Flexoelectricity in Biological Materials and Its Potential Applications in Biomedical Research
Abstract
1. Introduction
2. Flexoelectricity vs. Piezoelectricity
3. Experimental and Theoretical Identifications of Flexoelectricity
4. Flexoelectricity in Biological Materials
4.1. Flexoelectricity in Cells
4.2. Flexoelectricity in Bio-Membranes
4.3. Flexoelectricity in Hearing Mechanism
4.4. Flexoelectricity in Bone
5. The Potential Biomedical Application of Flexoelectricity
6. Discussion
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chae, I.; Jeong, C.K.; Ounaies, Z.; Kim, S.H. Review on Electromechanical Coupling Properties of Biomaterials. ACS Appl. Bio Mater. 2018, 1, 936–953. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, M.; Ojha, N.; Budziałowski, M.; Załęski, K.; Fina, I.; Mishra, Y.K.; Pant, K.K.; Coy, E. Fundamentals of Flexoelectricity, Materials and Emerging Opportunities Toward Strain-Driven Nanocatalysts. Small 2024, 20, 2406726. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yang, J.; Wu, J.; Xin, X.; Li, Z.; Yuan, X.; Shen, X.; Dong, S. Piezoelectric Actuators and Motors: Materials, Designs, and Applications. Adv. Mater. Technol. 2020, 5, 1900716. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.; Xu, Y. Highly Sensitive Lateral Field Excited Piezoelectric Film Acoustic Enzyme Biosensor. IEEE Sens. J. 2013, 13, 2217–2222. [Google Scholar] [CrossRef]
- Yurkov, A.; Yudin, P. Flexoelectricity in Metals. J. Appl. Phys. 2021, 129, 195108. [Google Scholar] [CrossRef]
- Shu, L.; Ke, S.; Fei, L.; Huang, W.; Wang, Z.; Gong, J.; Jiang, X.; Wang, L.; Li, F.; Lei, S.; et al. Photoflexoelectric Effect in Halide Perovskites. Nat. Mater. 2020, 19, 605–609. [Google Scholar] [CrossRef]
- Shin, D.-M.; Tsege, E.L.; Kang, S.H.; Seung, W.; Kim, S.-W.; Kim, H.K.; Hong, S.W.; Hwang, Y.-H. Freestanding ZnO Nanorod/Graphene/ZnO Nanorod Epitaxial Double Heterostructure for Improved Piezoelectric Nanogenerators. Nano Energy 2015, 12, 268–277. [Google Scholar] [CrossRef]
- Choi, M.-Y.; Choi, D.; Jin, M.-J.; Kim, I.; Kim, S.-H.; Choi, J.-Y.; Lee, S.Y.; Kim, J.M.; Kim, S.-W. Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods. Adv. Mater. 2009, 21, 2185–2189. [Google Scholar] [CrossRef]
- Moreira, K.S.; Lorenzett, E.; Devens, A.L.; Santos da Campo, Y.A.; Mehler, D.; Burgo, T.A.L. Low-Cost Elastomer-Based Flexoelectric Devices. J. Appl. Phys. 2021, 129, 234502. [Google Scholar] [CrossRef]
- Wei, C.; Wang, Z.; Huang, W. Performance of a Flexoelectric Actuator for Lamb Wave Excitation. J. Appl. Phys. 2021, 129, 034902. [Google Scholar] [CrossRef]
- Mizzi, C.A.; Marks, L.D. When Flexoelectricity Drives Triboelectricity. Nano Lett. 2022, 22, 3939–3945. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Liu, L.; Sharma, P. Flexoelectricity in Soft Materials and Biological Membranes. J. Mech. Phys. Solids 2014, 62, 209–227. [Google Scholar] [CrossRef]
- Breneman, K.D.; Brownell, W.E.; Rabbitt, R.D. Hair Cell Bundles: Flexoelectric Motors of the Inner Ear. PLoS ONE 2009, 4, e5201. [Google Scholar] [CrossRef]
- Kim, G.H.; Kosterin, P.; Obaid, A.L.; Salzberg, B.M. A Mechanical Spike Accompanies the Action Potential in Mammalian Nerve Terminals. Biophys. J. 2007, 92, 3122–3129. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.D.; Maranganti, R.; Sharma, P. On the Possibility of Piezoelectric Nanocomposites without Using Piezoelectric Materials. J. Mech. Phys. Solids 2007, 55, 2328–2350. [Google Scholar] [CrossRef]
- Deng, Q.; Lv, S.; Li, Z.; Tan, K.; Liang, X.; Shen, S. The Impact of Flexoelectricity on Materials, Devices, and Physics. J. Appl. Phys. 2020, 128, 080902. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Mao, S.; Yeh, Y.-W.; Purohit, P.K.; McAlpine, M.C. Nanoscale Flexoelectricity. Adv. Mater. 2013, 25, 946–974. [Google Scholar] [CrossRef]
