Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Study Design and Imaging Acquisition
2.3. Imaging Processing and Analysis
2.3.1. Preprocessing
2.3.2. Denoising
2.3.3. Individual- and Group-Level Analyses
3. Results
4. Discussion
4.1. Healthy Controls
4.2. MS Patients
4.3. HC and MS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [PubMed]
- Dedoncker, J.; Baeken, C.; De Raedt, R.; Vanderhasselt, M.A. Combined transcranial direct current stimulation and psychological interventions: State of the art and promising perspectives for clinical psychology. Biol. Psychol. 2021, 158, 107991. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef]
- Fregni, F.; El-Hagrassy, M.M.; Pacheco-Barrios, K.; Carvalho, S.; Leite, J.; Simis, M.; Brunelin, J.; Nakamura-Palacios, E.M.; Marangolo, P.; Venkatasubramanian, G.; et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int. J. Neuropsychopharmacol. 2021, 24, 256–313. [Google Scholar] [CrossRef]
- Breitling, C.; Zaehle, T.; Dannhauer, M.; Bonath, B.; Tegelbeckers, J.; Flechtner, H.H.; Krauel, K. Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS). Front. Cell. Neurosci. 2016, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.; Boudrias, M.H.; Stagg, C.J.; Bachtiar, V.; Kischka, U.; Blicher, J.U.; Johansen-Berg, H. Predicting behavioural response to TDCS in chronic motor stroke. Neuroimage 2014, 85 Pt 3, 924–933. [Google Scholar] [CrossRef]
- Ishikuro, K.; Dougu, N.; Nukui, T.; Yamamoto, M.; Nakatsuji, Y.; Kuroda, S.; Matsushita, I.; Nishimaru, H.; Araujo, M.F.P.; Nishijo, H. Effects of Transcranial Direct Current Stimulation (tDCS) Over the Frontal Polar Area on Motor and Executive Functions in Parkinson’s Disease; A Pilot Study. Front. Aging Neurosci. 2018, 10, 231. [Google Scholar] [CrossRef]
- Eilam-Stock, T.; George, A.; Charvet, L.E. Cognitive Telerehabilitation with Transcranial Direct Current Stimulation Improves Cognitive and Emotional Functioning Following a Traumatic Brain Injury: A Case Study. Arch. Clin. Neuropsychol. 2021, 36, 442–453. [Google Scholar] [CrossRef]
- Charvet, L.; Shaw, M.; Dobbs, B.; Frontario, A.; Sherman, K.; Bikson, M.; Datta, A.; Krupp, L.; Zeinapour, E.; Kasschau, M. Remotely Supervised Transcranial Direct Current Stimulation Increases the Benefit of At-Home Cognitive Training in Multiple Sclerosis. Neuromodulation 2018, 21, 383–389. [Google Scholar] [CrossRef]
- Agarwal, S.; Pawlak, N.; Cucca, A.; Sharma, K.; Dobbs, B.; Shaw, M.; Charvet, L.; Biagioni, M. Remotely-supervised transcranial direct current stimulation paired with cognitive training in Parkinson’s disease: An open-label study. J. Clin. Neurosci. 2018, 57, 51–57. [Google Scholar] [CrossRef]
- DeLuca, G.C.; Williams, K.; Evangelou, N.; Ebers, G.C.; Esiri, M.M. The contribution of demyelination to axonal loss in multiple sclerosis. Brain 2006, 129, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Tullman, M.J. Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis. Am. J. Manag. Care 2013, 19, S15–S20. [Google Scholar]
- Ford, H. Clinical presentation and diagnosis of multiple sclerosis. Clin. Med. 2020, 20, 380–383. [Google Scholar] [CrossRef]
- Charvet, L.E.; Dobbs, B.; Shaw, M.T.; Bikson, M.; Datta, A.; Krupp, L.B. Remotely supervised transcranial direct current stimulation for the treatment of fatigue in multiple sclerosis: Results from a randomized, sham-controlled trial. Mult. Scler. 2018, 24, 1760–1769. [Google Scholar] [CrossRef]
