Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review
Abstract
:1. Introduction
2. Typical Source and Composition of Sewage Sludge
2.1. Massive Sludge Sources
2.2. Sludge Composition and Discharge Limits
- A: primary sludge, primary sludge with physical/chemical treatment or high pollution load;
- B1: biological sludge (low load);
- B2: biological sludge from clarified water (low and middle load);
- C: mixed sludge (mix of A and B2 types);
- D: digested sludge. The respective sludge composition is thus depicted in Table 1.
3. Sludge Anaerobic Digestion and Process Stability
4. Thermophilic versus Mesophilic Sludge Anaerobic Digestion
4.1. Comparison of Mesophilic and Thermophilicanaerobic Digestion of Sludge
4.2. Sludge Dewaterability and Temperature of Digestion
4.3. Sludge Pretreatment and Its Impact on Dewaterability
4.4. Sludge Management and Rheology
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jiang, J.; Wu, J.; Poncin, S.; Li, H.Z. Rheological characteristics of highly concentrated anaerobic digested sludge. Biochem. Eng. J. 2014, 86, 57–61. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Nges, I.A.; Liu, J. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renew. Energy 2010, 35, 2200–2206. [Google Scholar] [CrossRef]
- Verstraete, W.; Vlaeminck, S.E. ZeroWasteWater: Short-cycling of wastewater resources for sustainable cities of the future. Int. J. Sustain. Dev. World Ecol. 2011, 18, 253–264. [Google Scholar] [CrossRef]
- Zábranská, J.; Dohányos, M.; Jenícek, P.; Kutil, J. Thermophilic process and enhancement of excess activated sludge degradability—Two ways of intensification of sludge treatment in the Prague central wastewater treatment plant. Water Sci. Technol. 2000, 41, 265–272. [Google Scholar]
- Ge, H.; Jensen, P.D.; Batstone, D.J. Relative kinetics of anaerobic digestion under thermophilic and mesophilic conditions. Water Sci. Technol. 2011, 64, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Gavala, H.N.; Yenal, U.; Skiadas, I.V.; Westermann, P.; Ahring, B.K. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Res. 2003, 37, 4561–4572. [Google Scholar] [CrossRef]
- McCarty, P.L.; Smith, D.P. Anaerobic wastewater treatment. Environ. Sci. Technol. 1986, 20, 1200–1206. [Google Scholar] [CrossRef]
- De la Rubia, M.A.; Riau, V.; Raposo, F.; Borja, R. Thermophilic anaerobic digestion of sewage sludge: Focus on the influence of the start-up. A review. Crit. Rev. Biotechnol. 2013, 33, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.Z.; Li, Y.Y.; Ji, M.; Qiang, H.; Deng, H.W.; Wu, Y.P. Mesophilic and Thermophilic Digestion of Thickened Waste Activated Sludge: A Comparative Study. Adv. Mater. Res. 2010, 113–116, 450–458. [Google Scholar] [CrossRef]
- Amani, T.; Sreekrishnan, T.R. Experimental Study on Key Dissimilarities between Mesophilic and Thermophilic Anaerobic Digestion of Waste Activated Sludge. Int. J. Environ. Res. 2011, 5, 10. [Google Scholar]
- Cavinato, C.B.D.; Pavan, P.; Fatone, F.; Cecchi, F. Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 2013, 55, 260–265. [Google Scholar] [CrossRef]
- Bitton, G. Anaerobic Digestion of Wastewater and Biosolids. In Wastewater Microbiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 345–369. [Google Scholar]
- Ho, D.P.; Jensen, P.D.; Batstone, D.J. Methanosarcinaceae and acetate-oxidizing pathways dominate in high-rate thermophilic anaerobic digestion of waste-activated sludge. Appl. Environ. Microbiol. 2013, 79, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Weedermann, M.; Seo, G.; Wolkowicz, G.S.K. Mathematical model of anaerobic digestion in a chemostat: Effects of syntrophy and inhibition. J. Biol. Dyn. 2013, 7, 59–85. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Zinder, S.H. Hydrogen Partial Pressures in a Thermophilic Acetate-Oxidizing Methanogenic Coculture. Appl. Environ. Microbiol. 1988, 54, 1457–1461. [Google Scholar] [PubMed]
- Kaspar, H.; Wuhrmann, K. Product inhibition in sludge digestion. Microb. Ecol. 1977, 4, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.; Liu, T. Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 2003, 53, 43–52. [Google Scholar] [CrossRef]
- Rajagopal, R.; Massé, D.I.; Singh, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 2014, 34, 2080–2089. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Ahn, Y.H.; Speece, R.E. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. 2002, 36, 4369–4385. [Google Scholar] [CrossRef]
