A Wireless Wearable Doppler Ultrasound Detects Changing Stroke Volume: Proof-of-Principle Comparison with Trans-Esophageal Echocardiography during Coronary Bypass Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Ultrasound & Stroke Volume Monitoring
2.3. Preload Modification
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kenny, J.É.S.; Munding, C.E.; Eibl, J.K.; Eibl, A.M.; Long, B.F.; Boyes, A.; Yin, J.; Verrecchia, P.; Parrotta, M.; Gatzke, R.; et al. A novel, hands-free ultrasound patch for continuous monitoring of quantitative Doppler in the carotid artery. Sci. Rep. 2021, 11, 1–11. [Google Scholar]
- Kenny, J.-É.S. Functional hemodynamic monitoring with a wireless ultrasound patch. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1509–1515. [Google Scholar] [CrossRef]
- Michard, F.; Teboul, J.-L. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit. Care 2000, 4, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, J.-E.S.; Barjaktarevic, I. Letter to the Editor: Stroke volume is the key measure of fluid responsiveness. Crit. Care 2021, 25, 104. [Google Scholar] [CrossRef] [PubMed]
- Kenny, J.E.S.; Barjaktarevic, I.; Mackenzie, D.C.; Rola, P.; Haycock, K.; Eibl, A.M.; Eibl, J.K. Inferring the frank–starling curve from simultaneous venous and arterial doppler: Measurements from a wireless, wearable ultrasound patch. Front. Med. Technol. 2021, 3, 16. [Google Scholar] [CrossRef]
- Douglas, I.S.; Alapat, P.M.; Corl, K.A.; Exline, M.C.; Forni, L.G.; Holder, A.L.; Kaufman, D.A.; Khan, A.; Levy, M.M.; Martin, G.S.; et al. Fluid response evaluation in sepsis hypotension and shock: A randomized clinical trial. Chest 2020, 158, 1431–1445. [Google Scholar] [CrossRef]
- Bednarczyk, J.M.; Fridfinnson, J.A.; Kumar, A.; Blanchard, L.; Rabbani, R.; Bell, D.; Funk, D.; Turgeon, A.F.; Abou-Setta, A.M.; Zarychanski, R. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: A systematic review and meta-analysis. Crit. Care Med. 2017, 45, 1538. [Google Scholar] [CrossRef]
- Lamia, B.; Ochagavia, A.; Monnet, X.; Chemla, D.; Richard, C.; Teboul, J.-L. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007, 33, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Blanco P: Rationale for using the velocity–time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J. 2020, 12, 1–9.
- Monnet, X.; Marik, P.E.; Teboul, J.-L. Prediction of fluid responsiveness: An update. Ann. Intensive Care 2016, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Barjaktarevic, I.; Toppen, W.E.; Hu, S.; Montoya, E.A.; Ong, S.; Buhr, R.G.; David, I.J.; Wang, T.; Rezayat, T.; Chang, S.Y.; et al. Ultrasound assessment of the change in carotid corrected flow time in fluid responsiveness in undifferentiated shock. Crit. Care Med. 2018, 11, 1040–1046. [Google Scholar] [CrossRef]
- Marik, P.E.; Levitov, A.; Young, A.; Andrews, L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest 2013, 143, 364–370. [Google Scholar] [CrossRef]
- Lui, E.Y.; Steinman, A.H.; Cobbold, R.S.; Johnston, K.W. Human factors as a source of error in peak Doppler velocity measurement. J. Vasc. Surg. 2005, 42, 972.e1–972.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, R.W. Measurement of blood flow by ultrasound: Accuracy and sources of error. Ultrasound Med. Biol. 1985, 11, 625–641. [Google Scholar] [CrossRef]
- Kenny, J.É.S.; Barjaktarevic, I.; Mackenzie, D.C.; Elfarnawany, M.; Math, Z.Y.B.; Eibl, A.M.; Eibl, J.K.; Kim, C.H.; Johnson, B.D. Carotid doppler measurement variability in functional hemodynamic monitoring: An analysis of 17,822 cardiac cycles. Crit. Care Explor. 2021, 3, e0439. [Google Scholar] [CrossRef]
- Kenny, J.É.S.; Barjaktarevic, I.; Eibl, A.M.; Parrotta, M.; Long, B.F.; Eibl, J.K.; Michard, F. A carotid doppler patch accurately tracks stroke volume changes during a preload-modifying maneuver in healthy volunteers. Crit. Care Explor. 2020, 2, e0072. [Google Scholar] [CrossRef]
