Autotransplantation of the Third Molar: A Therapeutic Alternative to the Rehabilitation of a Missing Tooth: A Scoping Review
Abstract
:1. Introduction
- Success: no evidence of root resorption or ankylosis, inflammation, immobility, or periodontal pockets, and no pain in function;
- Survival: no pain, no inflammation but with root resorption or ankylosis;
- Failure or pathology: more than 3 mm of pocket from the end of the first year of transplantation, pain in function, abnormal mobility, infection at the recipient site.
2. Materials and Methods
- I.
- Primary outcome: Evaluation of the maturation stage of the third molar to be transplanted (Section 4.1);
- II.
- Secondary outcome: Methodology of atraumatic extraction of the third molars to be transplanted and periodontal prognostic factors (Section 4.2 and Section 4.3);
- III.
- Tertiary outcome: Preparation techniques of the receiving site (Section 4.4);
- IV.
- Quaternary outcome: Positioning and stabilization techniques of the transplanted tooth (Section 4.5);
- V.
- Quinary outcome: Endodontic treatment of the transplanted tooth (Section 4.6).
3. Results
- I.
- II.
- III.
- IV.
- V.
4. Discussion
4.1. Surgical Procedure
4.2. Stage of Maturation of the Third Molar
4.3. Atraumatic Extraction of Third Molars
4.4. Importance of the Periodontal Ligament in Transplant Success
Materials Used as Scaffolds for Tissue and Periodontal Regeneration of Transplanted Teeth
4.5. Receiving Site
4.6. Tooth Positioning and Stabilitation
4.7. Endodontic Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Apfel, H. Autoplasty of enucleated prefunctional third molars. J. Oral Surg. 1950, 8, 289–296. [Google Scholar]
- Lo Muzio, L.; Crea, D.; de Donato, C.; Bucci, P. Autotransplantation of tooth germs. Stomatol. Mediterr 1988, 8, 229–232. [Google Scholar] [PubMed]
- Sugai, T.; Yoshizawa, M.; Kobayashi, T.; Ono, K.; Takagi, R.; Kitamura, N.; Okiji, T.; Saito, C. Clinical study on prognostic factors for autotransplantation of teeth with complete root formation. Int. J. Oral Maxillofac. Surg. 2010, 39, 1193–1203. [Google Scholar] [CrossRef]
- Tsukiboshi, M. Autotransplantation of teeth: Requirements for predictable success. Dent. Traumatol. 2002, 18, 157–180. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Fanshawe, T.; Bister, D.; Cobourne, M.T. Survival and success of maxillary canine autotransplantation: A retrospective investigation. Eur. J. Orthod. 2011, 33, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Thilander, B.; Odman, J.; Lekholm, U. Orthodontic aspects of the use of oral implants in adolescents: A 10-year follow-up study. Eur. J. Orthod. 2001, 23, 715–731. [Google Scholar] [CrossRef] [Green Version]
- Muhamad, A.; Nezar, W.; Mai, A.; Azzaldeen, A. Tooth autotransplantation; clinical concepts. IOSR J. Dent. Med. Sci. 2016, 15, 105–113. [Google Scholar] [CrossRef]
- Teixeira, C.S.; Pasternak, B., Jr.; Vansan, L.P.; Sousa-Neto, M.D. Autogenous transplantation of teeth with complete root formation: Two case reports. Int. Endod. J. 2006, 39, 977–985. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, S.J.; Kim, E. Autotransplantation of immature third molars using a computer-aided rapid prototyping model: A report of 4 cases. J. Endod. 2013, 39, 1461–1466. [Google Scholar] [CrossRef]
- Ahmed Asif, J.; Yusuf Noorani, T.; Khursheed Alam, M. Tooth auto-transplantation: An alternative treatment. Bull. Tokyo Dent. Coll. 2017, 58, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkocaoglu, M.; Kasaboglu, O. Success rate of autotransplanted teeth without stabilisation by splints: A long-term clinical and radiological follow-up. Br. J. Oral Maxillofac. Surg. 2005, 43, 31–35. [Google Scholar] [CrossRef]