- Ahmadpoor, F.; Sharma, P. Flexoelectricity in Two-Dimensional Crystalline and Biological Membranes. Nanoscale 2015, 7, 16555–16570. [Google Scholar] [CrossRef]
- Zhuang, X.; Nguyen, B.H.; Nanthakumar, S.S.; Tran, T.Q.; Alajlan, N.; Rabczuk, T. Computational Modeling of Flexoelectricity—A Review. Energies 2020, 13, 1326. [Google Scholar] [CrossRef]
- Shu, L.; Liang, R.; Rao, Z.; Fei, L.; Ke, S.; Wang, Y. Flexoelectric Materials and Their Related Applications: A Focused Review. J. Adv. Ceram. 2019, 8, 153–173. [Google Scholar] [CrossRef]
- Kogan, S.M. Piezoelectric Effect during Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals. Sov. Phys.-Solid State 1964, 5, 2069–2070. [Google Scholar]
- Nguyen, T.D.; Nagarah, J.M.; Qi, Y.; Nonnenmann, S.S.; Morozov, A.V.; Li, S.; Arnold, C.B.; McAlpine, M.C. Wafer-Scale Nanopatterning and Translation into High-Performance Piezoelectric Nanowires. Nano Lett. 2010, 10, 4595–4599. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Kim, J.; Nguyen, T.D.; Lisko, B.; Purohit, P.K.; McAlpine, M.C. Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons. Nano Lett. 2011, 11, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Mbarki, R.; Baccam, N.; Dayal, K.; Sharma, P. Piezoelectricity above the Curie Temperature? Combining Flexoelectricity and Functional Grading to Enable High-Temperature Electromechanical Coupling. Appl. Phys. Lett. 2014, 104, 122904. [Google Scholar] [CrossRef]
- Majdoub, M.S.; Sharma, P.; Cagin, T. Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect. Phys. Rev. B 2008, 77, 125424. [Google Scholar] [CrossRef]
- Wang, B.; Gu, Y.; Zhang, S.; Chen, L.-Q. Flexoelectricity in Solids: Progress, Challenges, and Perspectives. Prog. Mater. Sci. 2019, 106, 100570. [Google Scholar] [CrossRef]
- Baskaran, S.; He, X.; Chen, Q.; Fu, J.Y. Experimental Studies on the Direct Flexoelectric Effect in α-Phase Polyvinylidene Fluoride Films. Appl. Phys. Lett. 2011, 98, 242901. [Google Scholar] [CrossRef]
- Baskaran, S.; Ramachandran, N.; He, X.; Thiruvannamalai, S.; Lee, H.J.; Heo, H.; Chen, Q.; Fu, J.Y. Giant Flexoelectricity in Polyvinylidene Fluoride Films. Phys. Lett. A 2011, 375, 2082–2084. [Google Scholar] [CrossRef]
- Yudin, P.V.; Tagantsev, A.K. Fundamentals of Flexoelectricity in Solids. Nanotechnology 2013, 24, 432001. [Google Scholar] [CrossRef]
- Buka, A.; Éber, N. Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications; Imperial College Press: London, UK, 2013; ISBN 978-1-84816-799-5. [Google Scholar]
- Cross, L.E. Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients. J. Mater. Sci. 2006, 41, 53–63. [Google Scholar] [CrossRef]
- Bhaskar, U.K.; Banerjee, N.; Abdollahi, A.; Wang, Z.; Schlom, D.G.; Rijnders, G.; Catalan, G. A Flexoelectric Microelectromechanical System on Silicon. Nat. Nanotechnol. 2016, 11, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.; Zhu, W.; Li, N.; Cross, L.E. Flexure Mode Flexoelectric Piezoelectric Composites. J. Appl. Phys. 2009, 106, 104109. [Google Scholar] [CrossRef]
- Ma, W.; Cross, L.E. Observation of the Flexoelectric Effect in Relaxor Pb(Mg1/3Nb2/3)O3 Ceramics. Appl. Phys. Lett. 2001, 78, 2920–2921. [Google Scholar] [CrossRef]
- Coy, E. Method for Probing Flexoelectric Response of Free-Standing Cantilever Beams by Nanometric Oscillations with Nanoindentation Technique. Measurement 2020, 163, 107986. [Google Scholar] [CrossRef]
- Lu, J.; Lv, J.; Liang, X.; Xu, M.; Shen, S. Improved Approach to Measure the Direct Flexoelectric Coefficient of Bulk Polyvinylidene Fluoride. J. Appl. Phys. 2016, 119, 094104. [Google Scholar] [CrossRef]
