Next-Gen Restorative Materials to Revolutionise Smiles
Abstract
1. Introduction
2. Methods
3. Bioactive Materials Introduce a New Era in Regenerative Dentistry
4. Nanocomposites for Aesthetic and Durable Restoration
5. Fibre-Reinforced Composites with Enhanced Strength and Aesthetics
6. Advanced Dental Materials with Antimicrobial Properties
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shenoy, A. Is it the end of the road for dental amalgam? A critical review. J. Conserv. Dent. 2008, 11, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Drummond, J.L. Degradation, fatigue, and failure of resin dental composite materials. J. Dent. Res. 2008, 87, 710–719. [Google Scholar] [CrossRef]
- Denry, I.; Kelly, J.R. Emerging ceramic-based materials for dentistry. J. Dent. Res. 2014, 93, 1235–1242. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Ye, C.; Zhou, Y.; Yan, F.; Chen, Z.; Xiao, Y. Biomaterials-based strategy for dental-oral tissue regeneration: Current clinical application, laboratory development, and future direction. Biomaterials 2026, 326, 123714. [Google Scholar] [CrossRef]
- Zhang, O.L.; Niu, J.Y.; Yin, I.X.; Yu, O.Y.; Mei, M.L.; Chu, C.H. Bioactive Materials for Caries Management: A Literature Review. Dent. J. 2023, 11, 59. [Google Scholar] [CrossRef]
- Yu, O.Y.; Panpisut, P.; Baysan, A.; Chu, C.H. Editorial: Minimal intervention dentistry for dental caries management. Front. Oral Health 2025, 6, 1565605. [Google Scholar] [CrossRef] [PubMed]
- Abozaid, D.; Azab, A.; Bahnsawy, M.A.; Eldebawy, M.; Ayad, A.; Soomro, R.; Elwakeel, E.; Mohamed, M.A. Bioactive restorative materials in dentistry: A comprehensive review of mechanisms, clinical applications, and future directions. Odontology 2025. ahead of print. [Google Scholar] [CrossRef]
- Dennison, J.B.; Hamilton, J.C. Treatment decisions and conservation of tooth structure. Dent. Clin. N. Am. 2005, 49, 825–845, vii. [Google Scholar] [CrossRef]
- Nizami, M.Z.I.; Xu, V.W.; Yin, I.X.; Lung, C.Y.K.; Niu, J.Y.; Chu, C.H. Ceramic Nanomaterials in Caries Prevention: A Narrative Review. Nanomaterials 2022, 12, 4416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, Y.; Chen, Y.; Chen, X.; Li, A.; Wang, J.; Shen, D.; Zheng, S. A review of new generation of dental restorative resin composites with antibacterial, remineralizing and self-healing capabilities. Discov. Nano 2024, 19, 189. [Google Scholar] [CrossRef]
- Chen, F.; Sun, L.; Luo, H.; Yu, P.; Lin, J. Influence of filler types on wear and surface hardness of composite resin restorations. J. Appl. Biomater. Funct. Mater. 2023, 21, 22808000231193524. [Google Scholar] [CrossRef]
- Koc-Vural, U.; Kerimova, L.; Baltacioglu, I.H.; Kiremitci, A. Bond strength of dental nanocomposites repaired with a bulkfill composite. J. Clin. Exp. Dent. 2017, 9, e437–e442. [Google Scholar] [CrossRef] [PubMed]
- Beyth, N.; Bahir, R.; Matalon, S.; Domb, A.J.; Weiss, E.I. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent. Mater. 2008, 24, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Milosan, I.; Bedo, T.; Gabor, C.; Pop, M.A. Mechanical Characteristics of Glass-Fiber-Reinforced Polyester Composite Materials. Materials 2025, 18, 3595. [Google Scholar] [CrossRef]
- Fareed, M.A.; Masri, M.A.; Al-sammarraie, A.W.M.; Akil, B.M.E. Fiber-Reinforced Composites in Fixed Prosthodontics: A Comprehensive Overview of Their Historical Development, Types, Techniques, and Longevity. Prosthesis 2025, 7, 139. [Google Scholar] [CrossRef]