- Pilloni, G.; Choi, C.; Shaw, M.T.; Coghe, G.; Krupp, L.; Moffat, M.; Cocco, E.; Pau, M.; Charvet, L. Walking in multiple sclerosis improves with tDCS: A randomized, double-blind, sham-controlled study. Ann. Clin. Transl. Neurol. 2020, 7, 2310–2319. [Google Scholar] [CrossRef]
- Simani, L.; Roozbeh, M.; Shojaei, M.; Ramezani, M.; Roozbeh, M.; Gharehgozli, K.; Rostami, M. The effectiveness of anodal tDCS and cognitive training on cognitive functions in multiple sclerosis; a randomized, double-blind, parallel-group study. Mult. Scler. Relat. Disord. 2022, 68, 104392. [Google Scholar] [CrossRef] [PubMed]
- Bolognini, N.; Pascual-Leone, A.; Fregni, F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J. Neuroeng. Rehabil. 2009, 6, 8. [Google Scholar] [CrossRef]
- Williams, J.A.; Pascual-Leone, A.; Fregni, F. Interhemispheric modulation induced by cortical stimulation and motor training. Phys. Ther. 2010, 90, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Liu, S.; Chen, L.; Wang, X.; Ming, D. Lasting enhancements in neural efficiency by multi-session transcranial direct current stimulation during working memory training. NPJ Sci. Learn. 2023, 8, 48. [Google Scholar] [CrossRef]
- Muccio, M.; Walton Masters, L.; Pilloni, G.; He, P.; Krupp, L.; Datta, A.; Bikson, M.; Charvet, L.; Ge, Y. Cerebral metabolic rate of oxygen (CMRO(2)) changes measured with simultaneous tDCS-MRI in healthy adults. Brain Res. 2022, 1796, 148097. [Google Scholar] [CrossRef]
- Jamil, A.; Batsikadze, G.; Kuo, H.I.; Meesen, R.L.J.; Dechent, P.; Paulus, W.; Nitsche, M.A. Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study. Hum. Brain Mapp. 2020, 41, 1644–1666. [Google Scholar] [CrossRef] [PubMed]
- Muccio, M.; Pilloni, G.; Walton Masters, L.; He, P.; Krupp, L.; Datta, A.; Bikson, M.; Charvet, L.; Ge, Y. Simultaneous and cumulative effects of tDCS on cerebral metabolic rate of oxygen in multiple sclerosis. Front. Hum. Neurosci. 2024, 18, 1418647. [Google Scholar] [CrossRef] [PubMed]
- Im, J.J.; Jeong, H.; Bikson, M.; Woods, A.J.; Unal, G.; Oh, J.K.; Na, S.; Park, J.S.; Knotkova, H.; Song, I.U.; et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain Stimul. 2019, 12, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Ulam, F.; Shelton, C.; Richards, L.; Davis, L.; Hunter, B.; Fregni, F.; Higgins, K. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin. Neurophysiol. 2015, 126, 486–496. [Google Scholar] [CrossRef]
- Alonzo, A.; Brassil, J.; Taylor, J.L.; Martin, D.; Loo, C.K. Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimul. 2012, 5, 208–213. [Google Scholar] [CrossRef]
- Ho, K.A.; Taylor, J.L.; Chew, T.; Galvez, V.; Alonzo, A.; Bai, S.; Dokos, S.; Loo, C.K. The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions. Brain Stimul. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Meyer, B.; Mann, C.; Gotz, M.; Gerlicher, A.; Saase, V.; Yuen, K.S.L.; Aedo-Jury, F.; Gonzalez-Escamilla, G.; Stroh, A.; Kalisch, R. Increased Neural Activity in Mesostriatal Regions after Prefrontal Transcranial Direct Current Stimulation and l-DOPA Administration. J. Neurosci. 2019, 39, 5326–5335. [Google Scholar] [CrossRef]
- He, F.; Li, Y.; Li, C.; Fan, L.; Liu, T.; Wang, J. Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions. PLoS ONE 2021, 16, e0256100. [Google Scholar] [CrossRef]
- Tu, Y.; Cao, J.; Guler, S.; Chai-Zhang, T.; Camprodon, J.A.; Vangel, M.; Gollub, R.L.; Dougherty, D.D.; Kong, J. Perturbing fMRI brain dynamics using transcranial direct current stimulation. Neuroimage 2021, 237, 118100. [Google Scholar] [CrossRef]
