Optimization and Analysis of Tangential Component Orientations in OPM-MEG Sensor Array
Abstract
1. Introduction
2. Materials and Methods
2.1. Triaxial OPM Sensor
2.2. Measurement Model
2.3. Effects of Tangential Components Configuration
2.3.1. Anatomical Model
2.3.2. Sensor Array
2.3.3. Noise Model
2.3.4. Evaluation Metrics
2.3.5. Simulation Scenarios
2.4. Array Optimization
3. Results
3.1. Experiment 1: Effects of Tangential Orientations on and
3.2. Experiment 2: Effect of Sensor–Source Alignment on and
3.3. Experiment 3: Effect of Source Depth on and
3.4. Experiment 4: Effect of Head Model Type on and
3.5. Experiment 5: Evaluation of the Effectiveness of Array Optimization
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, D. Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer. Science 1972, 175, 664–666. [Google Scholar] [CrossRef]
- Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 2017, 20, 327–339. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65, 413–497. [Google Scholar] [CrossRef]
- Barratt, E.L.; Francis, S.T.; Morris, P.G.; Brookes, M.J. Mapping the topological organisation of beta oscillations in motor cortex using MEG. NeuroImage 2018, 181, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Brookes, M.J.; Leggett, J.; Rea, M.; Hill, R.M.; Holmes, N.; Boto, E.; Bowtell, R. Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging. Trends Neurosci. 2022, 45, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.J.M.; Scheler, G.; Stefan, H. Utilization of magnetoencephalography results to obtain favourable outcomes in epilepsy surgery. Brain 2004, 128, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Silver, A.H.; Zimmerman, J.E. Quantum Transitions and Loss in Multiply Connected Superconductors. Phys. Rev. Lett. 1965, 15, 888–891. [Google Scholar] [CrossRef]
- Zimmerman, J.E.; Thiene, P.; Harding, J.T. Design and Operation of Stable rf-Biased Superconducting Point-Contact Quantum Devices, and a Note on the Properties of Perfectly Clean Metal Contacts. J. Appl. Phys. 1970, 41, 1572–1580. [Google Scholar] [CrossRef]
- Boto, E.; Holmes, N.; Leggett, J.; Roberts, G.; Shah, V.; Meyer, S.S.; Muñoz, L.D.; Mullinger, K.J.; Tierney, T.M.; Bestmann, S.; et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018, 555, 657–661. [Google Scholar] [CrossRef]
- Hill, R.M.; Boto, E.; Holmes, N.; Hartley, C.; Seedat, Z.A.; Leggett, J.; Roberts, G.; Shah, V.; Tierney, T.M.; Woolrich, M.W.; et al. A tool for functional brain imaging with lifespan compliance. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Budker, D.; Romalis, M. Optical magnetometry. Nat. Phys. 2007, 3, 227–234. [Google Scholar] [CrossRef]
- Shah, V.; Osborne, J.; Orton, J.; Alem, O.; Shahriar, S.M.; Scheuer, J. Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism. In Proceedings of the Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI, San Francisco, CA, USA, 22 February 2018; p. 105481G. [Google Scholar]
- Boto, E.; Shah, V.; Hill, R.M.; Rhodes, N.; Osborne, J.; Doyle, C.; Holmes, N.; Rea, M.; Leggett, J.; Bowtell, R.; et al. Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: Feasibility and application in children. NeuroImage 2022, 252, 119027. [Google Scholar] [CrossRef]
- Iivanainen, J.; Stenroos, M.; Parkkonen, L. Measuring MEG closer to the brain: Performance of on-scalp sensor arrays. NeuroImage 2017, 147, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Brookes, M.J.; Boto, E.; Rea, M.; Shah, V.; Osborne, J.; Holmes, N.; Hill, R.M.; Leggett, J.; Rhodes, N.; Bowtell, R. Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage 2021, 236, 118025. [Google Scholar] [CrossRef] [PubMed]
- Tierney, T.M.; Mellor, S.; O’Neill, G.C.; Timms, R.C.; Barnes, G.R. Spherical harmonic based noise rejection and neuronal sampling with multi-axis OPMs. NeuroImage 2022, 258, 119338. [Google Scholar] [CrossRef] [PubMed]
