Modeling Focused-Ultrasound Response for Non-Invasive Treatment Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computation Approach
2.1.1. Angular Spectrum Propagation Model
2.1.2. Power Deposition and Temperature Rise
2.1.3. Model Validation
2.2. Data Collection
2.3. Data Preprocessing
2.4. Machine Learning Models
2.4.1. Decision Tree Algorithm
2.4.2. Support Vector Regression (SVR)
2.4.3. Random Forest Regression
2.5. Performance Metrics
3. Results
3.1. Inference on Test Data
3.2. Inference on External Data
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SVR | Decision Tree | Random Forest | |||
---|---|---|---|---|---|
Pressure | Power | Temperature Rise | |||
RMSE | 0.0448 | 0.0507 | 0.0491 | 0.0588 | 0.0042 |
R2 | 0.9455 | 0.9113 | 0.9426 | 0.9038 | 0.9995 |
Angular Spectrum | Random Forest | ||||||||
---|---|---|---|---|---|---|---|---|---|
No. of X Elements | No. of Y Elements | Focus Depth | Maximum Pressure | Power Deposition | Temp. Rise | Maximum Pressure | Power Deposition | Temp. Rise | |
a Units | mm | MPa | KW/m2 | °C | MPa | KW/m2 | °C | ||
68 | 21 | 50.00 | 4.862 | 707.630 | 45.516 | 4.913 | 722.746 | 46.645 | |
31 | 63 | 57.00 | 2.008 | 120.799 | 9.212 | 1.969 | 116.171 | 8.812 | |
37 | 40 | 68.40 | 2.677 | 214.536 | 19.918 | 2.701 | 218.420 | 20.075 | |
57 | 21 | 46.28 | 5.298 | 840.119 | 50.037 | 5.398 | 872.386 | 51.704 | |
72 | 17 | 46.98 | 5.383 | 867.439 | 52.269 | 5.438 | 885.294 | 53.389 | |
46 | 27 | 35.80 | 5.673 | 963.298 | 48.749 | 5.543 | 919.806 | 46.990 | |
32 | 46 | 68.33 | 2.413 | 174.412 | 16.103 | 2.510 | 188.719 | 17.332 | |
62 | 49 | 36.19 | 4.004 | 479.941 | 24.126 | 4.074 | 496.900 | 24.944 | |
19 | 55 | 61.63 | 1.977 | 117.040 | 10.372 | 1.969 | 116.239 | 10.168 | |
33 | 21 | 29.45 | 6.1330 | 1125.80 | 51.030 | 6.147 | 1133.200 | 51.471 |
Parameters | Unit (SI) a | Coupling Medium | Skin | Fat | Pancreas |
---|---|---|---|---|---|
Sp Heat capacity of blood | J/kg-K | 3480 | 3480 | 3480 | 3480 |
Blood perfusion | Kg/m3-s | 0 | 5 | 0.54 | 10 |
Density | Kg/m3 | 1033 | 1200 | 950 | 1050 |
Speed of sound | m/s | 1490 | 1560 | 1478 | 1591 |
Power law exponent | unitless | 2 | 2 | 1.4 | 0.78 |
Attenuation | dB/cm-MHz | 0.58 | 2.5 | 0.61 | 0.955 |
Sp Heat of medium | J/kg-K | 3960 | 3400 | 3800 | 3160 |
Thermal conductivity | W/m-K | 0.5574 | 0.23 | 0.217 | 0.547 |
Nonlinearity parameter | unitless | 0.35 | 4.435 | 5.5 | 2.85 |
References
- Haar, G.T.; Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 2007, 23, 89–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, S.N.; Gazelle, G.S.; Mueller, P.R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am. J. Roentgenol. 2000, 174, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; You, K.; Choe, S.-H.; Choi, H. Wireless Ultrasound Surgical System with Enhanced Power and Amplitude Performances. Sensors 2020, 20, 4165. [Google Scholar] [CrossRef] [PubMed]
- Izadifar, Z.; Izadifar, Z.; Chapman, D.; Babyn, P. Izadifar an Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J. Clin. Med. 2020, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Diederich, C.; Hynynen, K. Ultrasound technology for hyperthermia. Ultrasound Med. Biol. 1999, 25, 871–887. [Google Scholar] [CrossRef]
- Canney, M.S.; Khokhlova, V.A.; Bessonova, O.V.; Bailey, M.R.; Crum, L.A. Shock-Induced Heating and Millisecond Boiling in Gels and Tissue Due to High Intensity Focused Ultrasound. Ultrasound Med. Biol. 2010, 36, 250–267. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Hynynen, K. Ultrasound surgery using multiple sonications—Treatment time considerations. Ultrasound Med. Biol. 1996, 22, 471–482. [Google Scholar] [CrossRef]
- Nunna, B.B.; Mandal, D.; Lee, J.U.; Zhuang, S.; Lee, E.S. Sensitivity Study of Cancer Antigens (CA-125) Detection Using Interdigitated Electrodes under Microfluidic Flow Condition. BioNanoScience 2019, 9, 203–214. [Google Scholar] [CrossRef]