- Sankarasubramanian, V.; Cunningham, D.A.; Potter-Baker, K.A.; Beall, E.B.; Roelle, S.M.; Varnerin, N.M.; Machado, A.G.; Jones, S.E.; Lowe, M.J.; Plow, E.B. Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing. Brain Connect. 2017, 7, 182–196. [Google Scholar] [CrossRef]
- Kim, K.; Sherwood, M.S.; McIntire, L.K.; McKinley, R.A.; Ranganath, C. Transcranial Direct Current Stimulation Modulates Connectivity of Left Dorsolateral Prefrontal Cortex with Distributed Cortical Networks. J. Cogn. Neurosci. 2021, 33, 1381–1395. [Google Scholar] [CrossRef]
- Nissim, N.R.; O’Shea, A.; Indahlastari, A.; Kraft, J.N.; von Mering, O.; Aksu, S.; Porges, E.; Cohen, R.; Woods, A.J. Effects of Transcranial Direct Current Stimulation Paired With Cognitive Training on Functional Connectivity of the Working Memory Network in Older Adults. Front. Aging Neurosci. 2019, 11, 340. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Xiong, Z.; Ren, H.; Liu, R.; Wei, Y.; Li, D. Abnormal Fractional Amplitude of Low-Frequency Fluctuation as a Potential Imaging Biomarker for First-Episode Major Depressive Disorder: A Resting-State fMRI Study and Support Vector Machine Analysis. Front. Neurol. 2021, 12, 751400. [Google Scholar] [CrossRef] [PubMed]
- Sarappa, C.; Salvatore, E.; Filla, A.; Cocozza, S.; Russo, C.V.; Sacca, F.; Brunetti, A.; De Michele, G.; Quarantelli, M. Functional MRI signal fluctuations highlight altered resting brain activity in Huntington’s disease. Brain Imaging Behav. 2017, 11, 1459–1469. [Google Scholar] [CrossRef]
- Hu, S.; Chao, H.H.; Zhang, S.; Ide, J.S.; Li, C.S. Changes in cerebral morphometry and amplitude of low-frequency fluctuations of BOLD signals during healthy aging: Correlation with inhibitory control. Brain Struct. Funct. 2014, 219, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Leaver, A.M.; Gonzalez, S.; Vasavada, M.; Kubicki, A.; Jog, M.; Wang, D.J.J.; Woods, R.P.; Espinoza, R.; Gollan, J.; Parrish, T.; et al. Modulation of brain networks during MR-compatible transcranial direct current stimulation. Neuroimage 2022, 250, 118874. [Google Scholar] [CrossRef]
- Paracampo, R.; Montemurro, M.; de Vega, M.; Avenanti, A. Primary motor cortex crucial for action prediction: A tDCS study. Cortex 2018, 109, 287–302. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef]
- Nieto-Castanon, A. FMRI minimal preprocessing pipeline. In Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN; Hilbert Press: Boston, MA, USA, 2020. [Google Scholar]
- Karavallil Achuthan, S.; Coburn, K.L.; Beckerson, M.E.; Kana, R.K. Amplitude of low frequency fluctuations during resting state fMRI in autistic children. Autism Res. 2023, 16, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef]
- Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Castanon, A. FMRI denoising pipeline. In Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN; Hilbert Press: Boston, MA, USA, 2020. [Google Scholar]
- Zou, Q.H.; Zhu, C.Z.; Yang, Y.; Zuo, X.N.; Long, X.Y.; Cao, Q.J.; Wang, Y.F.; Zang, Y.F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J. Neurosci. Methods 2008, 172, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Long, X.Y.; Yang, Y.; Yan, H.; Zhu, C.Z.; Zhou, X.P.; Zang, Y.F.; Gong, Q.Y. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 2007, 36, 144–152. [Google Scholar] [CrossRef]
- Chumbley, J.; Worsley, K.; Flandin, G.; Friston, K. Topological FDR for neuroimaging. Neuroimage 2010, 49, 3057–3064. [Google Scholar] [CrossRef]