- Nezir, M.; Dincturk, B.A.; Sari, C.; Alp, C.K.; Altinisik, H. Effect of fiber-reinforced direct restorative materials on the fracture resistance of endodontically treated mandibular molars restored with a conservative endodontic cavity design. Clin. Oral Investig. 2024, 28, 316. [Google Scholar] [CrossRef]
- Krishna Alla, R.; Lakshmi Sanka, G.S.S.J.; Saridena, D.S.N.G.; Av, R.; Makv, R.; Raju Mantena, S. Fiber-Reinforced Composites in Dentistry: Enhancing structural integrity and aesthetic appeal. Int. J. Dent. Mater. 2023, 5, 78–85. [Google Scholar] [CrossRef]
- Scribante, A.; Vallittu, P.K.; Ozcan, M.; Lassila, L.V.J.; Gandini, P.; Sfondrini, M.F. Travel beyond Clinical Uses of Fiber Reinforced Composites (FRCs) in Dentistry: A Review of Past Employments, Present Applications, and Future Perspectives. Biomed. Res. Int. 2018, 2018, 1498901. [Google Scholar] [CrossRef]
- Demiris, G.; Oliver, D.P.; Washington, K.T. Chapter 3—Defining and Analyzing the Problem. In Behavioral Intervention Research in Hospice and Palliative Care; Demiris, G., Oliver, D.P., Washington, K.T., Eds.; Academic Press: Amsterdam, The Netherlands, 2019; pp. 27–39. [Google Scholar]
- Sun, J.; Jiang, J.; Huang, Z.; Ma, X.; Shen, T.; Pan, J.; Bi, Z. Smart biomaterials in restorative dentistry: Recent advances and future perspectives. Mater. Today Bio 2025, 35, 102349. [Google Scholar] [CrossRef]
- Sauro, S.; Carvalho, R.M.; Ferracane, J. The rise of advanced bioactive restorative materials: Are they redefining operative dentistry? Dent. Mater. 2025, 41, 1411–1429. [Google Scholar] [CrossRef]
- Williams, D.F. Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. Bioact. Mater. 2022, 10, 306–322. [Google Scholar] [CrossRef]
- Almulhim, K.S.; Syed, M.R.; Alqahtani, N.; Alamoudi, M.; Khan, M.; Ahmed, S.Z.; Khan, A.S. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. Materials 2022, 15, 6864. [Google Scholar] [CrossRef]
- Dai, L.L.; Nudelman, F.; Chu, C.H.; Lo, E.C.M.; Mei, M.L. The effects of strontium-doped bioactive glass and fluoride on hydroxyapatite crystallization. J. Dent. 2021, 105, 103581. [Google Scholar] [CrossRef]
- Doura Alomari, H.; Alsayed Tolibah, Y.; Kouchaji, C. Efficacy of BioMin F and NovaMin toothpastes against streptococcus mutans: An in vitro study. BDJ Open 2024, 10, 20. [Google Scholar] [CrossRef]
- Li, X.; De Munck, J.; Yoshihara, K.; Pedano, M.; Van Landuyt, K.; Chen, Z.; Van Meerbeek, B. Re-mineralizing dentin using an experimental tricalcium silicate cement with biomimetic analogs. Dent. Mater. 2017, 33, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Al-Saudi, K.W. A paradigm shift from calcium hydroxide to bioceramics in direct pulp capping: A narrative review. J. Conserv. Dent. Endod. 2024, 27, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Khvostenko, D.; Hilton, T.J.; Ferracane, J.L.; Mitchell, J.C.; Kruzic, J.J. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent. Mater. 2016, 32, 73–81. [Google Scholar] [CrossRef]
- M, N.; Jose, S.; Thomas, G.; Shyam, A.; M, A. Antimicrobial Properties of Newer Calcium Silicate-Based Pulp-Capping Agents Against Enterococcus Faecalis and Streptococcus Mutans: An In-Vitro Evaluation. Cureus 2024, 16, e70459. [Google Scholar] [CrossRef] [PubMed]
- Bilvinaite, G.; Drukteinis, S.; Simoliunas, E.; Widbiller, M.; Sakirzanovas, S. Effect of Calcium Silicate-Based Intracanal Medicament and Calcium Hydroxide on Growth Factor TGF-beta1 Release from Root Canal Dentine. J. Funct. Biomater. 2024, 15, 139. [Google Scholar] [CrossRef]
- Zanini, M. Outcomes of Direct Pulp Capping After Carious Excavation of Deep Caries on Permanent Mature Teeth: An Ancillary Study Derived From A Randomised Clinical Trial. Eur. Endod. J. 2025, 10, 514–524. [Google Scholar] [CrossRef]
