Cross-Instrument Data Utilization Based on Laser-Induced Breakdown Spectroscopy (LIBS) for the Identification of Akebia Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Setup and Measurement
2.1.1. L-RLIBS
2.1.2. H-RLIBS
2.2. Akebia Species Samples
2.3. Data Analysis
2.3.1. Data Pre-Processing
2.3.2. Feature Selection
2.4. Random Forest (RF) Algorithm
3. Results and Discussions
3.1. Spectra of Akebia Species Samples
3.2. Model Building
3.2.1. Classification Using Single-Instrument Data
3.2.2. Classification Using Cross-Instrument Data
3.3. Spectral Correction Combined with Feature Selection (SCFS)
3.3.1. Spectral Correction Based on a Standard Lamp
3.3.2. Feature Selection Based on ANOVA
3.4. Post-Processing (PP)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, P.; Zang, F.; Li, C.; Lin, F.; Zang, D.; Li, B.; Zheng, Y. The Akebia genus as a novel forest crop: A review of its genetic resources, nutritional components, biosynthesis, and biological studies. Front. Plant Sci. 2022, 13, 936571. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; Chinese Medical Science and Technology Press: Beijing, China, 2020; Volume 1. [Google Scholar]
- Lord, G.M.; Tagore, R.; Cook, T.; Gower, P.; Pusey, C.D. Nephropathy caused by Chinese herbs in the UK. Lancet 1999, 354, 481–482. [Google Scholar] [CrossRef]
- Cosyns, J.P. Aristolochic Acid and ‘Chinese Herbs Nephropathy’ A Review of the Evidence to Date. Drug Saf. 2003, 26, 33–48. [Google Scholar] [CrossRef]
- Wu, L.; Wang, B.; Zhao, M.; Liu, W.; Zhang, P.; Shi, Y.; Chen, S. Rapid identification of officinal Akebiae Caulis and its toxic adulterant Aristolochiae Manshuriensis Caulis (Aristolochia manshuriensis) by loop-mediated isothermal amplification. Front. Plant Sci. 2016, 7, 887. [Google Scholar] [CrossRef]
- Jadot, I.; Declèves, A.E.; Nortier, J.; Caron, N. An integrated view of aristolochic acid nephropathy: Update of the literature. Int. J. Mol. Sci. 2017, 18, 297. [Google Scholar] [CrossRef] [PubMed]
- Uang, L.Q.; Yuan, Y.; Yuan, Q.J.; Jin, X.H.; Zhang, W.; Qian, D.; Jiang, C. Key problems in development of molecular identification in traditional Chinese medicine. China J. Chin. Mater. Medica 2014, 39, 3663–3667. [Google Scholar]
- Song, X.Y.; Li, Y.D.; Shi, Y.P.; Jin, L.; Chen, J. Quality control of traditional Chinese medicines: A review. Chin. J. Nat. Med. 2013, 11, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.T.; Xie, P.S.; Liu, H.P. Evaluation of traditional Chinese herbal medicine: Chaihu (Bupleuri Radix) by both high-performance liquid chromatographic and high-performance thin-layer chromatographic fingerprint and chemometric analysis. J. Chromatogr. A 2009, 1216, 2150–2155. [Google Scholar] [CrossRef]
- Fan, X.H.; Cheng, Y.Y.; Ye, Z.L.; Lin, R.C.; Qian, Z.Z. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines. Anal. Chim. Acta 2006, 555, 217–224. [Google Scholar] [CrossRef]
- Yoon, T.L.; Yeap, Z.Q.; Tan, C.S.; Chen, Y.; Chen, J.; Yam, M.F. A novel machine learning scheme for classification of medicinal herbs based on 2D-FTIR fingerprints. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120440. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, P.; Xin, T.; Lou, Q.; Li, R.; Fu, W.; Song, J. Droplet digital PCR for the identification of plant-derived adulterants in highly processed products. Phytomedicine 2022, 105, 154376. [Google Scholar] [CrossRef]
