Identification of Radiation-Induced miRNA Biomarkers Using the CGL1 Cell Model System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Irradiation
2.3. Total RNA Extraction
2.4. cDNA Synthesis
2.5. miRNAome Profiling via Next-Generation Sequencing
2.6. RT-qPCR Primer Design and Validation
2.7. RT-qPCR
2.8. Statistical Analysis
3. Results
3.1. Identification of Dysregulated miRNA 6 h Post-Irradiation
3.2. Validation of the miRNAome Results Via RT-qPCR Analysis
3.3. mRNA Gene Targets of miR-1228-3p and miR-758-5p Showed Reciprocal Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
miRNA | miRNA forward Primer | Tm |
Oligo-dT adapter | GCATAGACCTGAATGGCGGTAAGGGTGTGGTAGGCGAGACATTTTTTTTTTTTTTTTTTTT | 65 |
universal reverse | GCATAGACCTGAATGGCGGTA | 60 |
SNORD48 | TGATGACCCCAGGTAACTCTGA | 60 |
miR-16-5p | ATTGAAACCTCTAAGAGTGGA | 60 |
U6 | GTG CTC GCT TCG GCA GCA CAT AT | 60 |
miR-423-3p | AGCTCGGTCTGAGGCCC | 60 |
miR-191-5p | CAACGGAATCCCAAAAGCAGC | 60 |
miR-6134 | UGA GGU GGU AGG AUG UAG A | 60 |
miR-6082 | GAATACGTCTGGTTGATCCAAAA | 57 |
miR-208a-5p | AGCTTTTGGCCCGGGTTATAC | 61 |
miR-7112-3p | CATCACAGCCTTTGGCCCTA | 60 |
miR-6762-3p | UGGCUGCUUCCCUUGGUCUCCAG | 60 |
miR-6882-3p | CTCTCCTCTTGCCTGCAGAA | 60 |
miR-200a-5p | TCTTACCGGACAGTGCTGGA | 61 |
miR-604 | GCTGCGGAATTCAGGACAAAA | 60 |
miR-2355-5p | TCCCCAGATACAATGGACAAAA | 57 |
miR-4692 | UCAGGCAGUGUGGGUAUCAGAU | 60 |
miR-378e | ACTGGACTTGGAGTCAGGAAA | 59 |
miR-4535 | GGACCTGGCTGGGACAAAA | 60 |
miR-1915-3p | CGACGCGGCGGGAAA | 60 |
miR-1291 | CCTGACTGAAGACCAGCAGTAAA | 60 |
miR-19a-5p | AGTTTTGCATAGTTGCACTACAAA | 58 |
miR-5008-3p | TCCCAGGGCCTCGCAAA | 61 |
miR-4417 | TGGGCTTCCCGGAGGG | 60 |
miR-1537-3p | AAAACCGUCUAGUUACAGUUGU | 60 |
miR-3168 | GAGUUCUACAGUCAGAC | 60 |
miR-5186 | AGAGAUUGGUAGAAAUCAGGU | 60 |
miR-4680-5p | AGAACTCTTGCAGTCTTAGATGT | 57 |
miR-554 | AGTCCTGACTCAGCCAGTAAAAA | 60 |
miR-6845-3p | CCUCUCCUCCCUGUGCCCCAG | 60 |
miR-6125 | GCGGAGCGGCGGAAAA | 61 |
miR-3616-3p | CGAGGGCATTTCATGATGCAG | 60 |
miR-615-3p | UCCGAGCCUGGGUCUCCCUCUU | 60 |
miR-3152-3p | UGUGUUAGAAUAGGGGCAAUAA | 60 |
miR-4693-3p | UGAGAGUGGAAUUCACAGUAUUU | 60 |
miR-4320 | GGGAUUCUGUAGCUUCCU | 60 |
miR-6783-5p | GGAAAAGTCCTGATCCGGAAAAA | 59 |
miR-33b-5p | GUGCAUUGCUGUUGCAUUGC | 60 |
miR-4662a-3p | AAAGAUAGACAAUUGGCUAAAU | 60 |
miR-8082 | GATGGAGCTGGGAATACTCTGAA | 60 |
miR-4758-5p | GCCGGTGGGGCTGAAAA | 60 |
miR-8071 | GGACTGGAGTGGGTGGAAAAA | 60 |
miR-4477b | AUUAAGGACAUUUGUGAUUGAU | 60 |
miR-34a-5p | TGGCAGTGTCTTAGCTGGTTG | 60 |
miR-182-5p | TTTGGCAATGGTAGAACTCACACT | 60 |
miR-525-3p | AAGGCGCTTCCCTTTAGAGC | 60 |
hsa-miR-492 | AGGACCTGCGGGACAAGA | 60 |
hsa-miR-4535 | GTGGACCTGGCTGGGAC | 60 |
miR-877-5p | GTAGAGGAGATGGCGCAGG | 60 |
miR-133b | TTTGGTCCCCTTCAACCAGC | 60 |
miR-205-3p | GATTTCAGTGGAGTGAAGTTC | 60 |
miR-1 | ACATACTTCTTTATATGCCCAT | 60 |
miR-19b | AGTTTTGCAGGTTTGCATCCAG | 60 |
miR-93-5p | AAGTGCTGTTCGTGCAGGTAG | 60 |
miR-132-5p | ACCGTGGCTTTCGATTGTTAC | 59 |
miR-671-5p | CTGGAGGGGCTGGAGAAAAA | 60 |
miR-628-3p | TCTAGTAAGAGTGGCAGTCGAA | 58 |
miR-125b-1-3p | ACGGGTTAGGCTCTTGGGA | 60 |
miR-6797-5p | GAAGGGGCTGAGAACAGGAAA | 60 |
miR-6739-5p | TGGGAAAGAGAAAGAACAAGTAAAA | 57 |
miR-6823-3p | GCCTCTCCTTCCCTCCAGAAA | 61 |
miR-449c-3p | GCTAGTTGCACTCCTCTCTGT | 59 |
miR-328-3p | CCTCTCTGCCCTTCCGTAAA | 59 |
miR-103a-3p | CAGCATTGTACAGGGCTATGAA | 58 |
miR-4721 | CTCCAGGTGACGGTGGAAAAA | 60 |
miR-589-3p | CAGAACAAATGCCGGTTCCC | 60 |
miR-769-3p | GGATCTCCGGGGTCTTGGT | 61 |
