Arboviruses and COVID-19: Global Health Challenges and Human Enhancement Technologies
Acknowledgments
Conflicts of Interest
References
- Côrtes, N.; Lira, A.; Prates-Syed, W.; Dinis Silva, J.; Vuitika, L.; Cabral-Miranda, W.; Durães-Carvalho, R.; Balan, A.; Cabral-Marques, O.; Cabral-Miranda, G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front. Immunol. 2023, 14, 1281667. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, R.; Vasuki, K.; Ramadevi, S.; Kaleeswaran, B. Rosmarinic acid: Potential antiviral agent against dengue virus-In silico evaluation. Intell. Pharm. 2024, 2, 528–539. [Google Scholar] [CrossRef]
- Vahey, G.M.; Gould, C.V.; Mathis, S.; Martin, S.W.; Staples, J.E.; Lindsey, N.P. West Nile Virus and Other Domestic Nationally Notifiable Arboviral Diseases-United States, 2019. Morb. Mortal. Wkly. Rep. 2021, 70, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Socha, W.; Rola, J.; Rozek, W.; Kwasnik, M.; Larska, M. Vector-Borne Viral Diseases as a Current Threat for Human and Animal Health—One Health Perspective. J. Clin. Med. 2022, 11, 3026. [Google Scholar] [CrossRef] [PubMed]
- Milby, K.M.; Atallah, A.N.; Rocha-Filho, C.R.; Pinto, A.C.P.N.; Rocha, A.P.D.; Reis, F.S.A.; Junior, C.N.; Civile, V.T.; Santos, R.R.P.; Ferla, L.J.; et al. SARS-CoV-2 and arbovirus infection: A rapid systematic review. Sao Paulo Med. J. 2020, 138, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Sujitha, S.; Murugesan, R. Rosmarinic Acid and Dengue Virus: Computational Insights into Antiviral Potential. LabMed Discov. 2025, 2, 100042. [Google Scholar] [CrossRef]
- Udawant, T.; Thorat, P.; Thapa, P.; Patel, M.; Shekhawat, S.; Patel, R.; Sudhir, A.; Hudka, O.; Pulidindi, I.N.; Deokar, A. Antibacterial activity of silver-modified CuO nanoparticles coated masks. Bioengineering 2024, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
- Zolya, M.A.; Baltag, C.; Bratu, D.V.; Coman, S.; Moraru, S.A. COVID-19 detection and diagnosis model on CT scans based on AI techniques. Bioengineering 2024, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Steuwe, A.; Kamp, B.; Afat, S.; Akinina, A.; Aludin, S.; Bas, E.G.; Berger, J.; Bohrer, E.; Brose, A.; Büttner, S.M.; et al. Standardization of a CT protocol for imaging patients with sustpected COVID-19–A RACOON project. Bioengineering 2024, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- Aliani, C.; Rossi, E.; Solinski, M.; Francia, P.; Lanata, A.; Buchner, T.; Bocchi, L. Genetic algorithms for feature selection in the classification of COVID-19 patients. Bioengineering 2024, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.C.S.; Bibi, I.; Schaffert, D.; Benecke, J.; Martin, N.; Leipe, J.; Vladescu, C.; Olsavszky, V. AutoML-driven insights into patient outcomes and emerging case during Romania’s first wave of COVID-19. Bioengineering 2024, 11, 1272. [Google Scholar] [CrossRef] [PubMed]
- Hathway, Q.A.; Yanamala, N.; Marumanchi, T.C.; Narumanchi, J. Bringing precision to pediatric care: Explainable AI in predicting no-show trends before and during the COVID-19 pendamic. Bioengineering 2025, 12, 227. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Loomba, J.; Zhou, A.; Sharma, S.; Sengupta, S.; Liu, J.B.; Brown, D. On behalf of N3C consortium. A Bayesian survival analysis on long COVID and non-long COVID patients: A cohort study using national COVID cohort collaborative (N3C) data. Bioengineering 2025, 12, 496. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.Y.; Cheng, R.; Xu, T.; Tan, X.H.; Bai, Y.P. Machine learning techniques applied to COVID-19 prediction: A systematic literature review. Bioengineeing 2025, 12, 514. [Google Scholar] [CrossRef] [PubMed]
- Gopal, J.; Muthu, M.; Sivanesan, I. A Comprehensive Survey on the Expediated Anti-COVID-19 Options Enabled by Metal Complexes—Tasks and Trials. Molecules 2023, 28, 3354. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, P.S.; Aranganathan, M.; Hussain, M.S.; Elangovan, S.; Chellasamy, G.; Balakrishnan, P.; Mekala, J.R.; Yun, K.; Arumugam, S. Unveiling reverse vaccinology and immunoinformatics toward Saint Louis encephalitis virus: A ray of hope for vaccine development. Front. Immunol. 2025, 16, 1576557. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, D.; Brouwers, J.F.; Hamer, K.; Geurts, M.H.; Luciana, L.; Massalini, S.; Lopez-Iglesias, C.; Peters, P.J.; Rodriguez-Colman, M.J.; Lopes, S.C.S.; et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat. Biotechnol. 2023, 41, 1567–1581. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugesan, R.; Prabhu, S.; Caleb, J.T.D.; Francis, Y.M.; Pulidindi, I.N. Arboviruses and COVID-19: Global Health Challenges and Human Enhancement Technologies. Bioengineering 2025, 12, 725. https://doi.org/10.3390/bioengineering12070725
Murugesan R, Prabhu S, Caleb JTD, Francis YM, Pulidindi IN. Arboviruses and COVID-19: Global Health Challenges and Human Enhancement Technologies. Bioengineering. 2025; 12(7):725. https://doi.org/10.3390/bioengineering12070725
Chicago/Turabian StyleMurugesan, Rengarajan, Srinivasan Prabhu, John T. D. Caleb, Yuvaraj Maria Francis, and Indra Neel Pulidindi. 2025. "Arboviruses and COVID-19: Global Health Challenges and Human Enhancement Technologies" Bioengineering 12, no. 7: 725. https://doi.org/10.3390/bioengineering12070725
APA StyleMurugesan, R., Prabhu, S., Caleb, J. T. D., Francis, Y. M., & Pulidindi, I. N. (2025). Arboviruses and COVID-19: Global Health Challenges and Human Enhancement Technologies. Bioengineering, 12(7), 725. https://doi.org/10.3390/bioengineering12070725