- Kuo, M.F.; Chen, P.S.; Nitsche, M.A. The application of tDCS for the treatment of psychiatric diseases. Int. Rev. Psychiatry 2017, 29, 146–167. [Google Scholar] [CrossRef]
- Floel, A. tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 2014, 85 Pt 3, 934–947. [Google Scholar] [CrossRef]
- Sanches, C.; Stengel, C.; Godard, J.; Mertz, J.; Teichmann, M.; Migliaccio, R.; Valero-Cabre, A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front. Aging Neurosci. 2020, 12, 578339. [Google Scholar] [CrossRef]
- Ferrucci, R.; Vergari, M.; Cogiamanian, F.; Bocci, T.; Ciocca, M.; Tomasini, E.; De Riz, M.; Scarpini, E.; Priori, A. Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NeuroRehabilitation 2014, 34, 121–127. [Google Scholar] [CrossRef]
- Callan, D.E.; Falcone, B.; Wada, A.; Parasuraman, R. Simultaneous tDCS-fMRI Identifies Resting State Networks Correlated with Visual Search Enhancement. Front. Hum. Neurosci. 2016, 10, 72. [Google Scholar] [CrossRef]
- Mancuso, L.E.; Ilieva, I.P.; Hamilton, R.H.; Farah, M.J. Does Transcranial Direct Current Stimulation Improve Healthy Working Memory?: A Meta-analytic Review. J. Cogn. Neurosci. 2016, 28, 1063–1089. [Google Scholar] [CrossRef]
- Sela, T.; Lavidor, M. Enhancement of Sensory and Cognitive Functions in Healthy Subjects. In Textbook of Neuromodulation; Knotkova, H., Rasche, D., Eds.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Li, A.; Emond, L.; Nattie, E. Brainstem catecholaminergic neurons modulate both respiratory and cardiovascular function. Adv. Exp. Med. Biol. 2008, 605, 371–376. [Google Scholar] [CrossRef]
- Benarroch, E.E. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology 2018, 91, 958–966. [Google Scholar] [CrossRef]
- Mayberg, H.S. Limbic-cortical dysregulation: A proposed model of depression. J. Neuropsychiatry Clin. Neurosci. 1997, 9, 471–481. [Google Scholar] [CrossRef]
- Fu, C.H.; Williams, S.C.; Cleare, A.J.; Brammer, M.J.; Walsh, N.D.; Kim, J.; Andrew, C.M.; Pich, E.M.; Williams, P.M.; Reed, L.J.; et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: A prospective, event-related functional magnetic resonance imaging study. Arch. Gen. Psychiatry 2004, 61, 877–889. [Google Scholar] [CrossRef]
- Anand, A.; Li, Y.; Wang, Y.; Wu, J.; Gao, S.; Bukhari, L.; Mathews, V.P.; Kalnin, A.; Lowe, M.J. Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study. Biol. Psychiatry 2005, 57, 1079–1088. [Google Scholar] [CrossRef]
- Chhatbar, P.Y.; Kautz, S.A.; Takacs, I.; Rowland, N.C.; Revuelta, G.J.; George, M.S.; Bikson, M.; Feng, W. Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo. Brain Stimul. 2018, 11, 727–733. [Google Scholar] [CrossRef]
- Gomez-Tames, J.; Asai, A.; Hirata, A. Significant group-level hotspots found in deep brain regions during transcranial direct current stimulation (tDCS): A computational analysis of electric fields. Clin. Neurophysiol. 2020, 131, 755–765. [Google Scholar] [CrossRef]
- MacKenzie-Graham, A.; Kurth, F.; Itoh, Y.; Wang, H.J.; Montag, M.J.; Elashoff, R.; Voskuhl, R.R. Disability-Specific Atlases of Gray Matter Loss in Relapsing-Remitting Multiple Sclerosis. JAMA Neurol. 2016, 73, 944–953. [Google Scholar] [CrossRef]