- Ma, G.G.; Xu, L.Y.; Luo, J.C.; Hou, J.Y.; Hao, G.W.; Su, Y.; Liu, K.; Yu, S.J.; Tu, G.W.; Luo, Z. Change in left ventricular velocity time integral during Trendelenburg maneuver predicts fluid responsiveness in cardiac surgical patients in the operating room. Quant. Imaging Med. Surg. 2021, 11, 3133. [Google Scholar] [CrossRef] [PubMed]
- Kenny, J.É.S.; Barjaktarevic, I.; Mackenzie, D.C.; Elfarnawany, M.; Yang, Z.; Eibl, A.M.; Eibl, J.K.; Kim, C.H.; Johnson, B.D. Carotid doppler ultrasonography correlates with stroke volume in a human model of hypovolaemia and resuscitation: Analysis of 48,570 cardiac cycles. Br. J. Anaesth. 2021, 127, e60–e63. [Google Scholar] [CrossRef] [PubMed]
- Van Houte, J.; Mooi, F.J.; Montenij, L.J.; Meijs, L.P.; Suriani, I.; Conjaerts, B.C.; Houterman, S.; Bouwman, A.R. Correlation of carotid doppler blood flow with invasive cardiac output measurements in cardiac surgery patients. J. Cardiothorac. Vasc. Anesth. 2021. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, P.R. Estimation of blood velocity, volumetric flow and wall shear rate using Doppler ultrasound. Ultrasound 2011, 19, 120–129. [Google Scholar] [CrossRef]
- Blanco, P. Volumetric blood flow measurement using Doppler ultrasound: Concerns about the technique. J. Ultrasound 2015, 18, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beier, L.; Davis, J.; Esener, D.; Grant, C.; Fields, J.M. Carotid ultrasound to predict fluid responsiveness: A systematic review. J. Ultrasound Med. 2020, 39, 1965–1976. [Google Scholar] [CrossRef]
- Kenny, J.-É.S.; Barjaktarevic, I. Timing and measurement variability are critical when using carotid doppler to infer hemodynamics. Ultrasound Med. Biol. 2020, 46, 3485–3486. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.J.W.; Burns, P.N.; Wells, P.N.T. Clinical Applications of Doppler Ultrasound, 2nd ed.; Raven Press: New York, NY, USA, 1995; Chart 4; p. 94. [Google Scholar]
- Monnet, X.; Chemla, D.; Osman, D.; Anguel, N.; Richard, C.; Pinsky, M.R.; Teboul, J.L. Measuring aortic diameter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Crit. Care Med. 2007, 35, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Monnet, X.; Rienzo, M.; Osman, D.; Anguel, N.; Richard, C.; Pinsky, M.R.; Teboul, J.L. Passive leg raising predicts fluid responsiveness in the critically ill. Crit. Care Med. 2006, 34, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Monnet, X.; Teboul, J.-L. Passive leg raising. Intensive Care Med. 2008, 34, 659–663. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenny, J.-É.S.; Clarke, G.; Myers, M.; Elfarnawany, M.; Eibl, A.M.; Eibl, J.K.; Nalla, B.; Atoui, R. A Wireless Wearable Doppler Ultrasound Detects Changing Stroke Volume: Proof-of-Principle Comparison with Trans-Esophageal Echocardiography during Coronary Bypass Surgery. Bioengineering 2021, 8, 203. https://doi.org/10.3390/bioengineering8120203
Kenny J-ÉS, Clarke G, Myers M, Elfarnawany M, Eibl AM, Eibl JK, Nalla B, Atoui R. A Wireless Wearable Doppler Ultrasound Detects Changing Stroke Volume: Proof-of-Principle Comparison with Trans-Esophageal Echocardiography during Coronary Bypass Surgery. Bioengineering. 2021; 8(12):203. https://doi.org/10.3390/bioengineering8120203
Chicago/Turabian StyleKenny, Jon-Émile Stuart, Geoffrey Clarke, Matt Myers, Mai Elfarnawany, Andrew M. Eibl, Joseph K. Eibl, Bhanu Nalla, and Rony Atoui. 2021. "A Wireless Wearable Doppler Ultrasound Detects Changing Stroke Volume: Proof-of-Principle Comparison with Trans-Esophageal Echocardiography during Coronary Bypass Surgery" Bioengineering 8, no. 12: 203. https://doi.org/10.3390/bioengineering8120203
APA StyleKenny, J. -É. S., Clarke, G., Myers, M., Elfarnawany, M., Eibl, A. M., Eibl, J. K., Nalla, B., & Atoui, R. (2021). A Wireless Wearable Doppler Ultrasound Detects Changing Stroke Volume: Proof-of-Principle Comparison with Trans-Esophageal Echocardiography during Coronary Bypass Surgery. Bioengineering, 8(12), 203. https://doi.org/10.3390/bioengineering8120203