miR-27a-3p | CACAGTGGCTAAGTTCCGCA | 61 |
let-7g-5p | TGAGGTAGTAGTTTGTACAGTT | 60 |
let-7a-5p | TGAGGTAGTAGGTTGTATAGTT | 60 |
miR-296-5p | AGGGCCCCCCCTCAATCCTGT | 60 |
miR-4443 | TTGGAGGCGTGGGTTTT | 60 |
miR-3120-3p | ACAGCAAGTGTAGACAGGCAA | 60 |
miR-423-3p | AGCTCGGTCTGAGGCCCCTCAGT | 60 |
miR-362-5p | CCTTGGAACCTAGGTGTGAGT | 60 |
miR-148b-5p | AGTTCTGTTATACACTCAGGCAA | 60 |
miR-495-5p | GAAGTTGCCCATGTTATTTTCG | 60 |
miR-6835-5p | AGGGGGUAGAAAGUGGCUGAAG | 60 |
miR-4668-5p | AGGGAAAAAAAAAAGGAUUUGUC | 60 |
miR-491-5p | GTGGGGAACCCTTCCATGAG | 60 |
miR-4271 | GGGGGAAGAAAAGGTGGGG | 60 |
miR-665 | GGAGGCTGAGGCCCCTAAA | 60 |
miR-193a-5p | TCTTTGCGGGCGAGATGAAA | 60 |
miR-22-3p | AGCTGCCAGTTGAAGAACTGTA | 60 |
miR-1228-3p | CACACCTGCCTCGCCC | 60 |
miR-181a-2-3p | CACTGACCGTTGACTGTACCA | 60 |
miR-100-5p | ACCCGTAGATCCGAACTTGTG | 60 |
miR-143-3p | TGAGATGAAGCACTGTAGCTC | 60 |
miR-10b-5p | ACCCTGTAGAACCGAATTTGTGA | 60 |
mRNA Primer | Sequence (5′→3′) | Length | Product (bp) | Tm |
PPP2R2D_F_Hu_1 | GTCAAGGACAGGGCAGACTTC | 21 | 136 | 60 |
PPP2R2D_R_Hu_2 | AGCTGTTCTCAGCTGTTCTATCA | 23 | ||
UBE2D2_F_Hu_1 | CGTTTTGCCCGATCCACAAG | 20 | 145 | 60 |
UBE2D2_R_Hu_1 | GTCCCGTGCCAGATCATTCA | 20 | ||
IRX2_F_Hu_1 | CACCAAGATGACCCTCACCC | 20 | 119 | 60 |
IRX2_R_Hu_1 | CGTCCTCGTCCTCATCTTCG | 20 | ||
ZNF554_F_Hu_1 | CTGCAGTACTGTGCTGATCCA | 21 | 137 | 60 |
ZNF554_R_Hu_1 | ACGTCTCTGTCCAGCCTTTG | 20 | ||
NFIA_F_Hu_1 | TGCCGAATCGATTGCAACTTC | 21 | 83 | 60 |
NFIA_R_Hu_1 | GGCTGGTTCTCAGATTCGCT | 20 | ||
SOCS6_F_Hu_1 | GGCCGCCTCCGGAAAAT | 17 | 81 | 60 |
SOCS6_R_Hu_1 | ACATCTGGAGAGGCTGCAAG | 20 | ||
RABGEF1_F_Hu_1 | GCGGTGACCTGGACCAC | 17 | 82 | 60 |
RABGEF1_R_Hu_1 | TTCCCAAAGTGATCTCGCCC | 20 | ||
TJP1_F_Hu_1 | TGGTCTGTTTGCCCACTGTT | 20 | 150 | 60 |
TJP1_R_Hu_1 | TCTGTACATGCTGGCCAAGG | 20 | ||
TOR1AIP1_F_Hu_1 | AAGTCCTCTAGTGCAACGCC | 20 | 82 | 60 |
TOR1AIP1_R_Hu_1 | ATCTTGGCTTGAGGCACTCC | 20 | ||
ZBTB44_F_Hu_1 | ACGAGTGCAAAACATGTGGC | 20 | 72 | 60 |
ZBTB44_R_Hu_1 | GGTTCAGACTCCTCAGGTGC | 20 | ||
Moap1_F_Hu_1 | AGGCCCTTCTCCAGGCAATA | 20 | 70 | 60 |
Moap1_R_Hu_1 | TGCCATATCCCTTCGTGGTT | 20 | ||
Csnk2a1_F_Hu_1 | ATCGCCGCCATATTGTCTGT | 20 | 109 | 60 |
Csnk2a1_R_Hu_1 | CAGCTGGGGGTAAGACCTTG | 20 | ||
PLAC8_F_Hu_1 | CAGAAGGAGAGCCATGCGTA | 20 | 76 | 60 |
PLAC8_R_Hu_1 | AACCCACATGTTCTGAGAGGC | 21 | ||
SLC20A2_F_Hu_1 | TCTCGGCCTAATGTGGTAGGA | 21 | 138 | 60 |
SLC20A2_R_Hu_1 | CTCCCGATCTGGGAAAGCTG | 20 | ||
ID2_F_Hu_1 | ATCCTGTCCTTGCAGGCTTC | 20 | 81 | 60 |
ID2_R_Hu_1 | ACCGCTTATTCAGCCACACA | 20 | ||
NUFIP2_F_Hu_1 | ATGTCCATTTTGCTTGCCTGG | 21 | 149 | 60 |
NUFIP2_R_Hu_1 | CCCAATTCAGGTGGGGTCTG | 20 | ||
PTP4A1_F_Hu_1 | CTGTGAGCTCTTAAGACTTGCTT | 23 | 73 | 58 |
PTP4A1_R_Hu_1 | CACTGCTGCTGGGAATTATGA | 21 | ||
TOX4_F_Hu_1 | CTGACGATCACAGGGCCTTC | 20 | 142 | 60 |
TOX4_R_Hu_1 | GGCCAACCACATCTGAGACA | 20 | ||
SETD5_F_Hu_1 | CTGTGACAAGTGCAGGGGAA | 20 | 95 | 60 |
SETD5_R_Hu_1 | CTGTTGCACTGCTATCCCCA | 20 | ||
PHACTR1_F_Hu_1 | TGTTCATTTGTGCTTGCGGG | 20 | 74 | 60 |
PHACTR1_R_Hu_1 | CCCTTTCAACAGGACACGGT | 20 | ||
RTKN_F_Hu_1 | CGAGTGAAGTGTGACTCCGT | 20 | 90 | 60 |
RTKN_R_Hu_1 | TTCCAGACAGGAAACCAGCC | 20 | ||
DSG3_F_Hu_1 | GACTCCTTCGGAAAGCAGCA | 20 | 138 | 60 |
DSG3_R_Hu_1 | GGGGAAGAGCCCCATCATTG | 20 | ||
CSNK1A1L_F_Hu_1 | CCCTGGGGTTTGCAAATTGT | 20 | 138 | 60 |
CSNK1A1L_R_Hu_1 | TCTTCACAGGTAAGCAGGCG | 20 | ||
CD36_F_Hu_1 | CCACACACTGGGATCTGACA | 20 | 132 | 60 |
CD36_R_Hu_1 | TCTGCAGGAAAGTCCTACACTG | 22 | ||
ZBTB20_F_Hu_1 | TCCTGACAAATGCTAGAACGGA | 22 | 86 | 60 |