- Colato, E.; Stutters, J.; Tur, C.; Narayanan, S.; Arnold, D.L.; Gandini Wheeler-Kingshott, C.A.M.; Barkhof, F.; Ciccarelli, O.; Chard, D.T.; Eshaghi, A. Predicting disability progression and cognitive worsening in multiple sclerosis using patterns of grey matter volumes. J. Neurol. Neurosurg. Psychiatry 2021, 92, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Keeser, D.; Meindl, T.; Bor, J.; Palm, U.; Pogarell, O.; Mulert, C.; Brunelin, J.; Moller, H.J.; Reiser, M.; Padberg, F. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J. Neurosci. 2011, 31, 15284–15293. [Google Scholar] [CrossRef]
- Bouchard, A.E.; Renauld, E.; Fecteau, S. Changes in resting-state functional MRI connectivity during and after transcranial direct current stimulation in healthy adults. Front. Hum. Neurosci. 2023, 17, 1229618. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K.; Tanaka, S.; Hanakawa, T.; Senoo, A.; Honda, M. Lateralization of activity in the parietal cortex predicts the effectiveness of bilateral transcranial direct current stimulation on performance of a mental calculation task. Neurosci. Lett. 2013, 545, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Rosso, C.; Valabregue, R.; Arbizu, C.; Ferrieux, S.; Vargas, P.; Humbert, F.; Attal, Y.; Messe, A.; Zavanone, C.; Meunier, S.; et al. Connectivity between right inferior frontal gyrus and supplementary motor area predicts after-effects of right frontal cathodal tDCS on picture naming speed. Brain Stimul. 2014, 7, 122–129. [Google Scholar] [CrossRef]
- Cavaliere, C.; Aiello, M.; Di Perri, C.; Amico, E.; Martial, C.; Thibaut, A.; Laureys, S.; Soddu, A. Functional Connectivity Substrates for tDCS Response in Minimally Conscious State Patients. Front. Cell. Neurosci. 2016, 10, 257. [Google Scholar] [CrossRef]
- Greinacher, R.; Buhot, L.; Moller, L.; Learmonth, G. The time course of ineffective sham-blinding during low-intensity (1 mA) transcranial direct current stimulation. Eur. J. Neurosci. 2019, 50, 3380–3388. [Google Scholar] [CrossRef]
- Turi, Z.; Csifcsak, G.; Boayue, N.M.; Aslaksen, P.; Antal, A.; Paulus, W.; Groot, J.; Hawkins, G.E.; Forstmann, B.; Opitz, A.; et al. Blinding is compromised for transcranial direct current stimulation at 1 mA for 20 min in young healthy adults. Eur. J. Neurosci. 2019, 50, 3261–3268. [Google Scholar] [CrossRef]
- Fonteneau, C.; Mondino, M.; Arns, M.; Baeken, C.; Bikson, M.; Brunoni, A.R.; Burke, M.J.; Neuvonen, T.; Padberg, F.; Pascual-Leone, A.; et al. Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul. 2019, 12, 668–673. [Google Scholar] [CrossRef]
- De Smet, S.; Nikolin, S.; Moffa, A.; Suen, P.; Vanderhasselt, M.A.; Brunoni, A.R.; Razza, L.B. Determinants of sham response in tDCS depression trials: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 109, 110261. [Google Scholar] [CrossRef]
- Loo, C.K.; Husain, M.M.; McDonald, W.M.; Aaronson, S.; O’Reardon, J.P.; Alonzo, A.; Weickert, C.S.; Martin, D.M.; McClintock, S.M.; Mohan, A.; et al. International randomized-controlled trial of transcranial Direct Current Stimulation in depression. Brain Stimul. 2018, 11, 125–133. [Google Scholar] [CrossRef]
- Ammann, C.; Lindquist, M.A.; Celnik, P.A. Response variability of different anodal transcranial direct current stimulation intensities across multiple sessions. Brain Stimul. 2017, 10, 757–763. [Google Scholar] [CrossRef]
- Chew, T.; Ho, K.A.; Loo, C.K. Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities. Brain Stimul. 2015, 8, 1130–1137. [Google Scholar] [CrossRef]
- Penolazzi, B.; Pastore, M.; Mondini, S. Electrode montage dependent effects of transcranial direct current stimulation on semantic fluency. Behav. Brain Res. 2013, 248, 129–135. [Google Scholar] [CrossRef]