- Li, Q.; Qiao, W.; Wang, X.; Takayanagi, K.; Shofie, M.; Li, Y.-Y. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge. Waste Manag. 2015, 36, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Kardos, L.; Juhász, Á.; Palkó, G.; Oláh, J.; Barkács, K.; Záray, G. Comparing of thermophilic and mesophilic anaerobic fermented sewage sludge based on chemical and biochemical tests. Appl. Ecol. Environ. Res. 2011, 9, 293–302. [Google Scholar] [CrossRef]
- Ruffino, B.; Campo, G.; Genon, G.; Lorenzi, E.; Novarino, D.; Scibilia, G.; Zanetti, M. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment. Bioresour. Technol. 2015, 175, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Khemkhao, M.; Nuntakumjorn, B.; Techkarnjanaruk, S.; Phalakornkule, C. Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket. Water Environ. Res. 2012, 84, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.C.; Kwon, S.J.; Woo, J.H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res. 2004, 38, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Suhartini, S.; Heaven, S.; Banks, C.J. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: Performance, dewaterability and foam control. Bioresour. Technol. 2014, 152, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Moen, G.; Stensel, H.D.; Lepistö, R.; Ferguson, J.F. Effect of Solids Retention Time on the Performance of Thermophilic and Mesophilic Digestion of Combined Municipal Wastewater Sludges. Water Environ. Res. 2003, 75, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Ocansey, F.N. New Trends In Treatment of Reject Water from Dewatering of Sludge. Master’s Thesis, Lundto University, Lund, Sweden, 2005. [Google Scholar]
- Zhou, J.; Zheng, G.; Zhang, X.; Zhou, L. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching. PLoS ONE 2014, 9, e102688. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Mavinic, D.S.; Kelly, H.G.; Ramey, W.D. Effects of temperatures and extracellular proteins on dewaterability of thermophilically digested biosolids. J. Environ. Eng. Sci. 2002, 1, 409–415. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gianico, A.; Gallipoli, A.; Mininni, G. The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: Role of the organic load. Chem. Eng. J. 2015, 270, 362–371. [Google Scholar] [CrossRef]
- Liu, J.B.; Ni, X.T.; Wei, Y.S.; Tong, J.; Wang, Y.W. Enhancement for anaerobic digestion of sewage sludge pretreated by microwave and its combined processes. Environ. Sci. 2014, 35, 3455–3460. [Google Scholar]
- Braguglia, C.M.; Gianico, A.; Mininni, G. Effect of ultrasound on particle surface charge andfilterability during sludge anaerobic digestion. Water Sci. Technol. 2009, 60, 2053–2033. [Google Scholar] [CrossRef] [PubMed]
- Braguglia, C.M.; Gianico, A.; Mininni, G. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion. J. Environ. Manag. 2012, 95, S139–S143. [Google Scholar] [CrossRef] [PubMed]
- Houghton, J.I.; Stephenson, T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability. Water Res. 2002, 36, 3620–3628. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.W.; Chong, S.H.; Ang, H.M.; Sen, T.K.; Chua, H.B. Dewaterability of Anaerobic Digested Sludge with Cations and Chitosan as Dual Conditioners. In Developments in Sustainable Chemical and Bioprocess Technology; Pogaku, R., Bono, A., Chu, C., Eds.; Springer US: New York, NY, USA, 2013; pp. 11–17. [Google Scholar]
- Baudez, J.C.M.F.; Eshtiaghi, N.; Slatter, P. The rheological behaviour of anaerobic digested sludge. Water Res. 2011, 45, 5675–5680. [Google Scholar] [CrossRef] [PubMed]
- Aranowski, R.; Hupka, J.; Jungnickel, C. Changes in Rheological Properties during Anaerobic Digestion of Activated Sludge. Physicochem. Probl. Miner. Process. 2010, 44, 13–22. [Google Scholar]
- Farno, E.; Baudez, J.C.; Parthasarathy, R.; Eshtiaghi, N. Rheological characterisation of thermally-treated anaerobic digested sludge: Impact of temperature and thermal history. Water Res. 2014, 56, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Tan, W.; Zhong, N.; Liu, L. Effects of thermal treatment on physical and expression dewatering characteristics of municipal sludge. Chem. Eng. J. 2014, 247, 223–230. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Li, A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: Influence of operating conditions and the process energetics. Water Res. 2014, 65, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Urrea, J.L.; Collado, S.; Laca, A.; Díaz, M. Rheological behaviour of activated sludge treated by thermal hydrolysis. J. Water Process Eng. 2015, 5, 153–159. [Google Scholar] [CrossRef]
- Disposal and Recycling Routes for Sewage Sludge, part-3 Scientific and Technical Report. Available online: http://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal3.pdf. (accessed on 18 February 2015).