ZBTB20_R_Hu_1 | CCACCCGGCTGAGTAATCTC | 20 | ||
CBX5_F_Hu_1 | GGGAGGCCCCTCCTGTTAG | 19 | 72 | 60 |
CBX5_R_Hu_1 | AAGACTAAGGCCACCAGGTC | 20 | ||
CTTN_F_Hu_1 | GACAAATGTGCCCTTGGCTG | 20 | 111 | 60 |
CTTN_R_Hu_1 | CTGCCTCTCCGACTGAACAC | 20 | ||
NCOA2_F_Hu_1 | CCCTCCCTCTACCACAGTCA | 20 | 87 | 60 |
NCOA2_R_Hu_1 | CAGAGTCCTCTGAGAAGGCG | 20 | ||
ZNF281_F_Hu_1 | ATGACCACCATGGCACTGAG | 20 | 70 | 60 |
ZNF281_R_Hu_1 | TCTGGCTTTGGCCTTTTTGC | 20 | ||
TNPO1_F_Hu_1 | TGCCCGGCCGTTTGAAG | 17 | 121 | 60 |
TNPO1_R_Hu_1 | GCTCGTCAGGTTTCCACTCA | 20 | ||
HNRNPD_F_Hu_1 | GCCATTCAAACTCCTCCCCA | 20 | 89 | 60 |
HNRNPD_R_Hu_1 | GTCCCAGCTAAGGCCTCCTA | 20 | ||
SBNO1_F_Hu_1 | CAATGCCTACCCCGTCAGTT | 20 | 72 | 60 |
SBNO1_R_Hu_1 | CTGCTTCGGTCTCCAAACCT | 20 | ||
DIPK2A_F_Hu_1 | GTGGGTGTGAGACATCCTAGC | 21 | 74 | 60 |
DIPK2A_R_Hu_1 | CACGACAAGTGGGGTCTGC | 19 | ||
MCUB_F_Hu_1 | GGAGGATGCTCCAGAGGGG | 19 | 119 | 60 |
MCUB_R_Hu_1 | CTTCACACGCAAAACCTGGG | 20 | ||
NOL4L_F_Hu_1 | GCCAAAACCAAGACGGTGAC | 20 | 124 | 6 |
NOL4L_R_Hu_1 | CCCAGAACTGGAACTTGCCT | 20 | ||
CAMTA1_F_Hu_1 | GAAAACAAGCCGGAAGAGCG | 20 | 81 | 60 |
CAMTA1_R_Hu_1 | ATAGGTGGCACGGTGTTGAG | 202 | ||
cdk6_F_Hu_1 | CTGCAGGGAAAGAAAAGTGCAA | 22 | 95 | 60 |
cdk6_R_Hu_1 | CTCCTCGAAGCGAAGTCCTC | 20 | ||
MTA3_F_Hu_1 | GTCCTCCCCCTCCGCTC | 17 | 131 | 60 |
MTA3_R_Hu_1 | CTGGGGACTGCCCAATTCAT | 20 | ||
TRIM50_F_Hu_1 | GGCATCTAACTGGAGCGACA | 20 | 85 | 60 |
TRIM50_R_Hu_1 | CCAAGCCATCCACACTCACT | 20 | ||
SGIP1_F_Hu_1 | TGGAATTCCTTCAGGCGGAC | 20 | 73 | 60 |
SGIP1_R_Hu_1 | ACGATTCCAGGTCCCAGCTA | 20 | ||
PLAGL2_F_Hu_1 | ACAATGCACCGCACAATGG | 19 | 138 | 60 |
PLAGL2_R_Hu_1 | CCTCCAACGCAGCTTTCAGA | 20 | ||
PRKACB_F_Hu_1 | GCTAGCAGTAAGAGCTGGTGT | 21 | 75 | 60 |
PRKACB_R_Hu_1 | TGAACCTGGCAAGGAGCAAA | 20 | ||
LUC7L3_F_Hu_1 | GGTCAATGGGACCAGTGAAGA | 21 | 147 | 60 |
LUC7L3_R_Hu_1 | CGCTGCACTGTCAAACAGTAA | 21 | ||
EDEM1_F_Hu_1 | ACAACTACATGGCTCACGCC | 20 | 91 | 60 |
EDEM1_R_Hu_1 | AGATTTGAAGGGTCCCCGC | 19 | ||
CYP1B1_F_Hu_1 | GCTGTGAGGAAACCTCGACT | 20 | 121 | 60 |
CYP1B1_R_Hu_1 | GAGTCTCTTGGCGTCGTCAG | 20 | ||
RMI1_F_Hu_1 | GCGGTTCCTGTCCTTACAGT | 19 | 86 | 60 |
RMI1_R_Hu_1 | ACTGCTCAGAAATGGCCCTG | 20 | ||
MRPL35_F_Hu_1 | TGCAAAGAAATTGGGTCTGTGT | 22 | 141 | 60 |
MRPL35_R_Hu_1 | TGAAGGGCCACCCTTAAACC | 20 | ||
PIK3C2B_F_Hu_1 | CCACCATAGAGATGGCGTCC | 20 | 134 | 60 |
PIK3C2B_R_Hu_1 | TGGGCGCCTGATTCTTCTAC | 20 | ||
Cyld_F_Hu_1 | CCCCCTTTCTAGGGTGAGGA | 20 | 98 | 60 |
Cyld_R_Hu_1 | TTCAGCAACGTGGTGTCCAT | 20 | ||
GAS7_F_Hu_1 | AGCCAACGAGTCTCTGCTTC | 20 | 79 | 60 |
GAS7_R_Hu_1 | GCCGTCTCTGGGGTGC | 16 | ||
LRRC27_F_Hu_1 | CTCGCCAGCGCTTCAGT | 17 | 102 | 60 |
LRRC27_R_Hu_1 | TAGGAGCTGCTTCCCTCCAT | 20 | ||
FMNL3_F_Hu_1 | GAGTCGGGACTCGGGGAG | 18 | 130 | 60 |
FMNL3_R_Hu_1 | CTCTCCAGGTTGCCCATCG | 9 | ||
TTC21B_F_Hu_1 | TGCGTCTTCCTTTAGGCTGC | 20 | 87 | 60 |
TTC21B_R_Hu_1 | TCTTCAATTCCTGCGAGTCCA | 21 | ||
CASTOR3_F_Hu_1 | AGCTTTTCCAGACCAGGCAT | 20 | 76 | 60 |
CASTOR3_R_Hu_1 | CTAGGGGCTGATGTGCCAAA | 20 | ||
XPO7_F_Hu_1 | GCAATCACAGACGTCACAAGG | 21 | 126 | 60 |
XPO7_R_Hu_1 | TGCTTCAATGAGGAAGGCTGT | 21 | ||
PPM1A_F_Hu_1 | CTGCTCCGGACCTAGAGGAT | 20 | 124 | 60 |
PPM1A_R_Hu_1 | CAGCCTTGCATGCTGCTTAG | 20 | ||
DNM1L_F_Hu_1 | TCACCCGGAGACCTCTCATT | 20 | 91 | 60 |
DNM1L_R_Hu_1 | TCTGCTTCCACCCCATTTTCT | 21 | ||
KDM3B_F_Hu_1 | CTGCGCACTCGAGCCTG | 17 | 114 | 60 |
KDM3B_R_Hu_1 | CCAGGAGTGTTGCTTCCAGT | 20 | ||
RBP1_F_Hu_1 | CCGCTACAATGGATCCTCCC | 20 | 96 | 60 |
RBP1_R_Hu_1 | GGAAATGAGCGCCCTCCG | 18 | ||