- Hassanzahraee, M.; Nitsche, M.A.; Zoghi, M.; Jaberzadeh, S. Determination of anodal tDCS duration threshold for reversal of corticospinal excitability: An investigation for induction of counter-regulatory mechanisms. Brain Stimul. 2020, 13, 832–839. [Google Scholar] [CrossRef]
- Agboada, D.; Mosayebi-Samani, M.; Kuo, M.F.; Nitsche, M.A. Induction of long-term potentiation-like plasticity in the primary motor cortex with repeated anodal transcranial direct current stimulation—Better effects with intensified protocols? Brain Stimul. 2020, 13, 987–997. [Google Scholar] [CrossRef]
- Muccio, M.; Chu, D.; Minkoff, L.; Kulkarni, N.; Damadian, B.; Damadian, R.V.; Ge, Y. Upright versus supine MRI: Effects of body position on craniocervical CSF flow. Fluids Barriers CNS 2021, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Jiang, D.; Liu, P.; Muccio, M.; Li, C.; Cao, Y.; Wisniewski, T.M.; Lu, H.; Ge, Y. Age-Related Tortuosity of Carotid and Vertebral Arteries: Quantitative Evaluation With MR Angiography. Front. Neurol. 2022, 13, 858805. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Buch, S.; Sun, Z.; Muccio, M.; Jiang, L.; Chen, Y.; Haacke, E.M.; Zhang, J.; Wisniewski, T.M.; Ge, Y. In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T. Neuroimage 2024, 291, 120597. [Google Scholar] [CrossRef]
Main Brain Regions | Coordinates (x, y, z) | Voxels | Pre-tDCS (Mean; a.u.) | Dur-tDCS (Mean; a.u.) | Percentage Change (%) | T-Stat [27] | P-FDR |
---|---|---|---|---|---|---|---|
Increased fALFF | |||||||
Pre and Postcentral Gyri Right | ‘+4 +0 +72’ | 1877 | 0.019201 | 0.368802 | 90.10288 | 9.66 | <0.0001 |
Inferior Temporal Gyrus Right | ‘−54 −16 −30’ | 1013 | −0.32587 | 0.001911 | 98.8342 | 10.14 | <0.0001 |
Precuneus Cortex | ‘−38 −84 +20’ | 271 | 0.119524 | 0.443586 | 57.54851 | 6.76 | 0.016756 |
Temporal Pole Right | ‘+48 +18 −32’ | 240 | −0.42706 | −0.05268 | 78.0369 | 7.25 | 0.027668 |
Supramarginal Gyrus Right | ‘+60 −26 +28’ | 219 | 0.391473 | 0.707374 | 28.74843 | 7.18 | 0.03852 |
Middle Frontal Gyrus Right | ‘+46 +12 +54’ | 209 | −0.14105 | 0.231028 | 24.18118 | 6.76 | 0.042050 |
Decreased fALFF | |||||||
Brain Stem | ‘−6 −40 +0’ | 3909 | −0.23085 | −0.66331 | 48.36413 | −5.52 | <0.0001 |
Occipital Pole Bilateral | ‘+14 −100 −4’ | 1557 | 0.815443 | 0.434038 | 30.525 | −4.85 | <0.0001 |
Anterior Cingulate Gyrus | ‘+0 +42 −4’ | 444 | 0.090492 | −0.29264 | 52.76195 | −7.39 | 0.000301 |
Main Brain Regions | Coordinates (x, y, z) | Voxels | Pre-tDCS (Mean; a.u.) | Dur-tDCS (Mean; a.u.) | Percentage Change (%) | T-Stat [19] | P-FDR |
---|---|---|---|---|---|---|---|
Increased fALFF | |||||||
Cuneal Cortex Bilateral | ‘−16 −100 +18’ | 1172 | 0.429658 | 0.866538 | 33.70483 | 4.88 | <0.0001 |
Superior Parietal Lobule Left | ‘−32 −32 +32’ | 433 | −0.59321 | −0.15992 | 57.5313 | 7.28 | 0.000838 |
Lateral Occipital Cortex Left | ‘−36 −64 +32’ | 332 | 0.106048 | 0.485274 | 64.13187 | 8.92 | 0.005065 |
Caudate Right | ‘+16 + 28 −2’ | 265 | −0.51554 | −0.09985 | 67.5479 | 6.57 | 0.018587 |
Inferior Temporal Gyrus Right | ‘+38 −62 −4’ | 230 | −0.32848 | 0.089951 | 57.0058 | 5.96 | 0.035937 |
Superior Lateral Occipital Cortex Left | ‘−30 −78 +2’ | 221 | −0.21563 | 0.194086 | 5.25928 | 5.62 | 0.037842 |
Decreased fALFF | |||||||
Middle Temporal Gyrus Right | ‘+68 −34 +6’ | 427 | 0.250174 | −0.16139 | 21.571 | −9.92 | 0.001401 |
Superior Frontal Gyrus LeftMiddle Frontal Gyrus Left | ‘−16 −6 +76’ | 403 | 0.545782 | 0.092736 | 70.9526 | −5.36 | 0.001401 |