- Schmalz, G.; Hickel, R.; Price, R.B.; Platt, J.A. Bioactivity of Dental Restorative Materials: FDI Policy Statement. Int. Dent. J. 2023, 73, 21–27. [Google Scholar] [CrossRef]
- Andrei, M.; Vacaru, R.P.; Coricovac, A.; Ilinca, R.; Didilescu, A.C.; Demetrescu, I. The Effect of Calcium-Silicate Cements on Reparative Dentinogenesis Following Direct Pulp Capping on Animal Models. Molecules 2021, 26, 2725. [Google Scholar] [CrossRef]
- Ye, Y.; Hosseinpour, S.; Wen, J.; Peters, O.A. In Vitro Bioactivity and Cytotoxicity Assessment of Two Root Canal Sealers. Materials 2025, 18, 3717. [Google Scholar] [CrossRef]
- Cannillo, V.; Salvatori, R.; Bergamini, S.; Bellucci, D.; Bertoldi, C. Bioactive Glasses in Periodontal Regeneration: Existing Strategies and Future Prospects-A Literature Review. Materials 2022, 15, 2194. [Google Scholar] [CrossRef]
- Stangl, F.K.; Huth, K.C.; Hogg, C. Ion release from bioactive dental liner materials by ion chromatography. Dent. Mater. 2025, 41, 1242–1250. [Google Scholar] [CrossRef]
- Twigg, J.; Vaid, N.; Chavda, A.; Seymour, D.; Hyde, T.P.; Nixon, P.J. A Randomised Controlled Trial of Postoperative Sensitivity after Class II Restoration with Bulk-Fill vs Conventional Composites. Eur. J. Prosthodont. Restor. Dent. 2024, 32, 234–242. [Google Scholar] [CrossRef]
- Nizami, M.Z.I.; Jindarojanakul, A.; Ma, Q.; Lee, S.J.; Sun, J. Advances in Bioactive Dental Adhesives for Caries Prevention: A State-of-the-Art Review. J. Funct. Biomater. 2025, 16, 418. [Google Scholar] [CrossRef] [PubMed]
- Altan, H.; Tosun, G. The setting mechanism of mineral trioxide aggregate. J. Istanb. Univ. Fac. Dent. 2016, 50, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Schuster, L.; Sielker, S.; Kleinheinz, J.; Dammaschke, T. Effect of light-cured pulp capping materials on human dental pulp cells in vitro. Int. Endod. J. 2025, 58, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Ellakwa, D.E.-S.; Abu-Khadra, A.S.; Ellakwa, T.E. Insight into bioactive glass and bio-ceramics uses: Unveiling recent advances for biomedical application. Discov. Mater. 2025, 5, 78. [Google Scholar] [CrossRef]
- Pardal-Peláez, B.; Gómez-Polo, C.; Flores-Fraile, J.; Quispe-López, N.; Serrano-Belmonte, I.; Montero, J. Three-Dimensional Scaffolds Designed and Printed Using CAD/CAM Technology: A Systematic Review. Appl. Sci. 2024, 14, 9877. [Google Scholar] [CrossRef]
- Deshpande, A.S.; Daddanala, A.; Kaur, M.; Chahen, N.A.; Patel, M.; Tummeti, N. Nanotechnology in dentistry: Bridging science and practice. Bioinformation 2025, 21, 522–528. [Google Scholar] [CrossRef]
- Gouveia, Z.; Finer, Y.; Santerre, J.P. Development of Functional and Hydrolytically Stable Vinyl Monomers as Methacrylate Dental Resin Restorative Alternatives. Adv. Healthc. Mater. 2025, 14, e2403427. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.; Sun, H.; Liu, Y.; Liu, W.; Su, B.; Li, S. The Development of Filler Morphology in Dental Resin Composites: A Review. Materials 2021, 14, 5612. [Google Scholar] [CrossRef]