- Nunna, B.B.; Mandal, D.; Lee, J.U.; Singh, H.; Zhuang, S.; Misra, D.; Bhuyian, N.U.; Lee, E.S. Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Converg. 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Wojcik, G.; Szabo, T.; Mould, J.; Carcione, L.; Clougherty, F. Nonlinear pulse calculations and data in water and a tissue mimic. In Proceedings of the 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), Tahoe, NV, USA, 17–20 October 1999; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 1999. [Google Scholar]
- Nowak, D. The Design of a Novel Tip Enhanced Near-Field Scanning Probe Microscope for Ultra-High Resolution Optical Imaging; Department of Physics, Portland State University: Portland, OR, USA, 2010; Publication Number: AAI3419910; ISBN 9781124202969. [Google Scholar]
- Alles, E.J.; Zhu, Y.; Van Dongen, K.W.A.; McGough, R.J. Rapid transient pressure field computations in the nearfield of circular transducers using frequency-domain time-space decomposition. Ultrason. Imaging 2012, 34, 237–260. [Google Scholar] [CrossRef] [Green Version]
- McGough, R.J.; Samulski, T.V.; Kelly, J.F. An efficient grid sectoring method for calculations of the near-field pressure generated by a circular piston. J. Acoust. Soc. Am. 2004, 115, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- McGough, R.J. Rapid calculations of time-harmonic nearfield pressures produced by rectangular pistons. J. Acoust. Soc. Am. 2004, 115, 1934–1941. [Google Scholar] [CrossRef] [Green Version]
- Vyas, U.; Christensen, D. Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2012, 59, 1093–1100. [Google Scholar] [CrossRef]
- Hill, C.R.; Bamber, J.C.; Haar, G.R. Physical Principles of Medical Ultrasonics; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mehrabkhani, S.; Schneider, T. Is the Rayleigh-Sommerfeld diffraction always an exact reference for high speed diffraction algorithms? Opt. Express 2017, 25, 30229. [Google Scholar] [CrossRef] [Green Version]
- Mandal, D.; Nunna, B.B.; Zhuang, S.; Rakshit, S.; Lee, E.S. Carbon nanotubes based biosensor for detection of cancer antigens (CA-125) under shear flow condition. Nano-Struct. Nano-Objects 2018, 15, 180–185. [Google Scholar] [CrossRef]
- Nunna, B.B.; Mandal, D.; Zhuang, S.; Lee, E.S. A standalone micro biochip to monitor the cancer progression by measuring cancer antigens as a point-of-care (POC) device for enhanced cancer management. In Proceedings of the2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Bethesda, MD, USA, 6–8 November 2017; pp. 212–215. [Google Scholar]
- Nunna, B.; Mandal, D.; Zhuang, S.; Lee, E. Innovative point-of-care (poc) micro biochip for early stage ovarian cancer diagnostics. Sens. Transducers 2017, 214, 12–20. [Google Scholar]
- Nunna, B.B.; Lee, E.S. Point-of-Care (POC) Micro Biochip for Cancer Diagnostics. In Biotech, Biomaterials, and Biomedical-TechConnect Briefs (Advanced Materials-TechConnect Briefs 2017); Case, F., Laudon, M., Case, F., Romanowicz, B., Eds.; TechConnect: Washington, DC, USA, 2017; Volume 3, pp. 110–113. ISBN 978-0-9988782-0-1. [Google Scholar]
- Arif, T.M.; Ji, Z. A Fast Estimation Model for Angular Spectrum Based Focused Ultrasound Wave Simulation in Layered Tissue Media. In Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, Biomedical and Biotechnology Engineering, Salt Lake City, UT, USA, 11–14 November 2019. [Google Scholar]
- Vecchio, C.J.; Schafer, M.E.; Lewin, P.A. Prediction of ultrasonic field propagation through layered media using the extended angular spectrum method. Ultrasound Med. Biol. 1994, 20, 611–622. [Google Scholar] [CrossRef]