FAAP20_F_Hu_1 | GGGTCCCCTTCTCCACTGTA | 20 | 78 | 60 |
FAAP20_R_Hu_1 | CTGGCAGGAGCTGGAGATG | 20 | ||
PTEN_F_Hu_1 | CTGCAGAAAGACTTGAAGGCG | 21 | 70 | 58 |
PTEN_R_Hu_1 | TGCTTTGAATCCAAAAACCTTACT | 24 | ||
GOLPH3_F_Hu_1 | TGTTTCCTCATGACTGCCCC | 20 | 80 | 60 |
GOLPH3_R_Hu_1 | CGATCCGGGTTTCCGTGTTA | 20 | ||
ADAMTS3_F_Hu_1 | CAAGCATTCTCCGCGCTAAC | 20 | 147 | 60 |
ADAMTS3_R_Hu_1 | GGAGCGAGAAGGTGCTGTAA | 20 | ||
KCTD9_F_Hu_1 | CCCAAGAACGGAAAGGTGGT | 20 | 88 | 60 |
KCTD9_R_Hu_1 | TGGTGGCTTTTATGCCGAGT | 20 | ||
FBN2_F_Hu_1 | GTTTTCTGCCAGTCATCCAGC | 21 | 142 | 60 |
FBN2_R_Hu_1 | AGCTGCTTTGGCTTCGATCT | 20 | ||
SEC63_F_Hu_1 | GGACATAAATAGGGCAATCCACT | 23 | 119 | 58 |
SEC63_R_Hu_1 | CCCTCTCACTCCTGGGTTTT | 20 | ||
ZFX_F_Hu_1 | ACCCTAGTGGAGTGTTGGCT | 20 | 123 | 60 |
ZFX_R_Hu_1 | TGAACCACTGAAGGGAGTCG | 20 | ||
DAPK1_F_Hu_1 | TTCGGAGTGTGAGGAGGACA | 20 | 149 | 60 |
DAPK1_R_Hu_1 | GGGAACACAGCTAGGGAGTG | 20 | ||
SMIM13_F_Hu_1 | AGTGGGTGAAAATTCCCGCT | 20 | 94 | 60 |
SMIM13_R_Hu_1 | CCCTGGTAAACACTCAGCCC | 20 | ||
NAP1L5_F_Hu_1 | CTCCTAGACCTCTGCGGCTT | 20 | 147 | 62 |
NAP1L5_R_Hu_1 | GCTGTCACAGTCTCCACCCT | 20 | ||
CSDE1_F_Hu_1 | CGCTGAGCTGTTGGGTATGA | 20 | 78 | 60 |
CSDE1_R_Hu_1 | ACGAGGTTTGTTCCTTGCCT | 20 | ||
set_F_Hu_1 | AGTCTCAGTGTTCAGCCTGC | 20 | 78 | 60 |
set_R_Hu_1 | GGCCATGCTGTTAGGGAAGT | 20 | ||
OLFM4_F_Hu_1 | AAATGCTCGAGAGTTGCGGA | 20 | 133 | 60 |
OLFM4_R_Hu_1 | CACAGCAATCGTGTTGGTGG | 20 | ||
USP6NL_F_Hu_1 | TGGAAGGGAAACAATGGGGC | 20 | 144 | 60 |
USP6NL_R_Hu_1 | CATGTCCTCAGTACGGTCCC | 20 | ||
AVPR1A_F_Hu_1 | TGGGCGCCTTTCTTCATCAT | 20 | 75 | 60 |
AVPR1A_R_Hu_1 | AGGGTTTTCCGATTCGGTCC | 20 | ||
HSD11B1_F_Hu_1 | TGCCTGCTTAGGAGGTTGTAG | 21 | 90 | 60 |
HSD11B1_R_Hu_1 | AAAAGCCATCCGACAGGGAG | 20 | ||
GALNT15_F_Hu_1 | ACCCAGATGGCTTATTGCCT | 20 | 126 | 60 |
GALNT15_R_Hu_1 | TACCAGCCAGGGACTGAGTT | 20 | ||
GBP5_F_Hu_1 | AGTTCTGCTTGACACCGAGG | 20 | 149 | 60 |
GBP5_R_Hu_1 | GCAGTAGGTCGATAGCACCC | 20 | ||
CD200_F_Hu_1 | TCCAGGAGCAAGGATGGAGA | 20 | 76 | 60 |
CD200_R_Hu_1 | GACCCAAACCAGGCTGTAGG | 20 | ||
PPM1A_F_Hu_1 | CTGCTCCGGACCTAGAGGAT | 20 | 124 | 60 |
PPM1A_R_Hu_1 | CAGCCTTGCATGCTGCTTAG | 20 | ||
NPHP1_F_Hu_1 | CCCACTTCTCCACTCCACAC | 20 | 76 | 60 |
NPHP1_R_Hu_1 | AACTTTCCACCGTGCAGTCT | 20 | ||
Rock_F_Hu_1 | CCCTTTGCTTTCGCCTTTCC | 20 | 150 | 60 |
Rock1_R_Hu_1 | GAGGTGCTTCAGTCTAGCGG | 20 | ||
mmp14_F_Hu_1 | GGGTCTTCGTTGCTCAGTCA | 20 | 145 | 60 |
mmp14_R_Hu_1 | AACATTCGAGAGGCACAGGG | 20 | ||
kcne2_F_Hu_1 | ACGGGAACACTCCAATGACC | 20 | 105 | 60 |
kcne2_R_Hu_1 | TGGATGGTGGCCTTCGATTC | 20 | ||
WWP1_F_Hu_1 | TGCTACTTTTAGCAAACTGGGC | 22 | 128 | 58 |
WWP1_R_Hu_1 | TTAAGAAGTCAGTTCCATGGCT | 22 | ||
cdk16_F_Hu_1 | TTGGGCCGTTGGCTGTTC | 18 | 70 | 60 |
cdk16_R_Hu_1 | GGCTCGCGGCACAGAG | 16 | ||
SEMA6A_F_Hu_1 | CTTACAACACAGTGTATGGGCA | 22 | 81 | 60 |
SEMA6A_R_Hu_1 | CATACCCCTCTTGAGCCGTC | 20 | ||
CHRNB2_F_Hu_1 | GAAAGTTCGGCTCCCTTCCA | 20 | 115 | 60 |
CHRNB2_R_Hu_1 | GCCATCATAGGAGACCACGG | 20 | ||
POGK_F_Hu_1 | TGGGAAGTTTTGACGGAGCA | 20 | 113 | 60 |
POGK_R_Hu_1 | CGGGTGATCATGTCTGGCTT | 20 | ||
KSR2_F_Hu_1 | AAAGCACTCCAAACCGTGGA | 20 | 133 | 60 |
KSR2_R_Hu_1 | ACTCTTTACACACCGGCTCC | 20 | ||
SAMD4B_F_Hu_1 | CCTTCCTACTGGGCAGATGAG | 21 | 101 | 60 |
SAMD4B_R_Hu_1 | CCAGAAGTGGACATGGGGTA | 20 | ||
OPTC_F_Hu_1 | TGTCTTCAACCTGGCCTGTC | 20 | 70 | 60 |
OPTC_R_Hu_1 | AGTACACAAGCCCATCCAGG | 20 | ||
CPNE5_F_Hu_1 | TGTGTCCAACGGTGGTGTC | 19 | 113 | 60 |
CPNE5_R_Hu_1 | CCAGCTTGTTGGCACAGAAC | 20 | ||
FOXP4_F_Hu_1 | AGCTGATTTGCTGCAGGGAT | 20 | 100 | 60 |