- Plotino, G.; Abella Sans, F.; Duggal, M.S.; Grande, N.M.; Krastl, G.; Nagendrababu, V.; Gambarini, G. Clinical procedures and outcome of surgical extrusion, intentional replantation and tooth autotransplantation—A narrative review. Int. Endod. J. 2020, 53, 1636–1652. [Google Scholar] [CrossRef] [PubMed]
- Lacerda-Santos, R.; Canutto, R.F.; Araújo, J.; Carvalho, F.G.; Münchow, E.A.; Barbosa, T.S.; Pithon, M.M.; Rego, E.B.; Neves, L.S. Effect of orthodontic treatment on tooth autotransplantation: Systematic review of controlled clinical trials. Eur. J. Dent. 2020, 14, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Hariri, R.; Alzoubi, E.E.M. Autotransplantation in combination with orthodontic treatment. J. Orthod. Sci. 2019, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.; O’Reilly, C.; Ahmed, B. Autotransplantation of third molars: A literature review and preliminary protocols. Br. Dent. J. 2020, 228, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Nathwani, S.; Bunyan, R. Autotransplantation of teeth: An evidence-based approach. Br. Dent. J. 2018, 224, 861–864. [Google Scholar] [CrossRef]
- Rohof, E.C.M.; Kerdijk, W.; Jansma, J.; Livas, C.; Ren, Y. Autotransplantation of teeth with incomplete root formation: A systematic review and meta-analysis. Clin. Oral Investig. 2018, 22, 1613–1624. [Google Scholar] [CrossRef] [Green Version]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schliephake, H.; Neukam, F.W. Influence of root development and root anatomy on the occurrence of periodontal damage during removal of third molars for transplantation: A histometric study. J. Oral Maxillofac. Surg. 1990, 48, 601–605. [Google Scholar] [CrossRef]
- Moorrees, C.F.; Fanning, E.A.; Hunt, E.E., Jr. Age variation of formation stages for ten permanent teeth. J. Dent. Res. 1963, 42, 1490–1502. [Google Scholar] [CrossRef]
- Atala-Acevedo, C.; Abarca, J.; Martínez-Zapata, M.J.; Díaz, J.; Olate, S.; Zaror, C. Success rate of autotransplantation of teeth with an open apex: Systematic review and meta-analysis. J. Oral Maxillofac. Surg. 2017, 75, 35–50. [Google Scholar] [CrossRef]
- Lundberg, T.; Isaksson, S. A clinical follow-up study of 278 autotransplanted teeth. Br. J. Oral Maxillofac. Surg. 1996, 34, 181–185. [Google Scholar] [CrossRef]
- Lucas-Taulé, E.; Llaquet, M.; Muñoz-Peñalver, J.; Nart, J.; Hernández-Alfaro, F.; Gargallo-Albiol, J. Mid-term outcomes and periodontal prognostic factors of autotransplanted third molars: A retrospective cohort study. J. Periodontol. 2021. [Google Scholar] [CrossRef]
- Rey Lescure, M.; Valente, N.A.; Chatelain, S.; Cinquini, C.; Barone, A. Autotransplantation of two immature third molars with the use of L-PRF. Case Rep. Dent. 2021, 2021, 6672711. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Shen, Z.; Hou, M.; Wu, L. Autotransplantation of mature and immature third molars in 23 Chinese patients: A clinical and radiological follow-up study. BMC Oral Health 2017, 17, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, M.; Kanie, T.; Shima, K. Cemental tear in an autotransplanted tooth that had been functioning for 15 years. Clin. Adv. Periodontics 2016, 6, 111–117. [Google Scholar] [CrossRef]
- Kristerson, L.; Johansson, L.A.; Kisch, J.; Stadler, L.E. Autotransplantation of third molars as treatment in advanced periodontal disease. J. Clin. Periodontol. 1991, 18, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Bauss, O.; Schwestka-Polly, R.; Kiliaridis, S. Influence of orthodontic derotation and extrusion on pulpal and periodontal condition of autotransplanted immature third molars. Am. J. Orthod. Dentofac. Orthop. 2004, 125, 488–496. [Google Scholar] [CrossRef]