- Elbana, T.; Gaber, H.M.; Costa, V.; Augusto, A.S.; Castro, J.P.; Machado, R.C.; Pereira-Filho, E.R. Laser Induced-Breakdown Spectroscopy (LIBS): History, Fundamentals, Applications and Potentialities. Quim. Nova 2019, 42, 527–545. [Google Scholar] [CrossRef]
- Nie, X.C. Application of laser-induced breakdown spectroscopy in deep space exploration. In Proceedings of the Second Target Recognition and Artificial Intelligence Summit Forum, Changchun, China, 20–22 August 2019; Volume 11427, pp. 310–316. [Google Scholar]
- Knight, A.K.; Scherbarth, N.L.; Cremers, D.A.; Ferris, M.J. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc. 2000, 54, 331–340. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Jain, J.C.; Goueguel, C.L.; McIntyre, D.L.; Singh, J.P. Determination of rare earth elements in geological samples using laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 2018, 72, 114–121. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, S.; Ren, X.; Li, M.; Xu, Y.; Zhang, T.; Li, H. Rapid quantitative analysis of multiple rare earth elements in NdFeB alloys based on laser-induced breakdown spectroscopy (LIBS) and random forest (RF). Spectrochim. Acta Part B At. Spectrosc. 2024, 217, 106957. [Google Scholar] [CrossRef]
- Gaudiuso, R.; Melikechi, N.; Abdel-Salam, Z.A.; Harith, M.A.; Palleschi, V.; Motto-Ros, V.; Busser, B. Laser-induced breakdown spectroscopy for human and animal health: A review. Spectrochim. Acta Part B At. Spectrosc. 2019, 152, 123–148. [Google Scholar] [CrossRef]
- Shi, S.; Pi, L.; Peng, L.; Zhang, D.; Ma, H.; Liu, Y.; Guo, L. High-precision identification of breast cancer based on end-to-end parallel spectral convolutional neural network assisted laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2025, 40, 478–486. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Li, H. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring. Spectrochim. Acta Part B At. Spectrosc. 2021, 181, 106218. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, J.; Feng, Z.; Yang, R.; Yang, Y.; Yu, S.; Zhu, J. Origin identification of Ginkgo biloba leaves based on laser-induced breakdown spectroscopy (LIBS). Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106192. [Google Scholar] [CrossRef]
- Huang, T.; Bi, W.; Song, Y.; Yu, X.; Wang, L.; Sun, J.; Jiang, C. DMC-LIBSAS: A Laser-Induced Breakdown Spectroscopy Analysis System with Double-Multi Convolutional Neural Network for Accurate Traceability of Chinese Medicinal Materials. Sensors 2025, 25, 2104. [Google Scholar] [CrossRef]
- Shen, T.; Li, W.; Zhang, X.; Kong, W.; Liu, F.; Wang, W.; Peng, J. High-sensitivity determination of nutrient elements in Panax notoginseng by laser-induced breakdown spectroscopy and chemometric methods. Molecules 2019, 24, 1525. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Lv, J.; Liu, K.; Li, Q.; Tang, Z.; Zhou, R.; Zeng, X. Fast detection of harmful trace elements in glycyrrhiza using standard addition and internal standard method–Laser-induced breakdown spectroscopy (SAIS-LIBS). Microchem. J. 2021, 168, 106408. [Google Scholar] [CrossRef]
- Wei, K.; Teng, G.; Wang, Q.; Xu, X.; Zhao, Z.; Liu, H.; Lu, B. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods 2023, 12, 1710. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Ma, M.; Yin, G.; Chen, X.; Chen, F.; Zhao, N. Study on microdamage quantitative analysis of Cd and Pb in leaves by laser induced breakdown spectroscopy. Chemosensors 2022, 10, 242. [Google Scholar] [CrossRef]