FOXP4_R_Hu_1 | GAAGGACACCTGGGAATGGG | 20 | ||
MSN_F_Hu_1 | GCCCAAAACGATCAGTGTGC | 20 | 88 | 60 |
MSN_R_Hu_1 | AAATAGCTGCTTCCCGGTGG | 20 | ||
IGF2_F_Hu_1 | TCGCCGAACCAAAGTGGATTA | 21 | 148 | 60 |
IGF2_R_Hu_1 | GTGGGAGAGACAGAGTGAACG | 21 | ||
Smad3_F_Hu_1 | CCGGGGGTTGGACTTTCCT | 19 | 70 | 60 |
Smad3_R_Hu_1 | CAGAAGTTTGGGTTTCCGCA | 20 | ||
Bcl2l1_F_Hu_1 | AGGCGGATTTGAATCTCTTTCTCT | 24 | 129 | 60 |
Bcl2l1_R_Hu_1 | GGGCTCAACCAGTCCATTGT | 20 | ||
Egfr_F_Hu_1 | GACAGGCCACCTCGTCG | 17 | 106 | 60 |
Egfr_R_Hu_1 | CCGGCTCTCCCGATCAATAC | 20 | ||
Notch3_F_Hu_1 | TCTAGGTAAGGTGGGGAGTGG | 21 | 70 | 60 |
Notch3_R_Hu_1 | TGGGAGCTCAAGTTAGCCCT | 20 | ||
Mmp9 _F_Hu_1 | GTACTCGACCTGTACCAGCG | 20 | 92 | 60 |
Mmp9 _R_Hu_1 | AGAAGCCCCACTTCTTGTCG | 20 | ||
Igf2bp1_F_Hu_1 | AGCTCCTTTATGCAGGCTCC | 20 | 111 | 60 |
lgf2bp1_R_Hu_1 | CCGGGAGAGCTGTTTGATGT | 20 | ||
Wnt3a_F_Hu_1 | CTCCTCCCTGGAGCTAGTGT | 20 | 138 | 60 |
Wnt3a_R_Hu_1 | AATCTGTAGCCCCGCCTCTG | 20 | ||
capns1_F_Hu_1 | CGGACGCTGCGGGAG | 15 | 72 | 60 |
capns1_R_Hu_1 | TCACTGCGCCGCACAC | 16 |
References
- Rothkamm, K.; Beinke, C.; Romm, H.; Badie, C.; Balagurunathan, Y.; Barnard, S.; Bernard, N.; Boulay-Greene, H.; Brengues, M.; de Amicis, A. Comparison of established and emerging biodosimetry assays. Radiat. Res. 2013, 180, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Jin, Y.W.; Wilkins, R.C.; Jang, S. Validation of the dicentric chromosome assay for radiation biological dosimetry in South Korea. J. Radiat. Res. 2019, 60, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Vral, A.; Fenech, M.; Thierens, H. The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure. Mutagenesis 2011, 26, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.M.; Prasanna, P.G.; Grace, M.B.; Wathen, L.K.; Wallace, R.L.; Koerner, J.F.; Coleman, C.N. Assessment of biodosimetry methods for a mass-casualty radiological incident: Medical response and management considerations. Health Phys. 2013, 105, 540–554. [Google Scholar] [CrossRef] [Green Version]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Li, J.R.; Tong, C.Y.; Sung, T.J.; Kang, T.Y.; Zhou, X.J.; Liu, C.C. CMEP: A database for circulating microRNA expression profiling. Bioinformatics 2019, 35, 3127–3132. [Google Scholar] [CrossRef]
- Enelund, L.; Nielsen, L.N.; Cirera, S. Evaluation of microRNA Stability in Plasma and Serum from Healthy Dogs. Microrna 2017, 6, 42–52. [Google Scholar] [CrossRef]
- Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kääb, S.; Wakili, R.; et al. Stability of Circulating Blood-Based MicroRNAs—Pre-Analytic Methodological Considerations. PLoS ONE 2017, 12, e0167969. [Google Scholar] [CrossRef]
- Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Michlewski, G.; Cáceres, J.F. Post-transcriptional control of miRNA biogenesis. RNA 2019, 25, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Khvorova, A.; Reynolds, A.; Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003, 115, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.Y.; Yan, Z.; Xu, Y.; Hu, H.; Menzel, C.; Zhou, Y.H.; Chen, W.; Khaitovich, P. Sequence features associated with microRNA strand selection in humans and flies. BMC Genom. 2009, 10, 413. [Google Scholar] [CrossRef] [Green Version]
- Tharmalingam, S.; Sreetharan, S.; Brooks, A.L.; Boreham, D.R. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem. Biol. Interact. 2019, 301, 54–67. [Google Scholar] [CrossRef]