- Habib, E.; Wang, R.; Wang, Y.; Zhu, M.; Zhu, X.X. Inorganic Fillers for Dental Resin Composites: Present and Future. ACS Biomater. Sci. Eng. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Ozdemir, S.; Ayaz, I.; Cetin Tuncer, N.; Barutcugil, C.; Dundar, A. Evaluation of Polymerization Shrinkage, Microhardness, and Depth of Cure of Different Types of Bulk-Fill Composites. J. Esthet. Restor. Dent. 2025, 37, 1920–1929. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Suliman, A.A.; Mohamed, E.A.; Rodgers, B.; Altak, A.; Johnston, W.M. Mechanical Properties of Bisacryl-, Composite-, and Ceramic-resin Restorative Materials. Oper. Dent. 2022, 47, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.M.; Bedini, R.; Pameijer, C.H.; Somma, F. Flexural properties of endodontic posts and human root dentin. Dent. Mater. 2007, 23, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Alzraikat, H.; Burrow, M.F.; Maghaireh, G.A.; Taha, N.A. Nanofilled Resin Composite Properties and Clinical Performance: A Review. Oper. Dent. 2018, 43, E173–E190. [Google Scholar] [CrossRef]
- Bhargava, T.; Yadav, M.; Vijayavargiya, N.; Chohan, H.; Purusothaman, A.; Subramani, S.K. Evaluating the Effect of NanoFilled Composite Restorations on the Wear Resistance of Posterior Teeth: An RCT. J. Pharm. Bioallied Sci. 2024, 16, S930–S932. [Google Scholar] [CrossRef]
- Kumar, U.; Kumar, D.; Gosai, K.N.; Dalal, D.; Pragnya, B.; Nagarajan, S. Effectiveness of Nanoparticles in Enhancing Bond Strength in Adhesive Dentistry. J. Pharm. Bioallied Sci. 2024, 16, S3772–S3774. [Google Scholar] [CrossRef]
- Tobias, G.; Chackartchi, T.; Mann, J.; Haim, D.; Findler, M. Survival Rates of Amalgam and Composite Resin Restorations from Big Data Real-Life Databases in the Era of Restricted Dental Mercury Use. Bioengineering 2024, 11, 579. [Google Scholar] [CrossRef]
- Hong, G.; Yang, J.; Jin, X.; Wu, T.; Dai, S.; Xie, H.; Chen, C. Mechanical Properties of Nanohybrid Resin Composites Containing Various Mass Fractions of Modified Zirconia Particles. Int. J. Nanomed. 2020, 15, 9891–9907. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, H.; Kanie, T.; Fujii, K.; Takahashi, H.; Ban, S. Effect of filler properties in composite resins on light transmittance characteristics and color. Dent. Mater. J. 2007, 26, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, S.; Khandelwal, S.; Khanvilkar, U.; Bhat, S.P.; Bhardwaj, A.; Pawar, A.M.; Reda, R.; Testarelli, L.; Di Nardo, D. A Comparative Analysis of Fluorescence Properties in Composite Restorative Materials: An In Vitro and In Vivo Study. J. Compos. Sci. 2025, 9, 236. [Google Scholar] [CrossRef]
- Khatri, A.; Nandlal, B. Staining of a Conventional and a Nanofilled Composite Resin Exposed in vitro to Liquid Ingested by Children. Int. J. Clin. Pediatr. Dent. 2010, 3, 183–188. [Google Scholar] [CrossRef]
- Raeisosadat, F.; Abdoh Tabrizi, M.; Hashemi Zonooz, S.; Nakhostin, A.; Raoufinejad, F.; Javid, B.; Jamali Zavare, F. Staining Microhybrid Composite Resins with Tea and Coffee. Avicenna J. Dent. Res. 2013, 9, e30443. [Google Scholar] [CrossRef]
- Sahin, M.A.; Yenidunya, O.G.; Kaleli, I.; Atca, M. Surface roughness and biofilm formation on tooth-colored restorative materials immersed in food-simulating liquids. BMC Oral Health 2025, 25, 1543. [Google Scholar] [CrossRef]
- Lee, I.B.; Son, H.H.; Um, C.M. Rheologic properties of flowable, conventional hybrid, and condensable composite resins. Dent. Mater. 2003, 19, 298–307. [Google Scholar] [CrossRef]
- Bagherian, A.; Shirazi, A.S. Flowable composite as fissure sealing material? A systematic review and meta-analysis. Br. Dent. J. 2018, 224, 92–97. [Google Scholar] [CrossRef]
- Singh, C.; Kaur, K.; Kapoor, K. Retention of pit and fissure sealant versus flowable composite: An in vivo one-year comparative evaluation. J. Indian Soc. Pedod. Prev. Dent. 2019, 37, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Tas, C.E.; Sevinis Ozbulut, E.B.; Ceven, O.F.; Tas, B.A.; Unal, S.; Unal, H. Purification and Sorting of Halloysite Nanotubes into Homogeneous, Agglomeration-Free Fractions by Polydopamine Functionalization. ACS Omega 2020, 5, 17962–17972. [Google Scholar] [CrossRef] [PubMed]