- Jang, Y.; Choi, Y.J.; Lee, S.J.; Roh, B.D.; Park, S.H.; Kim, E. Prognostic factors for clinical outcomes in autotransplantation of teeth with complete root formation: Survival analysis for up to 12 years. J. Endod. 2016, 42, 198–205. [Google Scholar] [CrossRef]
- Aoyama, S.; Yoshizawa, M.; Niimi, K.; Sugai, T.; Kitamura, N.; Saito, C. Prognostic factors for autotransplantation of teeth with complete root formation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, S216–S228. [Google Scholar] [CrossRef]
- Koszowski, R.; Morawiec, T.; Bubilek-Bogacz, A. Use of the piezosurgery technique for cutting bones in the autotransplantation of unerupted third molars. Int. J. Periodontics Restor. Dent. 2013, 33, 477–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Tian, K.; Xie, X.; Wang, E.; Cui, N. Computer-aided autotransplantation of teeth with 3D printed surgical guides and arch bar: A preliminary experience. PeerJ 2018, 6, e5939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahbazian, M.; Jacobs, R.; Wyatt, J.; Willems, G.; Pattijn, V.; Dhoore, E.; Van Lierde, C.; Vinckier, F. Accuracy and surgical feasibility of a CBCT-based stereolithographic surgical guide aiding autotransplantation of teeth: In vitro validation. J. Oral Rehabil. 2010, 37, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Arbel, Y.; Lvovsky, A.; Azizi, H.; Hadad, A.; Averbuch Zehavi, E.; Via, S.; Ben Itzhak, J.; Solomonov, M. Autotransplantation after primary bone repair of a recipient site with a large periradicular lesion: A case report. Int. Endod. J. 2019, 52, 1789–1796. [Google Scholar] [CrossRef]
- Mena-Álvarez, J.; Riad-Deglow, E.; Quispe-López, N.; Rico-Romano, C.; Zubizarreta-Macho, A. Technology at the service of surgery in a new technique of autotransplantation by guided surgery: A case report. BMC Oral Health 2020, 20, 99. [Google Scholar] [CrossRef]
- Bauss, O.; Engelke, W.; Fenske, C.; Schilke, R.; Schwestka-Polly, R. Autotransplantation of immature third molars into edentulous and atrophied jaw sections. Int. J. Oral Maxillofac. Surg. 2004, 33, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Devi, T.P.; Singh, W.T.; Sanjeeta, N.; Singh, N.R. Immediate autotransplantation of immature third molar with regeneration of recipient site using autologous platelet-rich fibrin. J. Med. Soc. 2014, 28, 196. [Google Scholar]
- Alkofahi, H.; Maghaireh, A.; Fnaish, M.; Jarrah, M.; Bataineh, M. Application of platelet-rich fibrin as regeneration assistant in immediate auototransplantation of third molar with unformed roots: Case report and review of literature. Case Rep. Dent. 2020, 2020, 8170646. [Google Scholar] [CrossRef] [Green Version]
- Motegi, E.; Takane, Y.; Tokunaga, E.; Sueishi, K.; Takano, N.; Shibahara, T.; Saito, C. Six-year follow-up in skeletal Class III patient aged over 40 receiving orthognathic surgery and autotransplantation: A case report. Bull. Tokyo Dent. Coll. 2009, 50, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Bauss, O.; Schwestka-Polly, R.; Schilke, R.; Kiliaridis, S. Effect of different splinting methods and fixation periods on root development of autotransplanted immature third molars. J. Oral Maxillofac. Surg. 2005, 63, 304–310. [Google Scholar] [CrossRef]