- Tharmalingam, S.; Sreetharan, S.; Kulesza, A.V.; Boreham, D.R.; Tai, T.C. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat. Res. 2017, 188, 525–538. [Google Scholar] [CrossRef]
- Puukila, S.; Tharmalingam, S.; Al-Khayyat, W.; Peterson, J.; Hooker, A.M.; Muise, S.; Boreham, D.R.; Dixon, D.L. Transcriptomic Response in the Spleen after Whole-Body Low-Dose X-ray Irradiation. Radiat. Res. 2021, 196, 66–73. [Google Scholar] [CrossRef]
- Mao, A.; Zhao, Q.; Zhou, X.; Sun, C.; Si, J.; Zhou, R.; Gan, L.; Zhang, H. MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells. Sci. Rep. 2016, 6, 27346. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.M.; Liu, X.N.; Li, Y.X.; Cao, Y.Q.; Silayiding, A.; Zhang, R.K.; Wang, J.P. MicroRNA-498 promotes proliferation, migration, and invasion of prostate cancer cells and decreases radiation sensitivity by targeting PTEN. Kaohsiung J. Med. Sci. 2019, 35, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Körner, C.; Keklikoglou, I.; Bender, C.; Wörner, A.; Münstermann, E.; Wiemann, S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon). J. Biol. Chem. 2013, 288, 8750–8761. [Google Scholar] [CrossRef] [Green Version]
- Zaleska, K.; Przybyła, A.; Kulcenty, K.; Wichtowski, M.; Mackiewicz, A.; Suchorska, W.; Murawa, D. Wound fluids affect miR-21, miR-155 and miR-221 expression in breast cancer cell lines, and this effect is partially abrogated by intraoperative radiation therapy treatment. Oncol. Lett. 2017, 14, 4029–4036. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.A.; Sachdeva, H.; Omaruddin, R.A. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol. 2010, 29, 553–561. [Google Scholar] [CrossRef]
- Maia, D.; de Carvalho, A.C.; Horst, M.A.; Carvalho, A.L.; Scapulatempo-Neto, C.; Vettore, A.L. Expression of miR-296-5p as predictive marker for radiotherapy resistance in early-stage laryngeal carcinoma. J. Transl. Med. 2015, 13, 262. [Google Scholar] [CrossRef] [Green Version]
- Stanbridge, E.J.; Flandermeyer, R.R.; Daniels, D.W.; Nelson-Rees, W.A. Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somatic. Cell Genet. 1981, 7, 699–712. [Google Scholar] [CrossRef]
- Stanbridge, E.J.; Wilkinson, J. Dissociation of anchorage independence form tumorigenicity in human cell hybrids. Int. J. Cancer 1980, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pirkkanen, J.; Tharmalingam, S.; Morais, I.H.; Lam-Sidun, D.; Thome, C.; Zarnke, A.M.; Benjamin, L.V.; Losch, A.C.; Borgmann, A.J.; Sinex, H.C.; et al. Transcriptomic profiling of gamma ray induced mutants from the CGL1 human hybrid cell system reveals novel insights into the mechanisms of radiation-induced carcinogenesis. Free Radic. Biol. Med. 2019, 145, 300–311. [Google Scholar] [CrossRef]
- Pirkkanen, J.S.; Boreham, D.R.; Mendonca, M.S. The CGL1 (HeLa × Normal Skin Fibroblast) Human Hybrid Cell Line: History of Ionizing Radiation Induced Effects on Neoplastic Transformation and Novel Future Directions in SNOLAB. Radiat. Res. 2017, 188, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, M.A.; Omaruddin, R.A.; Brumbaugh, C.D.; Tariq, M.A.; Pourmand, N. Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing. J. Radiat. Res. 2013, 54, 808–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.D.; Liu, G.; Luo, L.; Xiao, J.; Gerrein, J.; Juan-Guardela, B.; Tedrow, J.; Alekseyev, Y.O.; Yang, I.V.; Correll, M.; et al. Assessment of microRNA differential expression and detection in multiplexed small RNA sequencing data. RNA 2015, 21, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abnizova1, I.; Boekhorst, R.; Orlov, Y.L. Computational Errors and Biases in Short Read Next Generation Sequencing. J. Proteomics Bioinform. 2017, 10, 1. [Google Scholar] [CrossRef]
