Influence of Enamel Exposure to Acidic Drink on Shear Bond Strength of Different Fissure Sealants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Enamel Surface
2.2. Application of Materials Tested
2.3. Shear Bond Strength Testing
2.4. Statistical Analysis
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Meerbeek, B.; De Munck, J.; Yoshida, Y.; Inoue, S.; Vargas, M.; Vijay, P.; Van Landuyt, K.; Lambrechts, P.; Vanherle, G. Adhesion to enamel and dentin: Current status and future challenges. Oper. Dent. 2003, 28, 215–235. [Google Scholar]
- Sano, H.; Shono, T.; Takatsu, T.; Hosoda, H. Microporous dentin zone beneath resin impregnated layer. Oper. Dent. 1994, 19, 59–64. [Google Scholar]
- Carvalho, R.M.; Chersoni, S.; Frankenenberger, R.; Pashley, D.H.; Prati, C.; Tay, F.R. A challenge to the conventional wisdom that simultaneous etching and resin infiltration always occurs in self-etch adhesives. Biomaterials 2005, 26, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, T.; Nakajima, M.; Higashi, T.; Kanemura, N.; Pereira, P.N.; Tagami, J. Shear bond strengths of a single-step bonding system to enamel and dentin. Dent. Mater. J. 1997, 16, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Lührs, A.-K.; Guhr, S.; Schilke, R.; Borchers, L.; Geurtsen, W.; Günay, H. Shear Bond Strength of Self-etch Adhesives to Enamel with Additional Phosphoric Acid Etching. Oper. Dent. 2008, 33, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, G.; Vargas, M.A.; Armstrong, S.R.; Cobbb, D.S. Microtensile bond strength of self-etching adhesives to ground and unground enamel. J. Adhes. Dent. 2002, 4, 115–124. [Google Scholar] [PubMed]
- Kiremitçi, A.; Yalçin, F.; Gökalp, S. Bonding to enamel and dentin using self-etching adhesive systems. Quintessence Int. 2004, 35, 367–370. [Google Scholar]
- Pilecki, P.; Stone, D.G.; Sherriff, M.; Watson, T.F. Microtensile bond strengths to enamel of self-etching and one bottle adhesive systems. J. Oral Rehabil. 2005, 32, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.; Swift, E.J.; Boushell, L.W.; Braswell, K. Enamel and dentin bond strength of a new self-etch adhesive system. J. Esthet. Restor. Dent. 2011, 23, 390–396. [Google Scholar] [CrossRef] [PubMed]
- De Munck, J.; Van Meerbeek, B.; Satoshi, I.; Vargas, M.; Yoshida, Y.; Armstrong, S.; Lambrechts, P.; Vanherle, G. Microtensile bond strengths of one- and two-step self-etch adhesives to bur-cut enamel and dentin. Am. J. Dent. 2003, 16, 414–420. [Google Scholar]
- Boruziniat, A.; Gharaee, S.; Shirazi, A.S.; Majidinia, S.; Vatanpour, M. Evaluation of the efficacy of flowable composite as lining material on microleakage of composite resin restorations: A systematic review and meta-analysis. Quintessence Int. 2016, 47, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Reda, R.; Zanza, A.; Cicconetti, A.; Bhandi, S.; Miccoli, G.; Gambarini, G.; Di Nardo, D. Ultrasound Imaging in Dentistry: A Literature Overview. J. Imaging 2021, 7, 238. [Google Scholar] [CrossRef]
- Naaman, R.; El-Housseiny, A.A.; Alamoudi, N. Use of Pit-and-Fissure Sealants—A Literature Review. Dent. Journal. 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, S.N.; Dimitraki, D.; Kotsanos, N.; Bekes, K.; van Waes, H. Performance of pit and fissure sealants according to tooth characteristics: A systematic review and meta-analysis. J. Dent. 2017, 66, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Perdigão, J.; Gomes, G.; Duarte, S., Jr.; Lopes, M.M. Enamel bond strengths of pairs of adhesives from the same manufacturer. Oper. Dent. 2005, 30, 492–499. [Google Scholar]