- Somani, R.; Som, N.K.; Jaidka, S.; Hussain, S. Comparative Evaluation of Microleakage in Various Placement Techniques of Composite Restoration: An In Vitro Study. Int. J. Clin. Pediatr. Dent. 2020, 13, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Hajjaj, M.S.; Alhowirini, L.F.; Alghamdi, R.S.; Merdad, Y.M.; Filemban, H.K.; Bawazir, M.; Alothman, K.A.; Turkestani, N.A.; Alzahrani, S.J. Effects of Preheating on the Mechanical Properties of Dental Composites. Crystals 2025, 15, 632. [Google Scholar] [CrossRef]
- Almutairi, N.; Alhussein, A.; Alenizy, M.; Ba-Armah, I.; Alqarni, H.; Oates, T.W.; Masri, R.; Hack, G.D.; Sun, J.; Weir, M.D.; et al. Novel Bioactive Resin Coating with Calcium Phosphate Nanoparticles for Antibacterial and Remineralization Abilities to Combat Tooth Root Caries. Int. J. Mol. Sci. 2025, 26, 2490. [Google Scholar] [CrossRef]
- Kasraei, S.; Sami, L.; Hendi, S.; Alikhani, M.Y.; Rezaei-Soufi, L.; Khamverdi, Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor. Dent. Endod. 2014, 39, 109–114. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I.; Maaza, M.; Bocchetta, P. Self-Healing Nanocomposites—Advancements and Aerospace Applications. J. Compos. Sci. 2023, 7, 148. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Chen, D.; Li, L. Analysis of Cosmetic Effect of Nanocomposite Resin on Anterior Teeth. Comput. Math. Methods Med. 2021, 2021, 7367320. [Google Scholar] [CrossRef]
- Wilson, N.; Lynch, C. The great amalgam debate or debacle: A perspective. Br. Dent. J. 2022, 233, 870–871. [Google Scholar] [CrossRef]
- Bijelic, J.; Garoushi, S.; Vallittu, P.K.; Lassila, L.V. Fracture load of tooth restored with fiber post and experimental short fiber composite. Open Dent. J. 2011, 5, 58–65. [Google Scholar] [CrossRef]
- Kim, S.H.; Watts, D.C. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J. Prosthet. Dent. 2004, 91, 274–280. [Google Scholar] [CrossRef]
- Dhital, S.; Rodrigues, C.; Zhang, Y.; Kim, J. Metal-ceramic and porcelain-veneered lithium disilicate crowns: A stress profile comparison using a viscoelastic finite element model. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 412–423. [Google Scholar] [CrossRef]
- Gosami, M.V. Restoring the rear guard-the biomimetic approach to posterior teeth. Int. J. Appl. Dent. Sci. 2025, 11, 435–437. [Google Scholar] [CrossRef]
- Deliperi, S.; Congiu, M.D.; Bardwell, D.N. Integration of composite and ceramic restorations in tetracycline-bleached teeth: A case report. J. Esthet. Restor. Dent. 2006, 18, 126–134. [Google Scholar] [CrossRef]
- van Heumen, C.C.; Tanner, J.; van Dijken, J.W.; Pikaar, R.; Lassila, L.V.; Creugers, N.H.; Vallittu, P.K.; Kreulen, C.M. Five-year survival of 3-unit fiber-reinforced composite fixed partial dentures in the posterior area. Dent. Mater. 2010, 26, 954–960. [Google Scholar] [CrossRef]
- Kumbuloglu, O.; Saracoglu, A.; Ozcan, M. Pilot study of unidirectional E-glass fibre-reinforced composite resin splints: Up to 4.5-year clinical follow-up. J. Dent. 2011, 39, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Lucchese, A.; Manuelli, M.; Ciuffreda, C.; Albertini, P.; Gherlone, E.; Perillo, L. Comparison between fiber-reinforced polymers and stainless steel orthodontic retainers. Korean J. Orthod. 2018, 48, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Behr, M.; Rosentritt, M.; Lang, R.; Handel, G. Glass fiber-reinforced abutments for dental implants. A pilot study. Clin. Oral Implant. Res. 2001, 12, 174–178. [Google Scholar] [CrossRef]