- Hulley, E.N.; Tharmalingam, S.; Zarnke, A.; Boreham, D.R. Development and validation of probe-based multiplex real-time PCR assays for the rapid and accurate detection of freshwater fish species. PLoS ONE 2019, 14, e0210165. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.D.; Ceniccola, K.; Yang, Q.; Andrawis, R.; Patel, V.; Ji, Y.; Rhim, J.; Olender, J.; Popratiloff, A.; Latham, P.; et al. Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities. Clin. Cancer Res. 2015, 21, 4970–4984. [Google Scholar] [CrossRef] [Green Version]
- Cifuentes-Bernal, A.M.; Pham, V.V.; Xiaomei, L.; Lin, L.; Jiuyong, L.; Thuc, D.L. A pseudotemporal causality approach to identifying miRNA–mRNA interactions during biological processes. Bioinformatics 2021, 37, 807–814. [Google Scholar] [CrossRef]
- Santivasi, W.L.; Xia, F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox. Signal. 2014, 21, 251–259. [Google Scholar] [CrossRef]
- Saville, M.K.; Sparks, A.; Xirodimas, D.P.; Wardrop, J.; Stevenson, L.F.; Bourdon, J.C.; Woods, Y.L.; Lane, D.P. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J. Biol. Chem. 2004, 279, 42169–42181. [Google Scholar] [CrossRef] [Green Version]
- Pant, V.; Lozano, G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 2014, 28, 1739–1751. [Google Scholar] [CrossRef] [Green Version]
- Chen, J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 2016, 6, a026104. [Google Scholar] [CrossRef]
- Junttila, M.R.; Puustinen, P.; Niemelä, M.; Ahola, R.; Arnold, H.; Böttzauw, T.; Ala-aho, R.; Nielsen, C.; Ivaska, J.; Taya, Y.; et al. CIP2A inhibits PP2A in human malignancies. Cell 2007, 130, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Cho, U.S.; Xu, W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 2007, 445, 53–57. [Google Scholar] [CrossRef]
- Mochida, S.; Ikeo, S.; Gannon, J.; Hunt, T. Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J. 2009, 28, 2777–2785. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Li, L.; Wu, Q.; Dou, N.; Li, Y.; Gao, Y. PPP2R2D, a regulatory subunit of protein phosphatase 2A, promotes gastric cancer growth and metastasis via mechanistic target of rapamycin activation. Int. J. Oncol. 2018, 52, 2011–2020. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.G.; Coffee, R.L., Jr.; Zhang, H.; Pelech, S.; Strack, S.; Wadzinski, B.E. Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A holoenzymes. J. Biol. Chem. 2005, 280, 42644–42654. [Google Scholar] [CrossRef] [Green Version]
- Baghdoyan, S.; Lamartine, J.; Castel, D.; Pitaval, A.; Roupioz, Y.; Franco, N.; Duarte, M.; Martin, M.T.; Gidrol, X. Id2 reverses cell cycle arrest induced by {gamma}-irradiation in human HaCaT keratinocytes. J. Biol. Chem. 2005, 280, 15836–15841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuma, M.; Okita, H.; Hata, J.I.; Umezawa, A. Upregulation of Id2, an oncogenic helix-loop-helix protein, is mediated by the chimeric EWS/ets protein in Ewing sarcoma. Oncogene 2003, 22, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Losada, M.; González, R.; Peropadre, A.; Gil-Gálvez, A.; Tena, J.J.; Baonza, A.; Estella, C. Coordination between cell proliferation and apoptosis after DNA damage in Drosophila. Cell Death Differ. 2022, 29, 832–845. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol 2007, 9, 654–659. [Google Scholar] [CrossRef] [Green Version]