- Marhl, U.; Sander, T.; Jazbinšek, V. Simulation Study of Different OPM-MEG Measurement Components. Sensors 2022, 22, 3184. [Google Scholar] [CrossRef]
- Shah, V.; Doyle, C.; Osborne, J. Zero Field Parametric Resonance Magnetometer with Triaxial Sensitivity. U.S. Patent 10,775,450, 15 September 2020. [Google Scholar]
- Robinson, S. Functional neuroimaging by synthetic aperture magnetometer (SAM). In Recent Advances in Biomagnetism; Tohoku University Press: Sendai, Japan, 1999; Volume 302. [Google Scholar]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Comput. Intell. Neurosci. 2011, 2011, 1–13. [Google Scholar] [CrossRef]
- Liu, A.K.; Dale, A.M.; Belliveau, J.W. Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum. Brain Mapp. 2002, 16, 47–62. [Google Scholar] [CrossRef]
- Henson, R.N.; Abdulrahman, H.; Flandin, G.; Litvak, V. Multimodal Integration of M/EEG and f/MRI Data in SPM12. Front. Neurosci. 2019, 13, 300. [Google Scholar] [CrossRef]
- Chernov, N.; Lesort, C. Least Squares Fitting of Circles. J. Math. Imaging Vis. 2005, 23, 239–252. [Google Scholar] [CrossRef]
- Li, W.; Cao, F.; An, N.; Wang, W.; Wang, C.; Xu, W.; Gao, Y.; Ning, X. Source Extent Estimation in OPM-MEG: A Two-Stage Champagne Approach. IEEE Trans. Med Imaging 2024, 44, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cao, F.; An, N.; Li, W.; Xu, W.; Wang, C.; Gao, Z.; Yu, D.; Gao, Y.; Ning, X. Design of locally arranged sensor arrays in wearable OPM-MEG based on sensor volume constraints. Measurement 2024, 229, 114373. [Google Scholar] [CrossRef]
- Cao, F.; An, N.; Wang, W.; Xu, W.; Li, W.; Wang, C.; Xiang, M.; Gao, Y.; Ning, X. Effects of Different Head Models in Wearable OPM-MEG. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Cuffin, B.N.; Cohen, D. Magnetic Fields of a Dipole in Special Volume Conductor Shapes. IEEE Trans. Biomed. Eng. 1977, BME-24, 372–381. [Google Scholar] [CrossRef]
- Huang, M.X.; Mosher, J.C.; Leahy, R.M. A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Phys. Med. Biol. 1999, 44, 423–440. [Google Scholar] [CrossRef] [PubMed]
- Nolte, G. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 2003, 48, 3637–3652. [Google Scholar] [CrossRef]
- Bommel, F.; Rockelein, R.; Urankar, L. Boundary element solution of biomagnetic problems. IEEE Trans. Magn. 1993, 29, 1395–1398. [Google Scholar] [CrossRef]
- Johnson, C.R. Computational and Numerical Methods for Bioelectric Field Problems. Biomed. Eng. 1997, 25, 1–81. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Gramfort, A.; Papadopoulo, T.; Olivi, E.; Clerc, M. OpenMEEG: Opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 2010, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Schrader, S.; Westhoff, A.; Piastra, M.C.; Miinalainen, T.; Pursiainen, S.; Vorwerk, J.; Brinck, H.; Wolters, C.H.; Engwer, C.; Papadelis, C. DUNEuro—A software toolbox for forward modeling in bioelectromagnetism. PLoS ONE 2021, 16, e0252431. [Google Scholar] [CrossRef] [PubMed]
- Stenroos, M.; Mäntynen, V.; Nenonen, J. A Matlab library for solving quasi-static volume conduction problems using the boundary element method. Comput. Methods Programs Biomed. 2007, 88, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Van Veen, B.; Van Drongelen, W.; Yuchtman, M.; Suzuki, A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 1997, 44, 867–880. [Google Scholar] [CrossRef]
- Samuelsson, J.G.; Peled, N.; Mamashli, F.; Ahveninen, J.; Hämäläinen, M.S. Spatial fidelity of MEG/EEG source estimates: A general evaluation approach. NeuroImage 2021, 224, 117430. [Google Scholar] [CrossRef]
- An, N.; Cao, F.; Li, W.; Wang, W.; Xu, W.; Wang, C.; Xiang, M.; Gao, Y.; Sui, B.; Wang, D.; et al. Spatial accuracy evaluation of magnetic source imaging methods on OPM-based MEG. iScience 2022, 25, 105177. [Google Scholar] [CrossRef]