- Reza Rezaie, H.; Beigi Rizi, H.; Rezaei Khamseh, M.M.; Öchsner, A. Dental Restorative Materials. In A Review on Dental Materials; Rezaie, H.R., Rizi, H.B., Khamseh, M.M.R., Öchsner, A., Eds.; Springer International Publishing: Cham, Germany, 2020; pp. 47–171. [Google Scholar]
- Baranoski, J.F.; Catapano, J.S.; Rutledge, C.; Cole, T.S.; Majmundar, N.; Winkler, E.A.; Srinivasan, V.M.; Jadhav, A.P.; Ducruet, A.F.; Albuquerque, F.C. Endovascular Treatment of Cerebrovascular Lesions Using Nickel- or Nitinol-Containing Devices in Patients with Nickel Allergies. AJNR Am. J. Neuroradiol. 2023, 44, 939–942. [Google Scholar] [CrossRef]
- Choi, J.W.; Bae, I.H.; Noh, T.H.; Ju, S.W.; Lee, T.K.; Ahn, J.S.; Jeong, T.S.; Huh, J.B. Wear of primary teeth caused by opposed all-ceramic or stainless steel crowns. J. Adv. Prosthodont. 2016, 8, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Guazzato, M.; Proos, K.; Quach, L.; Swain, M.V. Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials 2004, 25, 5045–5052. [Google Scholar] [CrossRef]
- Mangoush, E.; Lassila, L.; Vallittu, P.K.; Garoushi, S. Shear-bond strength and optical properties of short fiber-reinforced CAD/CAM composite blocks. Eur. J. Oral Sci. 2021, 129, e12815. [Google Scholar] [CrossRef]
- Garoushi, S.; Mangoush, E.; Vallittu, M.; Lassila, L. Short fiber reinforced composite: A new alternative for direct onlay restorations. Open Dent. J. 2013, 7, 181–185. [Google Scholar] [CrossRef]
- Suriani, M.J.; Rapi, H.Z.; Ilyas, R.A.; Petru, M.; Sapuan, S.M. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers 2021, 13, 1323. [Google Scholar] [CrossRef]
- Thadathil Varghese, J.; Cho, K.; Raju; Farrar, P.; Prentice, L.; Prusty, B.G. Influence of silane coupling agent on the mechanical performance of flowable fibre-reinforced dental composites. Dent. Mater. 2022, 38, 1173–1183. [Google Scholar] [CrossRef]
- Nicali, A.; Pradal, G.; Brandolini, G.; Mantelli, A.; Levi, M. Novel 3D printing method to reinforce implant-supported denture fiberglass as material for implant prosthesis: A pilot study. Clin. Exp. Dent. Res. 2022, 8, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Vallittu, P.K. An overview of development and status of fiber-reinforced composites as dental and medical biomaterials. Acta Biomater. Odontol. Scand. 2018, 4, 44–55. [Google Scholar] [CrossRef]
- Zhang, O.L.; Niu, J.Y.; Yu, O.Y.; Mei, M.L.; Jakubovics, N.S.; Chu, C.H. Peptide Designs for Use in Caries Management: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 4247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, O.L.; Niu, J.Y.; Yin, I.X.; Yu, O.Y.; Mei, M.L.; Chu, C.H. Antibacterial Properties of the Antimicrobial Peptide Gallic Acid-Polyphemusin I (GAPI). Antibiotics 2023, 12, 1350. [Google Scholar] [CrossRef]
- Pawar, V.; Shinde, V. Bioglass and hybrid bioactive material: A review on the fabrication, therapeutic potential and applications in wound healing. Hybrid. Adv. 2024, 6, 100196. [Google Scholar] [CrossRef]
- El-Morsy, M.T.; Khafaga, D.S.R.; Diab, A.H.; Faried, H.; Shehab, S.; Elhady, R.H.; Ali, G.A.M. Recent advancements in multifunctional nanomaterials for dental applications. RSC Adv. 2025, 15, 49009–49029. [Google Scholar] [CrossRef] [PubMed]
- Haval, M.; Unakal, C.; Ghagane, S.C.; Pandit, B.R.; Daniel, E.; Siewdass, P.; Ekimeri, K.; Rajamanickam, V.; Justiz-Vaillant, A.; Lootawan, K.A.; et al. Biofilms Exposed: Innovative Imaging and Therapeutic Platforms for Persistent Infections. Antibiotics 2025, 14, 865. [Google Scholar] [CrossRef] [PubMed]