- Brackett, W.W.; Ito, S.; Nishitani, Y.; Haisch, L.D.; Pashley, D.H. The Microtensile Bond Strength of Self-etching Adhesives to Ground Enamel. Oper. Dent. 2006, 31, 332–337. [Google Scholar] [CrossRef]
- Smith, B.G. Toothwear: Aetiology and diagnosis. Dent. Update 1989, 16, 204–212. [Google Scholar]
- Bedi, R. Dental management of a child with anorexia nervosa who presents with severe tooth erosion. Eur. J. Prosthodont. Restor. Dent. 1991, 1, 13. [Google Scholar]
- Welbury, R.R. A clinical study of a microfilled composite resin for labial veneers. Int. J. Paediatr. Dent. 1991, 1, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Dahl, B.L.; Carlsson, G.E.; Ekfeldt, A. Occlusal wear of teeth and restorative materials: A review of classification, etiology, mechanisms of wear, and some aspects of restorative procedures. Acta Odontol. Scand. 1993, 51, 299–311. [Google Scholar] [CrossRef]
- Bartlett, D.W.; Coward, P.Y.; Nikkah, C.; Wilson, R.F. The prevalence of tooth wear in a cluster sample of adolescent schoolchildren and its relationship with potential explanatory factors. Br. Dent. J. 1998, 184, 125–129. [Google Scholar] [CrossRef]
- Osborne-Smith, K.L.; Burke, F.J.T.; Wilson, N.H.F. The aetiology of the non-carious cervical lesion. Int. Dent. J. 1999, 49, 139–143. [Google Scholar] [CrossRef]
- Watson, M.L.; Burke, F.T. Investigation and Treatment of Patients with Teeth Affected by Tooth Substance Loss: A Review. Dent. Update 2000, 27, 175–183. [Google Scholar] [CrossRef]
- Lussi, A.; Jaeggi, T. Erosion--diagnosis and risk factors. Clin. Oral Investig. 2008, 12 (Suppl. S1), S5–S13. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.S. Fruit juice erosion—An increasing danger? J. Dent. 1973, 2, 85–88. [Google Scholar] [CrossRef]
- da Silva, M.A.B.; Fardin, A.B.; de Vasconcellos, R.C.C.; de Melo Santos, L.; Tonholo, J.; da Silva Júnior, J.G.; dos Reis, J.I.L. Analysis of Roughness and Surface Hardness of a Dental Composite Using Atomic Force Microscopy and Microhardness Testing. Microsc. Microanal. 2011, 17, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Stafne, E.C.; Lovestedt, S.A. Dissolution of Tooth Substance by Lemon Juice. Acid Beverages and Acids from Some other Sources. J. Am. Dent. Assoc. 1947, 34, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.K. Further observations on the influence of citrus fruit juices on human teeth. NY State Dent. J. 1957, 23, 424. [Google Scholar]
- Holloway, P.J.; Mellanby, M.; Stewart, R.J.C. Fruit drinks and tooth erosion. Br. Dent. J. 1958, 104, 305. [Google Scholar]
- Montes, M.A.; de Goes, M.F.; Sinhoreti, M.A. The in vitro morphological effects of some current pre-treatments on dentin surface: A SEM evaluation. Oper. Dent. 2005, 30, 201–212. [Google Scholar]
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed. Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef]
- Scribante, A.; Contreras-Bulnes, R.; Montasser, M.A.; Vallittu, P.K. Orthodontics: Bracket Materials, Adhesives Systems, and Their Bond Strength. BioMed Res. Int. 2016, 2016, 1329814. [Google Scholar] [CrossRef]
- Beltrami, R.; Chiesa, M.; Scribante, A.; Allegretti, J.; Poggio, C. Comparison of Shear Bond Strength of Universal Adhesives on Etched and Nonetched Enamel. J. Appl. Biomater. Funct. Mater. 2016, 14, e78–e83. [Google Scholar] [CrossRef] [Green Version]