- Gault, P.C.; Warocquier-Clerout, R. Tooth auto-transplantation with double periodontal ligament stimulation to replace periodontally compromised teeth. J. Periodontol. 2002, 73, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Dharmani, U.; Jadhav, G.R.; Kaur Dharmani, C.K.; Devi, T.P. Mineral trioxide aggregate pulpotomy in autotransplanted immature mandibular third molar with a 4-year follow-up. J. Conserv. Dent. 2016, 19, 293–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boschini, L.; Plotino, G.; Melillo, M.; Staffoli, S.; Grande, N.M. Endodontic management of an autotransplanted mandibular third molar: A simplified approach. J. Am. Dent. Assoc. 2020, 151, 197–202. [Google Scholar] [CrossRef]
- Lin, P.Y.; Chiang, Y.C.; Hsu, L.Y.; Chang, H.J.; Chi, L.Y. Endodontic considerations of survival rate for autotransplanted third molars: A nationwide population-based study. Int. Endod. J. 2020, 53, 733–741. [Google Scholar] [CrossRef]
- Mejàre, B.; Wannfors, K.; Jansson, L. A prospective study on transplantation of third molars with complete root formation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 97, 231–238. [Google Scholar] [CrossRef]
- Kumar, R.; Khambete, N.; Priya, E. Successful immediate autotransplantation of tooth with incomplete root formation: Case report. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, e16–e21. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.S.; Shen, T.C.; Pogrel, M.A. Transplanting teeth successfully: Autografts and allografts that work. J. Am. Dent. Assoc. 1995, 126, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Poi, W.R.; Sonoda, C.K.; Martins, C.M.; Melo, M.E.; Pellizzer, E.P.; de Mendonça, M.R.; Panzarini, S.R. Storage media for avulsed teeth: A literature review. Braz. Dent. J. 2013, 24, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Kristerson, L.; Andreasen, J.O. The effect of splinting upon periodontal and pulpal healing after autotransplantation of mature and immature permanent incisors in monkeys. Int. J. Oral Surg. 1983, 12, 239–249. [Google Scholar] [CrossRef]
- Ashurko, I.; Vlasova, I.; Yaremchuk, P.; Bystrova, O. Autotransplantation of teeth as an alternative to dental implantation. BMJ Case Rep. 2020, 13, e234889. [Google Scholar] [CrossRef]
- Mendes, R.A.; Rocha, G. Mandibular third molar autotransplantation--literature review with clinical cases. J. Can. Dent. Assoc. 2004, 70, 761–766. [Google Scholar]
- Andreasen, J.O. Challenges in clinical dental traumatology. Endod. Dent. Traumatol. 1985, 1, 45–55. [Google Scholar] [CrossRef]
- Erdem, N.F.; Gümüşer, Z. Retrospective evaluation of immediate impacted third molars autotransplantation after extractions of mandibular first and/or second molars with chronic periapical lesions. J. Oral Maxillofac. Surg. 2021, 79, 37–48. [Google Scholar] [CrossRef]
- Day, P.F.; Lewis, B.R.; Spencer, R.J.; Barber, S.K.; Duggal, M. The design and development of surgical templates for premolar transplants in adolescents. Int. Endod. J. 2012, 45, 1042–1052. [Google Scholar] [CrossRef]
- Thomas, S.; Turner, S.R.; Sandy, J.R. Autotransplantation of teeth: Is there a role? Br. J. Orthod. 1998, 25, 275–282. [Google Scholar] [CrossRef]
- Crincoli, V.; Di Bisceglie, M.B.; Scivetti, M.; Favia, A.; Di Comite, M. Dens invaginatus: A qualitative-quantitative analysis. Case report of an upper second molar. Ultrastruct. Pathol. 2010, 34, 7–15. [Google Scholar] [CrossRef]
- Kaku, M.; Shimasue, H.; Ohtani, J.; Kojima, S.; Sumi, H.; Shikata, H.; Kojima, S.; Motokawa, M.; Abonti, T.R.; Kawata, T.; et al. A case of tooth autotransplantation after long-term cryopreservation using a programmed freezer with a magnetic field. Angle Orthod. 2015, 85, 518–524. [Google Scholar] [CrossRef]