Content | Unit | Class | ||||
---|---|---|---|---|---|---|
A | B1 | B2 | C | D | ||
Dry matter | g/L | 12 | 9 | 7 | 10 | 30 |
Volatile matter | %DM | 65 | 67 | 77 | 72 | 50 |
pH | Scale | 6 | 7 | 7 | 6.5 | 7 |
C | %VM | 51.5 | 52.5 | 53 | 51 | 49 |
H | %VM | 7 | 6 | 6.7 | 7.4 | 7.7 |
O | %VM | 35.5 | 33 | 33 | 33 | 35 |
N | %VM | 4.5 | 7.5 | 6.3 | 7.1 | 6.2 |
S | %VM | 1.5 | 1 | 1 | 1.5 | 2.1 |
C/N | Unit less | 11.4 | 7 | 8.7 | 7.2 | 7.9 |
P | %DM | 2 | 2 | 2 | 2 | 2 |
Cl | %DM | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
K | %DM | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Al | %DM | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Ca | %DM | 10 | 10 | 10 | 10 | 10 |
Fe | %DM | 2 | 2 | 2 | 2 | 2 |
Mg | %DM | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Fat | %DM | 18 | 8 | 10 | 14 | 10 |
Protein | %DM | 24 | 36 | 34 | 30 | 18 |
Fibers | %DM | 16 | 7 | 10 | 13 | 10 |
Calorific value | kWh/tDM | 4200 | 4100 | 4800 | 4600 | 3000 |
Processcondition | Parameter | Value | Author |
---|---|---|---|
Propionateoxidation | Hydrogen Partial pressure | 10−4 to 10−6 atmosphere | McCarthy & Smith, 1986 |
Ethanol oxidation | Hydrogen Partial pressure | 10−1 to 10−6 atmosphere | McCarthy & Smith, 1986 |
Total processinhibition | Free ammonia | 10 g-N/L | Apples et al., 2008 |
Inhibition of 50% methanogens | Free ammonia | 560–568 mg NH3-N/L | Apples et al., 2008 |
Significantinhibitiontomethanogens | Propionicacidconcentration | 900 mg/L | Whittle et al., 2014 |
Mesophilic System | Thermophilic System |
---|---|
During the biogas production organic material is stabilizing, fermented sludge can be applied as dung | Increased gas output due to the faster reaction; higher methane gas content and reduces hydrogen sulfide content in the biogas |
Sludge’s quantity reducing | Staying-duration shorter |
Sludge’s fertilization ability reducing | Smaller reactor volume demand |
Sludge’s water down take capacity getting better | More pathogen destruction |
Sludge’s dehydratation getting better | |
Reduced foam formation in the reactor |
Mesophilic System (Related to the Unstabilised Sludge) | Thermophilic System (Related to the Mesophilic System) |
---|---|
Due to the longer staying duration–larger reactor volume demand, higher investment’s costs | Higher heater energy demand |
Sludge water’s quality getting worse | Sludge water’s quality getting worse |
Fermentation blocking influence of heavy metals | Sensitivity to the sudden temperature fluctuation, more precise temperature regulation demand |
sensitivity to the toxic heavy metals |
Reject Water Parameter | Unit | Typical Range |
---|---|---|
NKj | mg/L | 690–1700 |
TAN | mg/L | 600–1513 |
Total Phosphorus | mg/L | Trace-130 |
TSS | mg/L | <800 |
COD | mg/L | 700–1400 |
Temperature | °C | 25–40 |
pH | Scale | 7–13 |
Alkalinity4.5 | mmol/L | 53–150 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebreeyessus, G.D.; Jenicek, P. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review. Bioengineering 2016, 3, 15. https://doi.org/10.3390/bioengineering3020015
Gebreeyessus GD, Jenicek P. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review. Bioengineering. 2016; 3(2):15. https://doi.org/10.3390/bioengineering3020015
Chicago/Turabian StyleGebreeyessus, Getachew D., and Pavel Jenicek. 2016. "Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review" Bioengineering 3, no. 2: 15. https://doi.org/10.3390/bioengineering3020015
APA StyleGebreeyessus, G. D., & Jenicek, P. (2016). Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review. Bioengineering, 3(2), 15. https://doi.org/10.3390/bioengineering3020015