- Poggio, C.; Scribante, A.; Della Zoppa, F.; Colombo, M.; Beltrami, R.; Chiesa, M. Shear bond strength of one-step self-etch adhesives to enamel: Effect of acid pretreatment. Dent. Traumatol. 2013, 30, 43–48. [Google Scholar] [CrossRef]
- Taji, S.; Seow, W.K. A literature review of dental erosion in children. Aust. Dent. J. 2010, 55, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Jensdottir, T.; Holbrook, P.; Nauntofte, B.; Buchwald, C.; Bardow, A. Immediate erosive potential of cola drinks and orange juices. J. Dent. Res. 2006, 85, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, N.J.; Cai, F.; Yuan, Y.; Reynolds, E.C. Erosive potential of beverages sold in Australian schools. Aust. Dent. J. 2009, 54, 238–244. [Google Scholar] [CrossRef]
- Larsen, M.J.; Nyvad, B. Enamel Erosion by Some Soft Drinks and Orange Juices Relative to Their pH, Buffering Effect and Contents of Calcium Phosphate. Caries Res. 1998, 33, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.J. An investigation of the theoretical background for the stability of the calcium-phosphate salts and their mutual conversion in aqueous solutions. Arch. Oral Biol. 1986, 31, 757–761. [Google Scholar] [CrossRef]
- Shellis, R.P.; Featherstone, J.D.; Lussi, A. Understanding the chemistry of dental erosion. Monogr. Oral Sci. 2014, 25, 163–179. [Google Scholar]
- Larsen, M. Erosion of teeth. In Dental Caries: The Disease and Its Clinical Management, 2nd ed.; Fejerskov, O., Kidd, E.A.M., Eds.; Blackwell Munksgaard: Ames, IA, USA, 2008; pp. 233–247. [Google Scholar]
- Toledano, M.; Perdigao, J.; Osorio, E.; Osorio, R. Influence of NaOCl deproteinization on shear bond strength in function of dentin depth. Am. J. Dent. 2002, 15, 252–255. [Google Scholar]
- Erhardt, M.C.; Osorio, E.; Aguilera, F.S.; Proenca, J.P.; Osorio, R.; Toledano, M. Influence of dentin acid-etching and NaOCl-treatment on bond strengths of self-etch adhesives. Am. J. Dent. 2008, 2, 44–48. [Google Scholar]
- Lussi, A.; Schaffner, M.; Hots, P.; Suter, P. Dental erosion in a population of Swiss adults. Community Dent. Oral Epidemiol. 1991, 19, 286–290. [Google Scholar] [CrossRef]
- Titley, K.C.; Torneck, C.D.; Smith, D.C.; Adibfar, A. Adhesion of composite resin to bleached and unbleached bovine enamel. J. Dent. Res. 1988, 67, 1523–1528. [Google Scholar] [CrossRef]
- Arends, J.; Christoffersen, J.; Ruben, J.; Jongebloed, W.L. Remineralization of bovine dentine in vitro. The influence of the F content in solution on mineral distribution. Caries Res. 1989, 23, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Feagin, F.; Koulourides, T.; Pigman, W. The characterization of enamel surface demineralization, remineralization, and associated hardness changes in human and bovine material. Arch. Oral Biol. 1969, 14, 1407–1417. [Google Scholar] [CrossRef]
- Camargo, C.H.; Bernardineli, N.; Valera, M.C.; de Carvalho, C.A.; de Oliveira, L.D.; Menezes, M.M.; Afonso, S.E.; Mancini, M.N. Vehicle influence on calcium hydroxide pastes diffusion in human and bovine teeth. Dent. Traumatol. 2006, 22, 302–306. [Google Scholar] [CrossRef]
- Borges, A.L.S.; de Oliveira Dal Piva, A.M.; Moecke, S.E.; de Morais, R.C.; Tribst, J.P.M. Polymerization Shrinkage, Hygroscopic Expansion, Elastic Modulus and Degree of Conversion of Different Composites for Dental Application. J. Compos. Sci. 2021, 5, 322. [Google Scholar] [CrossRef]