- Leeman, S.; Healey, A.J. Field propagation via the angular spectrum method. In Acoustical Imaging; Lees, S., Ferrari, L.A., Eds.; Springer: Boston, MA, USA, 1997; pp. 363–368. [Google Scholar]
- Zeng, X.; McGough, R.J. Evaluation of the angular spectrum approach for simulations of near-field pressures. J. Acoust. Soc. Am. 2008, 123, 68–76. [Google Scholar] [CrossRef]
- Liang, L.; Mao, W.; Sun, W. A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta. J. Biomech. 2020, 99, 109544. [Google Scholar] [CrossRef]
- Clement, G.; Hynynen, K. Forward planar projection through layered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2003, 50, 1689–1698. [Google Scholar] [CrossRef]
- Zeng, X.; McGough, R.J. Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach. J. Acoust. Soc. Am. 2009, 125, 2967–2977. [Google Scholar] [CrossRef] [Green Version]
- Leung, S.A.; Moore, D.; Webb, T.D.; Snell, J.; Ghanouni, P.; Pauly, K.B. Transcranial focused ultrasound phase correction using the hybrid angular spectrum method. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Goodman, J.W.; Cox, M.E. Introduction to Fourier Optics. Phys. Today 1969, 22, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Kinsler, L.E. Fundamentals of Acoustics; John Wiley & Sons: New York, NY, USA, 2000; ISBN 0471847895. [Google Scholar]
- Moros, E.; Roemer, R.; Hynynen, K. Simulations of scanned focused ultrasound hyperthermia. the effects of scanning speed and pattern on the temperature fluctuations at the focal depth. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1988, 35, 552–560. [Google Scholar] [CrossRef] [PubMed]
- López-Haro, S.A.; Gutierrez, M.I.; Vera, A.; Leija, L. Modeling the thermo-acoustic effects of thermal-dependent speed of sound and acoustic absorption of biological tissues during focused ultrasound hyperthermia. J. Med. Ultrason. 2015, 42, 489–498. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, J.; Yang, F. Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. Math. Comput. Model. 2005, 41, 1251–1265. [Google Scholar] [CrossRef]
- Lakhssassi, A.; Kengne, E.; Semmaoui, H. Modifed pennes’ equation modelling bio-heat transfer in living tissues: Analytical and numerical analysis. Nat. Sci. 2010, 02, 1375–1385. [Google Scholar] [CrossRef] [Green Version]
- Ocheltree, K.B.; Frizzell, L.A. Determination of power deposition patterns for localized hyperthermia: A steady-state analysis. Int. J. Hyperth. 1987, 3, 269–279. [Google Scholar] [CrossRef]
- Salgaonkar, V.A.; Prakash, P.; Plata, J.; Holbrook, A.; Rieke, V.; Kurhanewicz, J.; Hsu, I.-C.; Diederich, C. Targeted hyperthermia in prostate with an MR-guided endorectal ultrasound phased array: Patient specific modeling and preliminary experiments. SPIE BiOS 2013, 85840U. [Google Scholar] [CrossRef]
- Salgaonkar, V.A.; Prakash, P.; Rieke, V.; Ozhinsky, E.; Plata, J.; Kurhanewicz, J.; Hsu, I.-C.; Diederich, C. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array. Med. Phys. 2014, 41, 033301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wootton, J.H.; Ross, A.B.; Diederich, C.J. Prostate thermal therapy with high intensity transurethral ultrasound: The impact of pelvic bone heating on treatment delivery. Int. J. Hyperth. 2007, 23, 609–622. [Google Scholar] [CrossRef]
- Hynynen, K.; Deyoung, D. Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia. Int. J. Hyperth. 1988, 4, 267–279. [Google Scholar] [CrossRef]
- Raaymakers, B.W.; Van Vulpen, M.; Lagendijk, J.J.W.; Leeuw, A.A.C.D.; Crezee, J.; Battermann, J.J. Determination and validation of the actual 3D temperature distribution during interstitial hyperthermia of prostate carcinoma. Phys. Med. Biol. 2001, 46, 3115–3131. [Google Scholar] [CrossRef] [PubMed]