- Hupp, J.G.; Mesaros, S.V.; Aukhil, I.; Trope, M. Periodontal ligament vitality and histologic healing of teeth stored for extended periods before transplantation. Endod. Dent. Traumatol. 1998, 14, 79–83. [Google Scholar] [CrossRef]
- Cardona, J.L.; Caldera, M.M.; Vera, J. Autotransplantation of a premolar: A long-term follow-up report of a clinical case. J. Endod. 2012, 38, 1149–1152. [Google Scholar] [CrossRef]
- Gugliandolo, A.; Fonticoli, L.; Trubiani, O.; Rajan, T.S.; Marconi, G.D.; Bramanti, P.; Mazzon, E.; Pizzicannella, J.; Diomede, F. Oral bone tissue regeneration: Mesenchymal stem cells, secretome, and biomaterials. Int. J. Mol. Sci. 2021, 22, 5236. [Google Scholar] [CrossRef]
- Kallu, R.; Vinckier, F.; Politis, C.; Mwalili, S.; Willems, G. Tooth transplantations: A descriptive retrospective study. Int. J. Oral Maxillofac. Surg. 2005, 34, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Moorrees, C.F.; Fanning, E.A.; Hunt, E.E., Jr. Formation and resorption of three deciduous teeth in children. Am. J. Phys. Anthropol. 1963, 21, 205–213. [Google Scholar] [CrossRef]
- Akiyama, Y.; Fukuda, H.; Hashimoto, K. A clinical and radiographic study of 25 autotransplanted third molars. J. Oral Rehabil. 1998, 25, 640–644. [Google Scholar] [CrossRef]
- Yan, Q.; Li, B.; Long, X. Immediate autotransplantation of mandibular third molar in China. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, 436–440. [Google Scholar] [CrossRef]
- Yoshino, K.; Kariya, N.; Namura, D.; Noji, I.; Mitsuhashi, K.; Kimura, H.; Fukuda, A.; Kikukawa, I.; Hayashi, T.; Yamazaki, N.; et al. A retrospective survey of autotransplantation of teeth in dental clinics. J. Oral Rehabil. 2012, 39, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.H.; Choi, Y.H.; Cho, B.H.; Kim, Y.K.; Kim, S.G. Autotransplantation of teeth with complete root formation: A case series. J. Endod. 2010, 36, 1422–1426. [Google Scholar] [CrossRef]
- Verweij, J.P.; Jongkees, F.A.; Anssari Moin, D.; Wismeijer, D.; van Merkesteyn, J.P.R. Autotransplantation of teeth using computer-aided rapid prototyping of a three-dimensional replica of the donor tooth: A systematic literature review. Int. J. Oral Maxillofac. Surg. 2017, 46, 1466–1474. [Google Scholar] [CrossRef]
- Andreasen, J.O. Interrelation between alveolar bone and periodontal ligament repair after replantation of mature permanent incisors in monkeys. J. Periodontal Res. 1981, 16, 228–235. [Google Scholar] [CrossRef]
- Trubiani, O.; Marconi, G.D.; Pierdomenico, S.D.; Piattelli, A.; Diomede, F.; Pizzicannella, J. Human oral stem cells, biomaterials and extracellular vesicles: A promising tool in bone tissue repair. Int. J. Mol. Sci. 2019, 20, 4987. [Google Scholar] [CrossRef] [Green Version]
- Diomede, F.; Marconi, G.D.; Fonticoli, L.; Pizzicanella, J.; Merciaro, I.; Bramanti, P.; Mazzon, E.; Trubiani, O. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int. J. Mol. Sci. 2020, 21, 3242. [Google Scholar] [CrossRef]
- Marconi, G.D.; Fonticoli, L.; Guarnieri, S.; Cavalcanti, M.; Franchi, S.; Gatta, V.; Trubiani, O.; Pizzicannella, J.; Diomede, F. Ascorbic acid: A new player of epigenetic regulation in LPS-gingivalis treated human periodontal ligament stem cells. Oxid. Med. Cell. Longev. 2021, 2021, 6679708. [Google Scholar] [CrossRef]
- Lindskog, S.; Blomlof, L. Influence of osmolality and composition of some storage media on human periodontal ligament cells. Acta Odontol. Scand. 1982, 40, 435–441. [Google Scholar] [CrossRef]
- Zhang, J.; An, Y.; Gao, L.N.; Zhang, Y.J.; Jin, Y.; Chen, F.M. The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells. Biomaterials 2012, 33, 6974–6986. [Google Scholar] [CrossRef]
