–10422. [Google Scholar] [CrossRef]
- Wu, Y.; Peng, Y.; Bohra, H.; Zou, J.; Ranjan, V.D.; Zhang, Y.; Zhang, Q.; Wang, M. Photoconductive micro/nanoscale interfaces of a semiconducting polymer for wireless stimulation of neuron-like cells. ACS Appl. Mater. Interfaces 2019, 11, 4833–4841. [Google Scholar] [CrossRef]
- Chen, B.; Liu, L.; Liu, K.; Tong, F.; Wang, S.; Fu, D.; Gao, J.; Jiang, J.; Ou, J.; Ye, Y. Photoelectrochemical TiO2-Au-Nanowire-Based Motor for Precise Modulation of Single-Neuron Activities. Adv. Funct. Mater. 2021, 31, 2008667. [Google Scholar] [CrossRef]
- Long, X.; Duan, L.; Weng, W.; Cheng, K.; Wang, D.; Ouyang, H. Light-induced osteogenic differentiation of BMSCs with graphene/TiO2 composite coating on Ti implant. Colloids Surf. B Biointerfaces 2021, 207, 111996. [Google Scholar] [CrossRef]
- Ghezzi, D.; Antognazza, M.R.; Maccarone, R.; Bellani, S.; Lanzarini, E.; Martino, N.; Mete, M.; Pertile, G.; Bisti, S.; Lanzani, G. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 2013, 7, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Pabari, A.; Yang, S.Y.; Seifalian, A.M.; Mosahebi, A. Modern surgical management of peripheral nerve gap. J. Plast. Reconstr. Aesthetic Surg. 2010, 63, 1941–1948. [Google Scholar] [CrossRef]
- Thrivikraman, G.; Boda, S.K.; Basu, B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2018, 150, 60–86. [Google Scholar] [CrossRef]
- Smith, W.J.; Oien, N.P.; Hughes, R.M.; Marvin, C.M.; Rodgers, Z.L.; Lee, J.; Lawrence, D.S. Cell-Mediated Assembly of Phototherapeutics. Angew. Chem. 2014, 126, 11125–11128. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Wu, C.; Qiao, Z.; Pi, J.; Zhang, Y.; Luo, F.; Sun, J.; Wei, D.; Fan, H. A photoelectric effect integrated scaffold for the wireless regulation of nerve cellular behavior. J. Mater. Chem. B 2022, 10, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Silverå Ejneby, M.; Jakešová, M.; Ferrero, J.J.; Migliaccio, L.; Sahalianov, I.; Zhao, Z.; Berggren, M.; Khodagholy, D.; Đerek, V.; Gelinas, J.N. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat. Biomed. Eng. 2021, 139, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef] [PubMed]
- Funnell, J.L.; Balouch, B.; Gilbert, R.J. Magnetic composite biomaterials for neural regeneration. Front. Bioeng. Biotechnol. 2019, 7, 179. [Google Scholar] [CrossRef]
- Suter, D.M.; Miller, K.E. The emerging role of forces in axonal elongation. Prog. Neurobiol. 2011, 94, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Zuidema, J.M.; Provenza, C.; Caliendo, T.; Dutz, S.; Gilbert, R.J. Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers. ACS Chem. Neurosci. 2015, 6, 1781–1788. [Google Scholar] [CrossRef]
- Riggio, C.; Calatayud, M.P.; Giannaccini, M.; Sanz, B.; Torres, T.E.; Fernández-Pacheco, R.; Ripoli, A.; Ibarra, M.R.; Dente, L.; Cuschieri, A. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1549–1558. [Google Scholar] [CrossRef]
- Antman-Passig, M.; Shefi, O. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016, 16, 2567–2573. [Google Scholar] [CrossRef]
- Singh, I.; Lacko, C.S.; Zhao, Z.; Schmidt, C.E.; Rinaldi, C. Preparation and evaluation of microfluidic magnetic alginate microparticles for magnetically templated hydrogels. J. Colloid Interface Sci. 2020, 561, 647–658. [Google Scholar] [CrossRef]
- Tay, A.; Sohrabi, A.; Poole, K.; Seidlits, S.; Di Carlo, D. A 3D Magnetic Hyaluronic Acid Hydrogel for Magnetomechanical Neuromodulation of Primary Dorsal Root Ganglion Neurons. Adv. Mater. 2018, 30, e1800927. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, G.; Hou, Y.; Kuang, G.; Jia, Z.; Li, P.; Fan, Y. Effect of nano-hydroxyapatite-coated magnetic nanoparticles on axonal guidance growth of rat dorsal root ganglion neurons. J. Biomed. Mater. Res. Part A 2015, 103, 3066–3071. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, M.; Choi, J.-H.; Choi, J.-W. Magnetic-assisted cell alignment within a magnetic nanoparticle-decorated reduced graphene oxide/collagen 3D nanocomposite hydrogel. Nanomaterials 2019, 9, 1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasper, M.; Ellenbogen, B.; Hardy, R.; Cydis, M.; Mojica-Santiago, J.; Afridi, A.; Spearman, B.S.; Singh, I.; Kuliasha, C.A.; Atkinson, E.; et al. Development of a magnetically aligned regenerative tissue-engineered electronic nerve interface for peripheral nerve applications. Biomaterials 2021, 279, 121212. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Im, W.-S.; Kang, L.; Lee, S.-T.; Chu, K.; Kim, B.I. The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J. Neurosci. Methods 2008, 174, 91–96. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Z.; Su, Y.; Kang, L.; Geng, D.; Wang, Y.; Luan, F.; Wang, M.; Cui, H. Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF–TrkB signal pathway in cultured hippocampal neurons. Neurochem. Int. 2013, 62, 84–91. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, L.; Liu, L.; Luo, B.; Liang, M.; Sun, Z.; Zhu, S.; Quan, X.; Yang, Y.; Ma, T. Activation of Schwann cells in vitro by magnetic nanocomposites via applied magnetic field. Int. J. Nanomed. 2015, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, F.; Zamanian, A.; Shams, A.; Shamoosi, A.; Aidun, A. Fabrication and characterisation of super-paramagnetic responsive PLGA-gelatine-magnetite scaffolds with the unidirectional porous structure: A physicochemical, mechanical and in vitro evaluation. IET Nanobiotechnology 2019, 13, 860–867. [Google Scholar] [CrossRef]
- Johnson, C.D.; Ganguly, D.; Zuidema, J.M.; Cardinal, T.J.; Ziemba, A.M.; Kearns, K.R.; McCarthy, S.M.; Thompson, D.M.; Ramanath, G.; Borca-Tasciuc, D.A. Injectable, magnetically orienting electrospun fiber conduits for neuron guidance. ACS Appl. Mater. Interfaces 2018, 11, 356–372. [Google Scholar] [CrossRef]
- Funnell, J.L.; Ziemba, A.M.; Nowak, J.F.; Awada, H.; Prokopiou, N.; Samuel, J.; Guari, Y.; Nottelet, B.; Gilbert, R.J. Assessing the combination of magnetic field stimulation, iron oxide nanoparticles, and aligned electrospun fibers for promoting neurite outgrowth from dorsal root ganglia in vitro. Acta Biomater. 2021, 131, 302–313. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, S.; Liu, L.; Ge, J.; Huang, L.; Sun, Z.; Zeng, W.; Huang, J.; Luo, Z. A magnetically responsive nanocomposite scaffold combined with Schwann cells promotes sciatic nerve regeneration upon exposure to magnetic field. Int. J. Nanomed. 2017, 12, 7815. [Google Scholar] [CrossRef] [Green Version]
- Pesirikan, N.; Chang, W.; Zhang, X.; Xu, J.; Yu, X. Characterization of schwann cells in self-assembled sheets from thermoresponsive substrates. Tissue Eng. Part A 2013, 19, 1601–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, D.; Ma, D.; Dong, F.; Zong, C.; Liu, L.; Shen, D.; Yuan, W.; Tong, X.; Chen, H.; Wang, J. Proliferation and multi-differentiation potentials of human mesenchymal stem cells on thermoresponsive PDMS surfaces grafted with PNIPAAm. Biosci. Rep. 2009, 30, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakinoki, S.; Yamaoka, T. Thermoresponsive elastin/laminin mimicking artificial protein for modifying PLLA scaffolds in nerve regeneration. J. Mater. Chem. B 2014, 2, 5061–5067. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Gulfam, M.; Lowe, T.L. Thermoresponsive-co-Biodegradable Linear-Dendritic Nanoparticles for Sustained Release of Nerve Growth Factor to Promote Neurite Outgrowth. Mol. Pharm. 2018, 15, 1467–1475. [Google Scholar] [CrossRef]
- Sun, H.; Yu, D.; Guan, Y.; Du, Z.; Ren, J.; Qu, X. Wireless near-infrared electrical stimulation of neurite outgrowth. Chem. Commun. 2019, 55, 9833–9836. [Google Scholar] [CrossRef]
Authors | Physical Stimulation | Methods | Advantages | Disadvantages |
---|---|---|---|---|
Wang et al. [35] | Electrical stimulation | in vitro/vivo | ①Self-powered ②Biodegradable ③No external equipment | ①Short lifespan |
Sun et al. [32] | Electrical stimulation | in vitro/vivo | ①Self-powered ②Biodegradable ③No external equipment | ①Foreign body reaction |
Mohseni et al. [10] | Electrical stimulation | in vitro | ①Self-powered ②No external equipment | ①Unknown |
MacEwan et al. [40] | Electrical stimulation | in vivo | ①Functional assessment | |
②Wirelessly controlled ③Self-powered | ①Unknown | |||
McAvoy et al. [46] | Electrical stimulation | in vivo | ①Stretchable ②Epimysial recording ἱWirelessly controlled ④Self-powered | ①Nonbiodegradable |