- Goss, S.A.; Johnston, R.L.; Dunn, F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 1978, 64, 423–457. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lin, C.-J. LIBSVM. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Rahim, A.; Hassan, H.M. A deep learning based traffic crash severity prediction framework. Accid. Anal. Prev. 2021, 154, 106090. [Google Scholar] [CrossRef]
- Arif, T.M. Introduction to Deep Learning for Engineers: Using Python and Google Cloud Platform. Synth. Lect. Mech. Eng. 2020, 5, 1–109. [Google Scholar] [CrossRef]
- Yang, K.; Xu, X.; Yang, B.; Cook, B.; Ramos, H.; Krishnan, N.M.A.; Smedskjaer, M.M.; Hoover, C.; Bauchy, M. Predicting the Young’s Modulus of Silicate Glasses using High-Throughput Molecular Dynamics Simulations and Machine Learning. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hofacker, C.F. Mathematical Marketing. 2007. Available online: http://www.openaccesstexts.org/download.php (accessed on 20 May 2021).
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, Prague, Czech Republic, 23 September 2013. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2013. [Google Scholar]
- Zhang, Y.; Kimberg, D.Y.; Coslett, H.B.; Schwartz, M.F.; Wang, Z. Multivariate lesion-symptom mapping using support vector regression. Hum. Brain Mapp. 2014, 35, 5861–5876. [Google Scholar] [CrossRef] [Green Version]
- Gopal, M. Applied Machine Learning; McGraw-Hill Education: New York, NY, USA, 2018; ISBN 13978-1260456844. [Google Scholar]
- Shekar, B.H.; Dagnew, G. Grid Search-Based Hyperparameter Tuning and Classification of Microarray Cancer Data. In Proceedings of the 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), Gangtok, Sikkim, India, 25–28 February 2019; pp. 1–8. [Google Scholar]
- Mantas, C.J.; Castellano, J.G.; Moral-García, S.; Abellán, J. A comparison of random forest based algorithms: Random credal random forest versus oblique random forest. Soft Comput. 2018, 23, 10739–10754. [Google Scholar] [CrossRef]
- Bonaccorso, G. Machine Learning Algorithms; Packt Publishing: Birmingham, UK, 2017; ISBN 139781789347999. [Google Scholar]
- Natingga, D. Data Science Algorithms in a Week; Packt Publishing: Birmingham, UK, 2017; ISBN 139781789806076. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kasuya, E. On the use of r and r squared in correlation and regression. Ecol. Res. 2019, 34, 235–236. [Google Scholar] [CrossRef]
- Mohammed, E.; Naugler, A.C.; Far, B.H. Chapter 32-Emerging Business Intelligence Framework for a Clinical Laboratory through Big Data Analytics. In Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology; Tran, Q.N., Arabnia, H., Eds.; Morgan Kaufmann: Boston, MA, USA, 2015; pp. 577–602. [Google Scholar]
- Arif, T.; Ji, Z. Design Optimization of Ultrasonic Transducer Element by Evolutionary Algorithm. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 11–20 November 2014. [Google Scholar]
- Duck, F.A. Physical Properties of Tissue: A Comprehensive Reference Book; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Gowrishankar, T.; Stewart, A.D.; Martin, G.T.; Weaver, J.C. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion. Biomed. Eng. Online 2004, 3, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossetto, F.; Diederich, C.; Stauffer, P.R. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation. Med. Phys. 2000, 27, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Goss, S.A.; Johnston, R.L.; Dunn, F. Compilation of empirical ultrasonic properties of mammalian tissues. II. J. Acoust. Soc. Am. 1980, 68, 93–108. [Google Scholar] [CrossRef]
- Ginter, S. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption. Ultrasona 2000, 37, 693–696. [Google Scholar] [CrossRef]
- Jungsoon, K.; Jihee, J.; Moojoon, K.; Kanglyeol, H. Estimation of thermal distribution in tissue-mimicking phantom made of carrageenan gel. JPN J. Appl. Phys. 2015, 54, 07HF23. Available online: http://stacks.iop.org/1347-4065/54/i=7S1/a=07HF23 (accessed on 20 May 2021).