Middle Temporal Gyrus Left | ‘−58 −50 −10’ | 380 | 0.465669 | 0.025445 | 89.6379 | −8.65 | 0.001401 |
Superior Frontal Gyrus RightMiddle Frontal Gyrus Right | ‘+20 −6 +70’ | 375 | 0.481211 | 0.052951 | 80.1742 | −6.11 | 0.001401 |
Inferior Temporal Gyrus Right | ‘+54 −54 −26’ | 365 | 0.320968 | −0.17819 | 28.6043 | −7.96 | 0.001401 |
Superior Frontal Gyrus Right | ‘+8 +18 +70’ | 234 | 0.410741 | −0.05509 | 76.3488 | −6.22 | 0.026164 |
Posterior Cingulate Gyrus | ‘+6 −28 +28’ | 217 | −0.22283 | −0.70026 | 51.72135 | −5.37 | 0.034891 |
Main Brain Regions | Coordinates (x, y, z) | Voxels | Pre-tDCS (Mean; a.u.) | Dur-tDCS (Mean; a.u.) | Percentage Change (%) | T-Stat [19] | P-FDR |
---|---|---|---|---|---|---|---|
Increased fALFF | |||||||
Inferior Lateral Occipital Cortex Left Temporal Occipital Cortex Left | ‘−40 −60 −14‘ | 437 | 0.118253 | 0.481962 | 60.59631 | 5.80 | 0.000389 |
Temporal Pole Right Inferior Frontal Gyrus Right | ‘+52 +16 −28‘ | 428 | −0.28435 | 0.110447 | 44.0492 | 9.57 | 0.000389 |
Insular Cortex Right Putamen Right Amygdala Right | ‘+40 +16 −8‘ | 307 | −0.56942 | −0.18799 | 50.3599 | 12.81 | 0.004547 |
Cerebellum Right | ‘+16 −86 −32‘ | 267 | −0.02321 | 0.323126 | 86.59579 | 9.31 | 0.009520 |
Occipital Pole Right | ‘−10 −98 +4‘ | 236 | 0.434013 | 0.809296 | 30.18424 | 5.04 | 0.016270 |
Inferior Frontal Gyrus Left | ‘−54 +30 −2‘ | 232 | 0.093637 | 0.474607 | 67.04334 | 6.18 | 0.016270 |
Hippocampus Right | ‘+16 −22 −40‘ | 225 | −0.8762 | −0.46149 | 31.0015 | 9.05 | 0.016928 |
Middle Frontal Gyrus Right Inferior Frontal Gyrus Right | ‘+48 +46 +16 ‘ | 209 | −0.19298 | 0.21055 | 4.355137 | 6.51 | 0.023246 |
Temporal Pole Left Insular Cortex Left | ‘−32 +20 −10‘ | 191 | −0.53496 | −0.13044 | 60.7937 | 7.60 | 0.034792 |
Decreased fALFF | |||||||
Cuneal Cortex Right | ‘+24 −74 +42‘ | 627 | 1.17035 | 0.827826 | −17.1418 | −7.27 | 0.000012 |
Superior Frontal Gyrus Left Middle Frontal Gyrus Left | ‘−22 +34 +44‘ | 309 | 0.269823 | −0.13118 | −34.5747 | −6.27 | 0.006600 |
Lateral Occipital Cortex Right Angular Gyrus Right | ‘+46 −76 +36‘ | 283 | 0.92414 | 0.572967 | −23.4568 | −6.09 | 0.008517 |
Precuneus Cortex Superior Parietal Lobule Right | ‘−10 −52 +44‘ | 254 | 0.732296 | 0.385454 | −31.0304 | −8.81 | 0.012849 |
Posterior Cingulate Gyrus | ‘−2 −22 +34‘ | 248 | 0.427365 | 0.071968 | −71.1742 | −8.29 | 0.012849 |
Main Brain Regions | Coordinates (x, y, z) | Voxels | Baseline (Mean; a.u.) | Follow Up (Mean; a.u.) | Percentage Change (%) | T-Stat [38] | P-FDR |
---|---|---|---|---|---|---|---|
PRE-tDCS | |||||||
Precuneus Cortex Right Cuneal Cortex Bilateral | ‘−6 −86 +24’ | 498 | 0.457145 | 1.012112 | 37.77192 | 4.46 | 0.004400 |
Lingual Gyrus Right Occipital Fusiform Gyrus Right Inferior Lateral Occipital Cortex Right | ‘+32 −66 −6’ | 346 | −0.17168 | 0.367106 | 36.27264 | 4.78 | 0.029954 |
Post and Precentral Gyri Right | ‘+26 −30 +44’ | 327 | −0.16212 | 0.308116 | 31.04644 | 7.65 | 0.029954 |
Frontal Pole Right Middle Frontal Gyrus Right Inferior Frontal Gyrus Right | ‘+24 −74 +42’ | 385 | 0.265931 | −0.38734 | 18.58469 | −6.45 | 0.030771 |
DUR-tDCS | |||||||
Frontal Pole Left Superior Frontal Gyrus Left | ‘−38 +54 +24’ | 370 | 0.297546 | −0.43713 | 18.99966 | −5.55 | 0.024952 |
Middle Frontal Gyrus Left Inferior Frontal Gyrus Left | ‘−48 +24 +44’ | 362 | 0.145045 | −0.54301 | 57.83924 | −4.63 | 0.024952 |