Dose (mGy) | miRNA | Fold Change | p-Value |
---|---|---|---|
10 | miR-3120-3p | 11.3 | 0.042 |
miR-4443 | 1.9 | 0.048 | |
100 | miR-4443 | 2.3 | 0.009 |
miR-362-5p | 2.1 | 0.034 | |
miR-148b-5p | 2.0 | 0.043 | |
miR-423-3p | 1.9 | 0.016 | |
miR-500b-5p | 1.7 | 0.040 | |
miR-502-3p | 1.6 | 0.040 | |
miR-125b-1-3p | 1.6 | 0.041 | |
miR-495-5p | -1.7 | 0.040 | |
1000 | miR-3168 | 8.8 | 0.0008 |
miR-671-5p | 5.3 | 0.003 | |
miR-6835-5p | 4.2 | 0.001 | |
miR-5694 | 4.1 | 0.009 | |
miR-491-5p | 3.9 | 0.005 | |
miR-2054 | 3.6 | 0.003 | |
miR-4668-5p | 3.5 | 0.002 | |
miR-6069 | 3.4 | 0.019 | |
miR-23a-5p | 3.3 | 0.003 | |
miR-3135b | 2.8 | 0.015 | |
miR-22-3p | 2.7 | 0.022 | |
miR-29a-5p | 2.7 | 0.045 | |
miR-665 | 2.5 | 0.007 | |
miR-296-3p | 2.1 | 0.0004 | |
miR-6813-3p | 2.1 | 0.008 | |
miR-1292-5p | 2.0 | 0.011 | |
miR-4271 | 1.9 | 0.006 | |
miR-1228-3p | 1.8 | 0.043 | |
miR-193a-5p | 1.7 | 0.007 | |
miR-370-3p | 1.7 | 0.020 | |
miR-758-5p | 1.7 | 0.044 | |
miR-584-5p | -2.1 | 0.021 | |
miR-598-3p | -2.2 | 0.050 | |
miR-449c-3p | -2.4 | 0.042 | |
miR-181a-2-3p | -2.5 | 0.022 | |
miR-10b-5p | -;2.7 | 0.035 | |
miR-143-3p | -2.8 | 0.034 | |
miR-889-3p | -2.8 | 0.041 | |
miR-100-5p | -2.9 | 0.028 |
miRNA | mRNA Targets |
---|---|
miR-362-5p | Rbm27, Trim50, Sgip1, Plagl2, Prkacb, Luc7l3, Edem1, Cyp1b1, Rmi1, Mrpl35, Pik3c2b, Cyld, Gas7 |
miR-491-5p | Sema6a, Chrnb2, Pogk, Ksr2, Samd4b, Optc, Cpne5, Foxp4, Msn, Igf2, Smad3, Bcl2l1, Egfr, Notch3, Mmp9, Igf2bp1, Wnt3a, Capns1 |
miR-495-5p | Cttn, Ncoa2, Znf281, Tnpo1, Hnrnpd, Sbno1, Dipk2a, Mcub, Nol4l, Camta1, Cdk6, Mta3 |
miR-502-3p | Adamts3, Kctd9, Fbn2, Sec63, Zfx, Dapk1, Smim13, Napil5, Csde1, Set, Olfm4 |
miR-584-5p | Usp6nl, Avpr1a, Hsd11b1, Galnt15, Gbp5, Cd200, Ppm1a, Nphp1, Rock1, Mmp14, Kcne2, Wwp1, Cdk16 |
miR-758-5p | Slc20a2, Id2, Nufip2, Ptp4a1, Tox4, Setd5, Phactr1, Rtkn, Dsg3, Csnk1a1l, Cd36, Zbtb20, Cbx5 |
miR-1228-3p | Ppp2r2d, Ube2d2, Irx2, Znf554, Nfia, Socs6, Rabgef1, Tjp1, Tor1aip1, Zbtb44, Moap1, Csnk2a1, Plac8 |
miR-3135b | Lrrc27, Fmnl3, Ttc21b, Castor3, Xpo7, Ppm1a, Dnm1l, Kdm3b, Rbp1, Faap20, Pten, Golph3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peterson, J.; McTiernan, C.D.; Thome, C.; Khaper, N.; Lees, S.J.; Boreham, D.R.; Tai, T.C.; Tharmalingam, S. Identification of Radiation-Induced miRNA Biomarkers Using the CGL1 Cell Model System. Bioengineering 2022, 9, 214. https://doi.org/10.3390/bioengineering9050214
Peterson J, McTiernan CD, Thome C, Khaper N, Lees SJ, Boreham DR, Tai TC, Tharmalingam S. Identification of Radiation-Induced miRNA Biomarkers Using the CGL1 Cell Model System. Bioengineering. 2022; 9(5):214. https://doi.org/10.3390/bioengineering9050214
Chicago/Turabian StylePeterson, Jayden, Christopher D. McTiernan, Christopher Thome, Neelam Khaper, Simon J. Lees, Douglas R. Boreham, Tze Chun Tai, and Sujeenthar Tharmalingam. 2022. "Identification of Radiation-Induced miRNA Biomarkers Using the CGL1 Cell Model System" Bioengineering 9, no. 5: 214. https://doi.org/10.3390/bioengineering9050214
APA StylePeterson, J., McTiernan, C. D., Thome, C., Khaper, N., Lees, S. J., Boreham, D. R., Tai, T. C., & Tharmalingam, S. (2022). Identification of Radiation-Induced miRNA Biomarkers Using the CGL1 Cell Model System. Bioengineering, 9(5), 214. https://doi.org/10.3390/bioengineering9050214