- Waltimo, T.; Luo, G.; Samaranayake, L.P.; Vallittu, P.K. Glass fibre-reinforced composite laced with chlorhexidine digluconate and yeast adhesion. J. Mater. Sci. Mater. Med. 2004, 15, 117–121. [Google Scholar] [CrossRef] [PubMed]
| Parameter | Bioactive Materials [Reference] | Conventional Materials [Reference] |
|---|---|---|
| Biological Impact | Promotes remineralisation and healing [21] | Inert; no interaction with tissues [20] |
| Marginal Seal | Forms hydroxyapatite bond, sealing gaps [21] | Prone to microleakage due to shrinkage [24] |
| Antimicrobial Effect | pH-mediated antimicrobial activity [21] | None (unless there are additives such as fluoride) [20] |
| Pulp Compatibility | Soothes pulp and reduces inflammation [21] | Risk of irritation and postoperative sensitivity [37] |
| Parameter | Nanocomposites [Reference] | Conventional Composites [Reference] |
|---|---|---|
| Filler Size | 1–100 nm nanoparticles/nanoclusters [43] | 10–50 µm macrofillers [54] |
| Polymerisation Shrinkage | 1.5% (reduced microleakage) [47] | 2–5% (higher risk of gaps) [45] |
| Flexural Strength | >150 MPa (matches dentin) [48] | 80–100 MPa (conventional composites) [48] |
| Wear Resistance | >44–60% than conventional composite [50] | Prone to occlusal wear [51] |
| Translucency | Enamel-like translucency [55] | Opaque/glossy surface [55] |
| Bond Strength | 27–38 MPa (hybrid layer with dentin) [52] | 19–25 MPa (weaker interface) [52] |
| Parameter | Fibre-Reinforced Composites [Reference] | Conventional Materials [Reference] |
|---|---|---|
| Mechanical Strength | High flexural strength, anisotropic flexibility absorbs occlusal stress [14] | Metals: high rigidity but no flexibility Porcelain: brittle and prone to fracture [14] |
| Aesthetic Integration | Translucent fibres mimic enamel; colour-matched to dentin [17] | Metals: grey margins Porcelain: need to mask metal frameworks [73] |
| Tooth Preservation | Use of adhesive preserves healthy structure [74] | Full crowns require aggressive preparation [75] |
| Clinical Applications | Bridges, onlays, splints, and implant prostheses [74,76,77,78,79] | Metals: limited to crowns/bridges; Porcelain: mostly crowns/veneers [80] |
| Biocompatibility | Metal-free; reduced allergy risk [76] | Metals: may cause hypersensitivity [81] Porcelain: requires metal substrates [80] |
| Longevity | High fatigue resistance; good survival rate for bridges [72] | Metals: may cause opposing tooth wear [82] Porcelain: easy to fracture [83] |
| Additional Benefits | CAD/CAM customisation [84] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Niu, J.Y.; Ge, K.X.; Yin, I.X.; Zhang, O.L.; Zhao, I.S.; Chu, C.H. Next-Gen Restorative Materials to Revolutionise Smiles. Bioengineering 2026, 13, 143. https://doi.org/10.3390/bioengineering13020143
Niu JY, Ge KX, Yin IX, Zhang OL, Zhao IS, Chu CH. Next-Gen Restorative Materials to Revolutionise Smiles. Bioengineering. 2026; 13(2):143. https://doi.org/10.3390/bioengineering13020143
Chicago/Turabian StyleNiu, John Yun, Kelsey Xingyun Ge, Iris Xiaoxue Yin, Olivia Lili Zhang, Irene Shuping Zhao, and Chun Hung Chu. 2026. "Next-Gen Restorative Materials to Revolutionise Smiles" Bioengineering 13, no. 2: 143. https://doi.org/10.3390/bioengineering13020143
APA StyleNiu, J. Y., Ge, K. X., Yin, I. X., Zhang, O. L., Zhao, I. S., & Chu, C. H. (2026). Next-Gen Restorative Materials to Revolutionise Smiles. Bioengineering, 13(2), 143. https://doi.org/10.3390/bioengineering13020143