- Park, J.H.; Tai, K.; Hayashi, D. Tooth autotransplantation as a treatment option: A review. J. Clin. Pediatr. Dent. 2010, 35, 129–135. [Google Scholar] [CrossRef]
- Bright, R.; Hynes, K.; Gronthos, S.; Bartold, P.M. Periodontal ligament-derived cells for periodontal regeneration in animal models: A systematic review. J. Periodontal Res. 2015, 50, 160–172. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Ding, G.; Fang, D.; Zhang, C.; Bartold, P.M.; Gronthos, S.; Shi, S.; Wang, S. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 2008, 26, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Mino, C.; Iwata, T.; Kawata, T. Adhesion of human periodontal ligament cells by three-dimensional culture to the sterilized root surface of extracted human teeth. J. Oral Sci. 2017, 59, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Rasperini, G.; Pilipchuk, S.P.; Flanagan, C.L.; Park, C.H.; Pagni, G.; Hollister, S.J.; Giannobile, W.V. 3D-printed bioresorbable scaffold for periodontal repair. J. Dent. Res. 2015, 94, 153s–157s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.T.J.; Sonoyama, W.; Liu, Y.; Liu, H.; Wang, S.; Shi, S. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engineering. J. Endod. 2008, 34, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Miura, K.; Yoshida, M.; Asahina, I. Secondary bone grafting with simultaneous auto-tooth transplantation to the alveolar cleft. J. Oral Maxillofac. Surg. 2015, 73, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Gaviño Orduña, J.F.; García García, M.; Dominguez, P.; Caviedes Bucheli, J.; Martin Biedma, B.; Abella Sans, F.; Manzanares Céspedes, M.C. Successful pulp revascularization of an autotransplantated mature premolar with fragile fracture apicoectomy and plasma rich in growth factors: A 3-year follow-up. Int. Endod. J. 2020, 53, 421–433. [Google Scholar] [CrossRef]
- Gonzalez-Ocasio, J.; Stevens, M. Autotransplantation of third molars with platelet-rich plasma for immediate replacement of extracted non-restorable teeth: A case series. J. Oral Maxillofac. Surg. 2017, 75, 1833.e1–1833.e6. [Google Scholar] [CrossRef]
- Feiglin, B. Atlas of replantation and transplantation of teeth. Aust. Endod. Newsl. 1995, 21, 30–30. [Google Scholar] [CrossRef]
- Andreasen, J.O.; Hjorting-Hansen, E.; Jolst, O. A clinical and radiographic study of 76 autotransplanted third molars. Scand J. Dent. Res. 1970, 78, 512–523. [Google Scholar] [CrossRef]
- Hernandez, S.L.; Cuestas-Carnero, R. Autogenic tooth transplantation: A report of ten cases. J. Oral Maxillofac. Surg. 1988, 46, 1051–1055. [Google Scholar] [CrossRef]
- Cross, D.; El-Angbawi, A.; McLaughlin, P.; Keightley, A.; Brocklebank, L.; Whitters, J.; McKerlie, R.; Cross, L.; Welbury, R. Developments in autotransplantation of teeth. Surgeon 2013, 11, 49–55. [Google Scholar] [CrossRef]
- Imazato, S.; Fukunishi, K. Potential efficacy of GTR and autogenous bone graft for autotransplantation to recipient sites with osseous defects: Evaluation by re-entry procedure. Dent. Traumatol. 2004, 20, 42–47. [Google Scholar] [CrossRef]
- Bauss, O.; Schilke, R.; Fenske, C.; Engelke, W.; Kiliaridis, S. Autotransplantation of immature third molars: Influence of different splinting methods and fixation periods. Dent. Traumatol. 2002, 18, 322–328. [Google Scholar] [CrossRef]
- Henrichvark, C.; Neukam, F.W. Indication and results of autogenous tooth transplantation. Dtsch. Zahnarztl. Z. 1987, 42, 194–197. [Google Scholar] [CrossRef]