- Chen, R.; Li, X.; Li, W.; Yang, R.; Lu, Y.; You, Z.; Liu, F. Crater-Spectrum Feature Fusion Method for Panax notoginseng Cadmium Detection Using Laser-Induced Breakdown Spectroscopy. Foods 2024, 13, 1083. [Google Scholar] [CrossRef]
- Kabir, M.H.; Guindo, M.L.; Chen, R.; Luo, X.; Kong, W.; Liu, F. Heavy Metal Detection in Fritillaria thunbergii Using Laser-Induced Breakdown Spectroscopy Coupled with Variable Selection Algorithm and Chemometrics. Foods 2023, 12, 1125. [Google Scholar] [CrossRef]
- Cui, Z.; Li, L.; Shu, R.; Yang, F.; Chen, Y.; Xu, X.; Xu, W. Laser-induced breakdown spectroscopy chemometrics for ChemCam Mars in situ data analysis based on deep learning and pretrained-model-based transfer learning. J. Anal. At. Spectrom. 2025, 40, 2306–2326. [Google Scholar] [CrossRef]
- Sun, C.; Xu, W.; Tan, Y.; Zhang, Y.; Yue, Z.; Zou, L.; Yu, J. From machine learning to transfer learning in laser-induced breakdown spectroscopy analysis of rocks for Mars exploration. Sci. Rep. 2021, 11, 21379. [Google Scholar] [CrossRef]
- Dong, M.; Li, Z.; Cai, J.; Lu, W.; Chen, X.; Bai, K.; Lu, J. Online analysis of coal particle flow by laser-induced breakdown spectroscopy based on pelletized coal calibration samples and feature-based transfer learning. Spectrochim. Acta Part B At. Spectrosc. 2025, 229, 107198. [Google Scholar] [CrossRef]
- Vrábel, J.; Képeš, E.; Nedělník, P.; Buday, J.; Cempírek, J.; Pořízka, P.; Kaiser, J. Spectral library transfer between distinct laser-induced breakdown spectroscopy systems trained on simultaneous measurements. J. Anal. At. Spectrom. 2023, 38, 841–853. [Google Scholar] [CrossRef]
- Iman, M.; Arabnia, H.R.; Rasheed, K. A review of deep transfer learning and recent advancements. Technologies 2023, 11, 40. [Google Scholar] [CrossRef]
- Baek, S.J.; Park, A.; Ahn, Y.J.; Choo, J. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst 2015, 140, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xiao, J.; Li, Y.; Lu, Y.; Guo, J.; Tian, Y.; Ren, L. Mid-level data fusion of Raman spectroscopy and laser-induced breakdown spectroscopy: Improving ores identification accuracy. Anal. Chim. Acta 2023, 1240, 340772. [Google Scholar] [CrossRef]
- Nasiri, H.; Alavi, S.A. A Novel Framework Based on Deep Learning and ANOVA Feature Selection Method for Diagnosis of COVID-19 Cases from Chest X-Ray Images. Comput. Intell. Neurosci. 2022, 2022, 4694567. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, L.; Zhang, M.; Huang, W.; Wang, G.; Gong, A.; Sattar, H. Enhancement of spectral model transferability in LIBS systems through LIBS-LIPAS fusion technique. Anal. Chim. Acta 2024, 1309, 342674. [Google Scholar] [CrossRef]
- Sheng, L.; Zhang, T.; Niu, G.; Wang, K.; Tang, H.; Duan, Y.; Li, H. Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF). J. Anal. At. Spectrom. 2015, 30, 453–458. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Zhang, Z.; Qian, D.; Sun, S.; Liu, X.; Liu, Z. Transformer-based deep learning models for quantification of la, ce, and nd in rare earth ores using laser-induced breakdown spectroscopy. Talanta 2025, 292, 127937. [Google Scholar] [CrossRef]
- Du, Y.; Jin, X.; Wang, H.; Lu, M. An adaptive multipath linear interpolation method for sample optimization. Mathematics 2023, 11, 768. [Google Scholar] [CrossRef]