- Marhl, U.; Hren, R.; Sander, T.; Jazbinšek, V. Optimization of OPM-MEG Layouts with a Limited Number of Sensors. Sensors 2025, 25, 2706. [Google Scholar] [CrossRef]
- Iivanainen, J.; Mäkinen, A.J.; Zetter, R.; Stenroos, M.; Ilmoniemi, R.J.; Parkkonen, L. Spatial sampling of MEG and EEG based on generalized spatial-frequency analysis and optimal design. NeuroImage 2021, 245, 118747. [Google Scholar] [CrossRef]
- Beltrachini, L.; von Ellenrieder, N.; Eichardt, R.; Haueisen, J. Optimal design of on-scalp electromagnetic sensor arrays for brain source localisation. Hum. Brain Mapp. 2021, 42, 4869–4879. [Google Scholar] [CrossRef]
- Takeda, Y.; Gomi, T.; Umebayashi, R.; Tomita, S.; Suzuki, K.; Hiroe, N.; Saikawa, J.; Munaka, T.; Yamashita, O. Sensor array design of optically pumped magnetometers for accurately estimating source currents. NeuroImage 2023, 277, 120257. [Google Scholar] [CrossRef]
- Bezsudnova, Y.; Koponen, L.M.; Barontini, G.; Jensen, O.; Kowalczyk, A.U. Optimising the sensing volume of OPM sensors for MEG source reconstruction. NeuroImage 2022, 264, 119747. [Google Scholar] [CrossRef] [PubMed]
- Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 1987, 32, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Güllmar, D.; Haueisen, J.; Reichenbach, J.R. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study. NeuroImage 2010, 51, 145–163. [Google Scholar] [CrossRef]
- Schoffelen, J.M.; Cheung, T.; Knappe, S.; Oostenveld, R. Optimal configuration of on-scalp OPMs with fixed channel counts. Imaging Neurosci. 2025, 3, IMAG-a. [Google Scholar] [CrossRef]
- Borna, A.; Iivanainen, J.; Carter, T.R.; McKay, J.; Taulu, S.; Stephen, J.; Schwindt, P.D. Cross-Axis projection error in optically pumped magnetometers and its implication for magnetoencephalography systems. NeuroImage 2021, 247, 118818. [Google Scholar] [CrossRef]
- Qi, S.; Song, X.; Jia, L.; Duan, Z.; Dai, Y.; Zhang, J.; Ning, X. Investigating the effects of calibration errors on the spatial resolution of OPM-MEG beamformer imaging. NeuroImage 2025, 310, 121078. [Google Scholar] [CrossRef]
- Iivanainen, J.; Borna, A.; Zetter, R.; Carter, T.R.; Stephen, J.M.; McKay, J.; Parkkonen, L.; Taulu, S.; Schwindt, P.D.D. Calibration and Localization of Optically Pumped Magnetometers Using Electromagnetic Coils. Sensors 2022, 22, 3059. [Google Scholar] [CrossRef]
- Robinson, S.E.; Andonegui, A.B.; Holroyd, T.; Hughes, K.J.; Alem, O.; Knappe, S.; Maydew, T.; Griesshammer, A.; Nugent, A. Cross-Axis Dynamic Field Compensation of Optically Pumped Magnetometer Arrays for MEG. NeuroImage 2022, 262, 119559. [Google Scholar] [CrossRef]
- Seymour, R.A.; Alexander, N.; Mellor, S.; O’Neill, G.C.; Tierney, T.M.; Barnes, G.R.; Maguire, E.A. Interference suppression techniques for OPM-based MEG: Opportunities and challenges. NeuroImage 2022, 247, 118834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Cao, F.; An, N.; Li, W.; Wang, C.; Gao, Z.; Xiang, M.; Ning, X. Optimization and Analysis of Tangential Component Orientations in OPM-MEG Sensor Array. Bioengineering 2025, 12, 903. https://doi.org/10.3390/bioengineering12090903
Wang W, Cao F, An N, Li W, Wang C, Gao Z, Xiang M, Ning X. Optimization and Analysis of Tangential Component Orientations in OPM-MEG Sensor Array. Bioengineering. 2025; 12(9):903. https://doi.org/10.3390/bioengineering12090903
Chicago/Turabian StyleWang, Wenli, Fuzhi Cao, Nan An, Wen Li, Chunhui Wang, Zhenfeng Gao, Min Xiang, and Xiaolin Ning. 2025. "Optimization and Analysis of Tangential Component Orientations in OPM-MEG Sensor Array" Bioengineering 12, no. 9: 903. https://doi.org/10.3390/bioengineering12090903
APA StyleWang, W., Cao, F., An, N., Li, W., Wang, C., Gao, Z., Xiang, M., & Ning, X. (2025). Optimization and Analysis of Tangential Component Orientations in OPM-MEG Sensor Array. Bioengineering, 12(9), 903. https://doi.org/10.3390/bioengineering12090903