- Eikelder, H.M.M.T.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B.; Van Wijk, J.H.; Van Dijk, E.V.M.; Modena, D.; Yeo, S.Y.; et al. Modelling the temperature evolution of bone under high intensity focused ultrasound. Phys. Med. Biol. 2016, 61, 1810–1828. [Google Scholar] [CrossRef] [Green Version]
Parameters | Unit a | Coupling Medium (Degassed Water) | Rectal Wall | Periprostate | Prostate |
---|---|---|---|---|---|
Sp. Heat capacity of blood | J/kg-K | 3480 | 3720 | 3720 | 3720 |
Blood perfusion | Kg/m3-s | 0 | 4 | 5 | 2.5 |
Density | Kg/m3 | 1000 | 1060 | 1060 | 1060 |
Speed of sound | m/s | 1480 | 1500 | 1500 | 1500 |
Power law exponent | unitless | 2 | 1 | 1 | 1 |
Attenuation | dB/cm-MHz | 0.00025 | 0.5211 | 0.4343 | 0.504 |
Sp. Heat of medium | J/kg-K | 4180 | 3500 | 3500 | 3600 |
Thermal conductivity | W/m-K | 0.615 | 0.56 | 0.50 | 0.50 |
Nonlinearity parameter | unitless | 0 | 1 | 1 | 1 |
X Elements | Increment Along X | Y Elements | Increment Along Y | 1 Focus Distance (mm) | Focus Increment (mm) |
---|---|---|---|---|---|
16 to 128 | 4 | 16 to 64 | 4 | 25 to 75 | 1 |
Model | RMSE | R2 | AIC | BIC |
---|---|---|---|---|
Multiple Linear Regression | 0.0708 | 0.8554 | −20,410.13 | −20,391.36 |
Decision Tree | 0.0587 | 0.9045 | −21,858.23 | −21,839.46 |
Support Vector Regression | 0.0484 | 0.9330 | −23,301.89 | −23,283.13 |
Random Forest | 0.0032 | 0.9997 | −44,164.63 | −44,145.87 |
Model | RMSE | R2 | AIC | BIC |
---|---|---|---|---|
Multiple Linear Regression | 0.0548 | 0.9412 | −52.74 | −51.84 |
Decision Tree | 0.0641 | 0.9195 | −49.29 | −48.38 |
Support Vector Regression | 0.0363 | 0.9707 | −61.69 | −60.79 |
Random Forest | 0.0123 | 0.9970 | −82.56 | −81.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arif, T.M.; Ji, Z.; Rahim, M.A.; Nunna, B.B. Modeling Focused-Ultrasound Response for Non-Invasive Treatment Using Machine Learning. Bioengineering 2021, 8, 74. https://doi.org/10.3390/bioengineering8060074
Arif TM, Ji Z, Rahim MA, Nunna BB. Modeling Focused-Ultrasound Response for Non-Invasive Treatment Using Machine Learning. Bioengineering. 2021; 8(6):74. https://doi.org/10.3390/bioengineering8060074
Chicago/Turabian StyleArif, Tariq Mohammad, Zhiming Ji, Md Adilur Rahim, and Bharath Babu Nunna. 2021. "Modeling Focused-Ultrasound Response for Non-Invasive Treatment Using Machine Learning" Bioengineering 8, no. 6: 74. https://doi.org/10.3390/bioengineering8060074
APA StyleArif, T. M., Ji, Z., Rahim, M. A., & Nunna, B. B. (2021). Modeling Focused-Ultrasound Response for Non-Invasive Treatment Using Machine Learning. Bioengineering, 8(6), 74. https://doi.org/10.3390/bioengineering8060074