- Cervantes, C.; Marangoni, B.S.; Nicolodelli, G.; Senesi, G.S.; Villas-Boas, P.R.; Silva, C.S.; Milori, D.M. Laser-Induced Breakdown Spectroscopy Applied to the Quantification of K, Ca, Mg and Mn Nutrients in Organo-Mineral, Mineral P Fertilizers and Rock Fertilizers. Minerals 2024, 14, 1109. [Google Scholar] [CrossRef]
- Arlia, D.; Coppola, M. Experiments in parallel clustering with DBSCAN. In Euro-Par 2001 Parallel Processing, Proceedings of the 7th International Euro-Par Conference, Manchester, UK, 28–31 August 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 326–331. [Google Scholar]
- Lee, D.-H.; Kim, J.-S. Development of HTC-DBSCAN: A Hierarchical Trajectory Clustering Algorithm with Automated Parameter Tuning. Appl. Sci. 2024, 14, 10995. [Google Scholar] [CrossRef]
- Yin, L.; Hu, H.; Li, K.; Zheng, G.; Qu, Y.; Chen, H. Improvement of DBSCAN Algorithm Based on K-Dist Graph for Adaptive Determining Parameters. Electronics 2023, 12, 3213. [Google Scholar] [CrossRef]
Elements and Molecular Fragments | Wavelength (nm) |
---|---|
C-N | 383.84, 387.68 |
Ca I | 392.35, 422.67, 429.89, 445.48, 558.19, 612.22, 616.22, 643.91, 646.26 |
Ca II | 396.85 |
Ca III | 455.33 |
Fe I | 402.96 |
V I | 460.61, 526.61 |
C2 | 517.90 |
Na I | 588.99 |
K I | 766.49, 769.90 |
Model | Optimal Parameters | Values |
---|---|---|
RF | The number of decision trees | 500 |
Minimum leaf size | 20 |
No. | Wavelength (nm) | F-Value | Status |
---|---|---|---|
1 | 402.69 | 825.280 | Newly added |
2 | 402.96 | 750.798 | Already included |
3 | 383.84 | 533.167 | Already included |
4 | 382.86 | 522.757 | Newly added |
5 | 402.41 | 522.525 | Newly added |
6 | 383.14 | 514.171 | Newly added |
7 | 382.00 | 514.151 | Newly added |
8 | 382.57 | 488.141 | Newly added |
9 | 381.72 | 483.645 | Newly added |
10 | 395.90 | 464.441 | Newly added |
Class | Precision (%) | Recall (%) |
---|---|---|
Mutong | 88.55 | 63.2 |
Guan-mutong | 96.7 | 82.2 |
Chuan-mutong | 67.3 | 96.6 |
Class | Precision (%) | Recall (%) |
---|---|---|
Mutong | 100 | 66.2 |
Guan-mutong | 95.6 | 98.7 |
Chuan-mutong | 73.9 | 99.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, Q.; Luo, T.; Zhao, Z.; Wang, L.; Xu, S.; Zhou, H.; Zhao, J.; Zhou, Z.; Teng, G. Cross-Instrument Data Utilization Based on Laser-Induced Breakdown Spectroscopy (LIBS) for the Identification of Akebia Species. Bioengineering 2025, 12, 964. https://doi.org/10.3390/bioengineering12090964
Liu Y, Wang Q, Luo T, Zhao Z, Wang L, Xu S, Zhou H, Zhao J, Zhou Z, Teng G. Cross-Instrument Data Utilization Based on Laser-Induced Breakdown Spectroscopy (LIBS) for the Identification of Akebia Species. Bioengineering. 2025; 12(9):964. https://doi.org/10.3390/bioengineering12090964
Chicago/Turabian StyleLiu, Yuge, Qianqian Wang, Tianzhong Luo, Zhifang Zhao, Leifu Wang, Shuai Xu, Hao Zhou, Jiquan Zhao, Zixiao Zhou, and Geer Teng. 2025. "Cross-Instrument Data Utilization Based on Laser-Induced Breakdown Spectroscopy (LIBS) for the Identification of Akebia Species" Bioengineering 12, no. 9: 964. https://doi.org/10.3390/bioengineering12090964
APA StyleLiu, Y., Wang, Q., Luo, T., Zhao, Z., Wang, L., Xu, S., Zhou, H., Zhao, J., Zhou, Z., & Teng, G. (2025). Cross-Instrument Data Utilization Based on Laser-Induced Breakdown Spectroscopy (LIBS) for the Identification of Akebia Species. Bioengineering, 12(9), 964. https://doi.org/10.3390/bioengineering12090964