- Pogrel, M.A. Evaluation of over 400 autogenous tooth transplants. J. Oral Maxillofac. Surg. 1987, 45, 205–211. [Google Scholar] [CrossRef]
- Kristerson, L.; Andreasen, J.O. Autotransplantation and replantation of tooth germs in monkeys. Effect of damage to the dental follicle and position of transplant in the alveolus. Int. J. Oral Surg. 1984, 13, 324–333. [Google Scholar] [CrossRef]
- Clokie, C.M.; Yau, D.M.; Chano, L. Autogenous tooth transplantation: An alternative to dental implant placement? J. Can. Dent. Assoc. 2001, 67, 92–96. [Google Scholar]
- Kim, S.; Kratchman, S. Modern endodontic surgery concepts and practice: A review. J. Endod. 2006, 32, 601–623. [Google Scholar] [CrossRef]
- Muhamad, A.-H.; Abdulgani, A. Intentional replantation of maxillary second molar; case report and 15-year follow-up. IOSR J. Dent. Med Sci. 2016, 15, 67–73. [Google Scholar] [CrossRef]
- Muhamad, A.-H.; Abdulgani, A.; Bajali, M. Autotransplantation of tooth in children with mixed dentition. J. Oral Health Rev. Artic. Community Dent. 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Almpani, K.; Papageorgiou, S.N.; Papadopoulos, M.A. Autotransplantation of teeth in humans: A systematic review and meta-analysis. Clin. Oral Investig. 2015, 19, 1157–1179. [Google Scholar] [CrossRef] [PubMed]
- Czochrowska, E.M.; Stenvik, A.; Album, B.; Zachrisson, B.U. Autotransplantation of premolars to replace maxillary incisors: A comparison with natural incisors. Am. J. Orthod. Dentofac. Orthop. 2000, 118, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Andreasen, J.O.; Paulsen, H.U.; Yu, Z.; Schwartz, O. A long-term study of 370 autotransplanted premolars. Part III. Periodontal healing subsequent to transplantation. Eur. J. Orthod. 1990, 12, 25–37. [Google Scholar] [CrossRef]
- Kristerson, L. Autotransplantation of human premolars. A clinical and radiographic study of 100 teeth. Int. J. Oral Surg. 1985, 14, 200–213. [Google Scholar] [CrossRef]
- Altonen, M.; Haavikko, K.; Malmstrom, M. Evaluation of autotransplantations of completely developed maxillary canines. Int. J. Oral Surg. 1978, 7, 434–441. [Google Scholar] [CrossRef]
- Andreasen, J.O. The effect of splinting upon periodontal healing after replantation of permanent incisors in monkeys. Acta Odontol. Scand. 1975, 33, 313–323. [Google Scholar] [CrossRef]
- Tsukiboshi, M.; Yamauchi, N.; Tsukiboshi, Y. Long-term outcomes of autotransplantation of teeth: A case series. J. Endod. 2019, 45, S72–S83. [Google Scholar] [CrossRef] [PubMed]
- Crincoli, V.; Di Bisceglie, M.B.; Massaro, M.; Giuliani, R.; Favia, G.; Brienza, N. Postoperative pain relief after surgical removal of impacted third molars: A single-blind, randomized, controlled study to compare levobupivacaine and mepivacaine. J Orofac. Pain 2009, 23, 325–329. [Google Scholar]
- Kim, E.; Jung, J.Y.; Cha, I.H.; Kum, K.Y.; Lee, S.J. Evaluation of the prognosis and causes of failure in 182 cases of autogenous tooth transplantation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, I.M.; Skinningsrud, B.; Jarzebska, A.; Pekala, J.R.; Tarasiuk, J.; Iwanaga, J. Internal and external morphology of mandibular molars: An original micro-CT study and meta-analysis with review of implications for endodontic therapy. Clin. Anat. 2018, 31, 797–811. [Google Scholar] [CrossRef]
- Sidow, S.J.; West, L.A.; Liewehr, F.R.; Loushine, R.J. Root canal morphology of human maxillary and mandibular third molars. J. Endod. 2000, 26, 675–678. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Jafarzadeh, H.; Shalavi, S.; Bandi, S.; Patil, S. Root and root canal morphology of human third molar teeth. J. Contemp. Dent. Pract. 2015, 16, 310–313. [Google Scholar] [CrossRef]