Main Brain Regions | Coordinates (x, y, z) | Voxels | HC (Mean; a.u.) | MS (Mean; a.u.) | Relative Difference (%) | T-Stat (46) | P-FDR |
---|---|---|---|---|---|---|---|
PRE-tDCS | |||||||
Anterior Cingulate Gyrus Thalamus Bilateral | ‘+12 −30 +10‘ | 3346 | 0.159017278 | −0.463121198 | 48.880423 | 6.13 | <0.0001 |
Insular Cortex Right Frontal Operculum Cortex Right | ‘−42 +10 −8‘ | 1231 | 0.097547268 | −0.520021303 | 68.409251 | 5.10 | <0.0001 |
Insular Cortex Left Inferior Frontal Gyrus Left | ‘+46 +20 +0‘ | 1158 | 0.097244857 | −0.492867159 | 67.041899 | 6.03 | <0.0001 |
Posterior Inferior Temporal Gyrus Left | ‘+14 −76 +30‘ | 518 | 1.026043849 | 0.457400933 | 38.3325974 | 5.63 | 0.0006 |
Anterior Parahippocampal Gyrus Right | ‘+18 −94 +2‘ | 494 | 1.027096386 | 0.433568696 | 40.6340712 | 4.79 | 0.0007 |
Occipital Pole Right | ‘−2 +8 −18‘ | 409 | −0.290480644 | −0.990572217 | 54.649702 | 3.42 | 0.0026 |
Insular Cortex Left Heschl’s Gyrus Left | ‘+54 −58 +44‘ | 336 | 0.747053189 | 0.154194933 | 65.7819131 | 4.94 | 0.00857 |
Inferior Temporal Gyrus Right | ‘−54 −20 +22‘ | 323 | 0.719479415 | 0.156920041 | 64.189836 | 5.53 | 0.0096 |
Precuneous Cortex Cuneal Cortex | ‘+26 −58 −12‘ | 252 | 0.441386577 | −0.098704592 | 63.4489146 | 4.38 | 0.0351 |
DUR-tDCS | |||||||
Posterior Inferior Temporal Gyrus Left | ‘−56 −46 −28‘ | 1553 | −0.6197054 | −0.1267058 | 66.0493289 | −8.43 | <0.0001 |
Anterior Middle Temporal Gyrus Right | ‘+38 −30 −14‘ | 830 | −0.7224977 | −0.2598023 | 47.1032603 | −7.71 | <0.0001 |
Superior Lateral Occipital Cortex Right | ‘+48 −32 +32‘ | 581 | −0.1409356 | 0.37347333 | 45.204852 | −7.16 | <0.0001 |
Cerebellum | ‘−20 −40 −58‘ | 427 | −0.682366 | −0.044775 | 87.6846512 | −3.60 | <0.0001 |
Paracingulate Gyrus Left | ‘−10 +24 +14‘ | 406 | −0.8173234 | −0.3373407 | 41.5690316 | −6.75 | <0.0001 |
Supplementary Motor Cortex Right | ‘+10 +16 +52‘ | 377 | −0.3995375 | 0.05429481 | 76.0727417 | −8.13 | <0.0001 |
Middle Temporal Gyrus Right | ‘+54 −48 −6‘ | 332 | 0.0917993 | 0.65752227 | 75.498024 | −6.49 | <0.0001 |
Putamen Left | ‘−24 +0 +12‘ | 281 | −0.7584529 | −0.3172187 | 41.019413 | −6.27 | 0.0002 |
Precuneus Cortex | ‘−8 −60 +40‘ | 263 | 0.19427928 | 0.7033319 | 56.71193 | −5.66 | 0.0003 |
Cerebellum | ‘−24 −44 −20‘ | 262 | −0.3793384 | 0.06941254 | 69.0641142 | −5.59 | 0.0003 |
Parietal Operculum Cortex Left | ‘−42 −36 +24‘ | 254 | −0.235471 | 0.30670603 | 13.138704 | −6.01 | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muccio, M.; Pilloni, G.; Walton Masters, L.; He, P.; Krupp, L.; Datta, A.; Bikson, M.; Charvet, L.; Ge, Y. Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study. Bioengineering 2025, 12, 672. https://doi.org/10.3390/bioengineering12060672
Muccio M, Pilloni G, Walton Masters L, He P, Krupp L, Datta A, Bikson M, Charvet L, Ge Y. Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study. Bioengineering. 2025; 12(6):672. https://doi.org/10.3390/bioengineering12060672
Chicago/Turabian StyleMuccio, Marco, Giuseppina Pilloni, Lillian Walton Masters, Peidong He, Lauren Krupp, Abhishek Datta, Marom Bikson, Leigh Charvet, and Yulin Ge. 2025. "Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study" Bioengineering 12, no. 6: 672. https://doi.org/10.3390/bioengineering12060672
APA StyleMuccio, M., Pilloni, G., Walton Masters, L., He, P., Krupp, L., Datta, A., Bikson, M., Charvet, L., & Ge, Y. (2025). Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study. Bioengineering, 12(6), 672. https://doi.org/10.3390/bioengineering12060672