Guo et al. [47] | Electrical stimulation | in vitro/vivo | ①Wirelessly controlled ②Biodegradable ③Self-powered | ①Short lifespan ②Requires external equipment |
Choi et al. [33] | Electrical stimulation | in vitro/vivo | ①Stretchable ②Wirelessly controlled ③Biodegradable ④Long lifespan ⑤Self-powered | ①Requires external equipment |
Cuttaz et al. [45] | Electrical stimulation | in vitro | ①Stretchable ②Self-powered | ①Unknown |
Koo et al. [50] | Electrical stimulation | in vivo | ①Wirelessly controlled ②Biodegradable ③Self-powered | ①Requires external equipment |
Charthad et al. [43] | Electrical stimulation | in vitro | ①Wirelessly controlled ②High current intensity ③Self-powered | ①Requires external equipment ②Nonbiodegradable |
Han et al. [41] | Electrical stimulation | in vitro | ①Wirelessly controlled ②Self-powered | ①Requires external equipment |
Hernandez-Reynoso et al. [42] | Electrical stimulation | in vitro | ①Wirelessly controlled ②Self-powered | ①Requires external equipment ②Nonbiodegradable |
Qian et al. [56] | Mechanical energy | in vivo | ①No external equipment ②Self-powered ③Long lifespan | ①Unknown |
Jin et al. [58] | Mechanical energy | in vivo | ①Self-regulated E.S. ②Self-powered ③Long lifespan | ①Unknown |
Guo et al. [54] | Mechanical energy | in vitro/vivo | ①Self-powered ②Biodegradable | ①Unknown |
Ejneby et al. [72] | Light stimulation | in vivo | ①Long lifespan ②Stretchable ③Wirelessly controlled ④Self-powered | ①Requires external equipment |
Wu et al. [64] | Light stimulation | in vitro | ①Wirelessly controlled ②Self-powered | ①Unknown |
Sun et al. [95] | Light stimulation | in vitro | ①Wirelessly controlled ②Self-powered | ①Requires external equipment |
Zhang et al. [12] | Light stimulation | in vitro | ①Wirelessly controlled ②Self-powered | ①Unknown |
Tang et al. [71] | Light stimulation | in vitro | ①Wirelessly controlled ②Self-powered | ①Requires external equipment |
Tay et al. [80] | Magnetic composite | in vitro | ①Magnetomechanical neuromodulation | ①Unknown |
Liu et al. [81] | Magnetic composite | in vitro | ①Directional guidance | ①Unknown |
Zuidema et al. [76] | Magnetic composite | in vitro | ①Directional guidance | ①Unknown |
Santhosh et al. [82] | Magnetic composite | in vitro | ①Directional guidance ②Promoting neuron differentiation | ①Unknown |
Glaser et al. [13] | Magnetic composite | in vitro | ①Facilitates synapse formation | ①Unknown |
Antman-Passig et al. [78] | Magnetic composite | in vitro | ①Directional guidance | ①Unknown |
Singh et al. [79] | Magnetic composite | in vitro | ①Directional guidance ②Promoting neuron differentiation | ①Unknown |
Kasper et al. [83] | Magnetic composite | in vitro/vivo | ①Directional guidance | ①Nonbiodegradable |
Funnell et al. [89] | Magnetic fields | in vitro | ①Wirelessly controlled | ①Requires external equipment |
Johnson et al. [88] | Magnetic fields | in vitro | ①Wirelessly controlled | ①Requires external equipment |
Liu et al. [90] | Magnetic fields | in vitro/vivo | ①Wirelessly controlled ②Directional guidance | ①Requires external equipment |
Liu et al. [86] | Magnetic fields | in vitro | ①Wirelessly controlled | ①Requires external equipment |
Ghorbani et al. [87] | Magnetic fields | in vitro | ①Wirelessly controlled | ①Requires external equipment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Z.; Yang, Y.; Deng, J.; Saif Ur Rahman, M.; Sun, C.; Xu, S. Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair. Bioengineering 2022, 9, 292. https://doi.org/10.3390/bioengineering9070292
Zeng Z, Yang Y, Deng J, Saif Ur Rahman M, Sun C, Xu S. Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair. Bioengineering. 2022; 9(7):292. https://doi.org/10.3390/bioengineering9070292
Chicago/Turabian StyleZeng, Zhipeng, Yajing Yang, Junyong Deng, Muhammad Saif Ur Rahman, Chengmei Sun, and Shanshan Xu. 2022. "Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair" Bioengineering 9, no. 7: 292. https://doi.org/10.3390/bioengineering9070292
APA StyleZeng, Z., Yang, Y., Deng, J., Saif Ur Rahman, M., Sun, C., & Xu, S. (2022). Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair. Bioengineering, 9(7), 292. https://doi.org/10.3390/bioengineering9070292