Next Article in Journal
Metabolic Reprogramming and the Recovery of Physiological Functionality in 3D Cultures in Micro-Bioreactors
Next Article in Special Issue
Stem Cells and Engineered Scaffolds for Regenerative Wound Healing
Previous Article in Journal
Microbiological Sensing Technologies: A Review
Previous Article in Special Issue
Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessArticle
Bioengineering 2018, 5(1), 21;

Topical Digitoxigenin for Wound Healing: A Feasibility Study

Department of Pharmaceutical Science and Research, School of Pharmacy, Marshall University, One John Marshall Drive, Huntington, WV 25755, USA
School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA
Author to whom correspondence should be addressed.
Received: 5 February 2018 / Revised: 24 February 2018 / Accepted: 2 March 2018 / Published: 5 March 2018
(This article belongs to the Special Issue Advances in Wound Healing Systems)
Full-Text   |   PDF [6153 KB, uploaded 5 March 2018]   |  


(1) Background: Cardiotonic steroids have been found to stimulate collagen synthesis and might be potential wound healing therapeutics. The objective of this study was to evaluate the feasibility of digitoxigenin and its topical formulation for wound healing; (2) Methods: In the in vitro study, the human dermal fibroblast cells were treated with digitoxigenin and collagen synthesis was assessed. In the in vivo study, digitoxigenin was applied to excisional full-thickness wounds in rats immediately after wounding and remained for three days, and wound open was evaluated over 10 days. A digitoxigenin formulation for topical administration was prepared, and the in vitro release and in vivo wound healing effect were investigated; (3) Results: The expression of procollagen in human dermal fibroblast was significantly increased with the exposure to 0.1 nM digitoxigenin. Topical application of digitoxigenin in olive oil or alginate solution for three days significantly decreased the wound open in rats. Similarly, topical administration of the developed digitoxigenin formulation for three days also significantly increased wound healing. No wound healing effects were observed at days 7 and 10 after wounding when digitoxigenin was not applied; and, (4) Conclusions: It was possible to deliver digitoxigenin using the developed formulation. However, the wound healing effect of digitoxigenin and its mechanisms need to be further investigated in future studies. View Full-Text
Keywords: digitoxigenin; wound healing; full-thickness excision wound; human dermal fibroblast; alginate digitoxigenin; wound healing; full-thickness excision wound; human dermal fibroblast; alginate

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Feng, X.; Wang, C.; Xu, Y.; Turley, J.; Xie, Z.; Pierre, S.V.; Hao, J. Topical Digitoxigenin for Wound Healing: A Feasibility Study. Bioengineering 2018, 5, 21.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Bioengineering EISSN 2306-5354 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top