- Tsurumachi, T.; Kuno, T. Autotransplantation of a maxillary first premolar to replace an ankylosed maxillary incisor: 7-year follow-up. Int. Endod. J. 2011, 44, 863–875. [Google Scholar] [CrossRef]
- Di Comite, M.; Crincoli, V.; Fatone, L.; Ballini, A.; Mori, G.; Rapone, B.; Boccaccio, A.; Pappalettere, C.; Grassi, F.R.; Favia, A. Quantitative analysis of defects at the dentin-post space in endodontically treated teeth. Materials 2015, 8, 3268–3283. [Google Scholar] [CrossRef] [Green Version]
- Chagas e Silva, M.H.; Lacerda, M.F.; Chaves, M.; Campos, C.N. Autotransplantation of a mandibular third molar: A case report with 5 years of follow-up. Braz. Dent. J. 2013, 24, 289–294. [Google Scholar] [CrossRef] [PubMed]
Database Provider | Keywords | Search Details | Number of Records | Records after Removing Overlapping Articles |
---|---|---|---|---|
PubMed | third molar autotransplantation | Search number, Query, Sort By, Filters, Search Details, Results, Time: third molar autotransplantation, Most Recent, “(““molar, third”“[MeSH Terms] OR (““molar”“[All Fields] AND ““third”“[All Fields]) OR ““third molar”“[All Fields] OR (““third”“[All Fields] AND ““molar”“[All Fields])) AND (““autotransplantion”“[All Fields] OR ““transplantation, autologous”“[MeSH Terms] OR (““transplantation”“[All Fields] AND ““autologous”“[All Fields]) OR ““autologous transplantation”“[All Fields] OR ““autotransplantation”“[All Fields] OR ““autotransplantations”“[All Fields])”, 167, 02:46:48 | 167 | 167 |
PubMed | tooth autotransplantation | Search number, Query, Sort By, Filters, Search Details, Results, Time: “““tooth autotransplantation”““, Most Recent, “““tooth autotransplantation”“[All Fields]”, 90, 02:51:31 | 90 | 61 |
Scopus | third molar autotransplantation | TITLE-ABS-KEY (third AND molar AND autotransplantation) | 165 | 43 |
Scopus | tooth autotransplantation | TITLE-ABS-KEY (“tooth autotransplantation”) | 110 | 18 |
Google Scholar | auto transplantation Third molar | (Key words: allintitle, auto transplantation Third molar) | 67 1 | 0 |
Total | \ | \ | 599 | 289 |
Articles excluded | \ | \ | 0 | 310 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dioguardi, M.; Quarta, C.; Sovereto, D.; Troiano, G.; Melillo, M.; Di Cosola, M.; Cazzolla, A.P.; Laino, L.; Lo Muzio, L. Autotransplantation of the Third Molar: A Therapeutic Alternative to the Rehabilitation of a Missing Tooth: A Scoping Review. Bioengineering 2021, 8, 120. https://doi.org/10.3390/bioengineering8090120
Dioguardi M, Quarta C, Sovereto D, Troiano G, Melillo M, Di Cosola M, Cazzolla AP, Laino L, Lo Muzio L. Autotransplantation of the Third Molar: A Therapeutic Alternative to the Rehabilitation of a Missing Tooth: A Scoping Review. Bioengineering. 2021; 8(9):120. https://doi.org/10.3390/bioengineering8090120
Chicago/Turabian StyleDioguardi, Mario, Cristian Quarta, Diego Sovereto, Giuseppe Troiano, Michele Melillo, Michele Di Cosola, Angela Pia Cazzolla, Luigi Laino, and Lorenzo Lo Muzio. 2021. "Autotransplantation of the Third Molar: A Therapeutic Alternative to the Rehabilitation of a Missing Tooth: A Scoping Review" Bioengineering 8, no. 9: 120. https://doi.org/10.3390/bioengineering8090120
APA StyleDioguardi, M., Quarta, C., Sovereto, D., Troiano, G., Melillo, M., Di Cosola, M., Cazzolla, A. P., Laino, L., & Lo Muzio, L. (2021). Autotransplantation of the Third Molar: A Therapeutic Alternative to the Rehabilitation of a Missing Tooth: A Scoping Review. Bioengineering, 8(9), 120. https://doi.org/10.3390/bioengineering8090120