Material | Type | Composition | Batch Number | Manufacturer |
---|---|---|---|---|
Futurabond M+ | Universal adhesive | 2-Hydroxyethyl methacrylate, BIS-GMA, acidic adhesive monomer, Urethane dimethacrylate, catalyst, pyrogenic silicic acids | 1,452,245 | Voco, Cuxhaven, Germany |
Fissurit | Fissure sealant | Matrix: Bis-GMA, diurethane dimethacrylate, BHT, benzotriazolderivate Filler: pyrogenic silicic acid | 1,716,509 | Voco, Cuxhaven, Germany |
Grandio Seal | Fissure sealant | Matrix: Bis-GMA, triethylene glycol dymethacrylate (TEGDMA), BHT Filler: pyrogenic silicic acid | 1,854,423 | Voco, Cuxhaven, Germany |
Admira Fusion | Fissure sealant | Matrix: Aromatic and aliphatic dimethacrylates, methacrylate-functionalized polysiloxane Filler: Barium-aluminum-glass, pyrogenic silicon dioxide | 1,601,001 | Voco, Cuxhaven, Germany |
Groups | Materials | Mean | SD | Min | Mdn | Max | Significance |
---|---|---|---|---|---|---|---|
Group 1—Control | Fissurit | 15.83 | 3.79 | 13.49 | 13.79 | 20.21 | A |
Grandio Seal | 20.78 | 6.62 | 15.00 | 17.30 | 29.07 | A | |
Admira Fusion | 19.21 | 6.68 | 12.73 | 18.31 | 27.48 | A | |
Group 2—Adhesive | Fissurit | 29.03 | 6.34 | 22.07 | 28.33 | 37.39 | B |
Grandio Seal | 32.26 | 10.73 | 23.15 | 29.26 | 47.36 | B | |
Admira Fusion | 27.39 | 3.71 | 21.99 | 29.90 | 30.07 | B | |
Group 3—Acidic drink | Fissurit | 20.16 | 5.27 | 11.01 | 22.05 | 24.26 | A |
Grandio Seal | 17.10 | 1.74 | 15.35 | 16.78 | 19.48 | A | |
Admira Fusion | 12.22 | 7.36 | 4.10 | 11.46 | 21.87 | A | |
Group 4—Acidic drink and adhesive | Fissurit | 22.25 | 6.67 | 14.15 | 22.10 | 32.30 | A |
Grandio Seal | 15.29 | 5.63 | 10.06 | 14.30 | 22.49 | A | |
Admira Fusion | 13.56 | 6.39 | 9.22 | 9.43 | 23.64 | A |
Groups | Materials | ARI = 0 | ARI = 1 | ARI = 2 | ARI = 3 |
---|---|---|---|---|---|
Group 1—Control | Fissurit | 20 | 20 | 0 | 60 |
Grandio Seal | 40 | 60 | 0 | 0 | |
Admira Fusion | 80 | 20 | 0 | 0 | |
Group 2—Adhesive | Fissurit | 80 | 0 | 0 | 20 |
Grandio Seal | 20 | 80 | 0 | 0 | |
Admira Fusion | 100 | 0 | 0 | 0 | |
Group 3—Acidic drink | Fissurit | 60 | 20 | 20 | 0 |
Grandio Seal | 60 | 20 | 0 | 20 | |
Admira Fusion | 60 | 0 | 20 | 20 | |
Group 4—Acidic drink and adhesive | Fissurit | 80 | 20 | 0 | 0 |
Grandio Seal | 40 | 0 | 0 | 60 | |
Admira Fusion | 40 | 0 | 0 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrami, R.; Colombo, M.; Cavada, A.; Panizzi, S.; Poggio, C.; Scribante, A. Influence of Enamel Exposure to Acidic Drink on Shear Bond Strength of Different Fissure Sealants. Bioengineering 2022, 9, 20. https://doi.org/10.3390/bioengineering9010020
Beltrami R, Colombo M, Cavada A, Panizzi S, Poggio C, Scribante A. Influence of Enamel Exposure to Acidic Drink on Shear Bond Strength of Different Fissure Sealants. Bioengineering. 2022; 9(1):20. https://doi.org/10.3390/bioengineering9010020
Chicago/Turabian StyleBeltrami, Riccardo, Marco Colombo, Andrea Cavada, Sofia Panizzi, Claudio Poggio, and Andrea Scribante. 2022. "Influence of Enamel Exposure to Acidic Drink on Shear Bond Strength of Different Fissure Sealants" Bioengineering 9, no. 1: 20. https://doi.org/10.3390/bioengineering9010020
APA StyleBeltrami, R., Colombo, M., Cavada, A., Panizzi, S., Poggio, C., & Scribante, A. (2022). Influence of Enamel Exposure to Acidic Drink on Shear Bond Strength of Different Fissure Sealants. Bioengineering, 9(1), 20. https://doi.org/10.3390/bioengineering9010020