- Kolhatkar, G.; Nicklaus, M.; Hadj Youssef, A.; Cojocaru, C.; Rivard, M.; Merlen, A.; Légaré, F.; Ruediger, A. Second Harmonic Generation Investigation of Symmetry Breaking and Flexoelectricity Induced by Nanoindentations in SrTiO3. Adv. Funct. Mater. 2019, 29, 1901266. [Google Scholar] [CrossRef]
- Mahle, R.; Mahapatra, P.L.; Singh, A.K.; Kumbhakar, P.; Paliwal, M.; Tiwary, C.S.; Banerjee, R. Anaerobe Syntrophic Co-Culture-Mediated Green Synthesis of Ultrathin Niobium Carbide (NbC) Sheets for Flexoelectricity Generation. ACS Sustain. Chem. Eng. 2022, 10, 13650–13660. [Google Scholar] [CrossRef]
- Wang, X.; Cui, A.; Chen, F.; Xu, L.; Hu, Z.; Jiang, K.; Shang, L.; Chu, J. Probing Effective Out-of-Plane Piezoelectricity in van Der Waals Layered Materials Induced by Flexoelectricity. Small 2019, 15, 1903106. [Google Scholar] [CrossRef]
- Chu, B.; Salem, D.R. Flexoelectricity in Several Thermoplastic and Thermosetting Polymers. Appl. Phys. Lett. 2012, 101, 103905. [Google Scholar] [CrossRef]
- Chandratre, S.; Sharma, P. Coaxing Graphene to Be Piezoelectric. Appl. Phys. Lett. 2012, 100, 023114. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, T.; Shu, L.; Wang, Z.; Huang, W.; Fei, L.; Li, F.; Rao, Z.; Ke, S.; Li, B.; et al. Flexoelectric Fatigue in (K,Na,Li)(Nb,Sb)O3 Ceramics. Appl. Phys. Lett. 2018, 113, 182901. [Google Scholar] [CrossRef]
- Castles, F.; Morris, S.M.; Coles, H.J. The Limits of Flexoelectricity in Liquid Crystals. AIP Adv. 2011, 1, 032120. [Google Scholar] [CrossRef]
- Narvaez, J.; Vasquez-Sancho, F.; Catalan, G. Enhanced Flexoelectric-like Response in Oxide Semiconductors. Nature 2016, 538, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Zubko, P.; Catalan, G.; Buckley, A.; Welche, P.R.L.; Scott, J.F. Strain-Gradient-Induced Polarization in SrTiO3 Single Crystals. Phys. Rev. Lett. 2007, 99, 167601. [Google Scholar] [CrossRef]
- Mizzi, C.A.; Guo, B.; Marks, L.D. Experimental Determination of Flexoelectric Coefficients in SrTiO3, KTaO3, TiO2, and YAlO3 Single Crystals. Phys. Rev. Mater. 2022, 6, 055005. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, K.; Xu, M.; Shen, H.; Chen, K.; Feng, B.; Shen, S. Investigation of the 2312 Flexoelectric Coefficient Component of Polyvinylidene Fluoride: Deduction, Simulation, and Mensuration. Sci. Rep. 2017, 7, 3134. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; He, B.; Javvaji, B.; Park, H.S. Intrinsic Bending Flexoelectric Constants in Two-Dimensional Materials. Phys. Rev. B 2019, 99, 054105. [Google Scholar] [CrossRef]
- Moreno-Garcia, D.; Howell, K.M.; Villanueva, L.G. Flexoelectricity in Amorphous Hafnium Oxide (HfO2). APL Mater. 2024, 12, 101112. [Google Scholar] [CrossRef]
- Li, Y.; Shu, L.; Huang, W.; Jiang, X.; Wang, H. Giant Flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 Composite. Appl. Phys. Lett. 2014, 105, 162906. [Google Scholar] [CrossRef]
- Brennan, C.J.; Ghosh, R.; Koul, K.; Banerjee, S.K.; Lu, N.; Yu, E.T. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy. Nano Lett. 2017, 17, 5464–5471. [Google Scholar] [CrossRef]
- Choi, M.-J.; Eom, J.-H.; Shin, S.-H.; Nah, J.; Choi, J.-S.; Song, H.-A.; An, H.; Kim, H.Y.; Pammi, S.V.N.; Choi, G.; et al. Most Facile Synthesis of Zn-Al:LDHs Nanosheets at Room Temperature via Environmentally Friendly Process and Their High Power Generation by Flexoelectricity. Mater. Today Energy 2018, 10, 254–263. [Google Scholar] [CrossRef]
- Li, Y.; Shu, L.; Zhou, Y.; Guo, J.; Xiang, F.; He, L.; Wang, H. Enhanced Flexoelectric Effect in a Non-Ferroelectric Composite. Appl. Phys. Lett. 2013, 103, 142909. [Google Scholar] [CrossRef]
- Yu, F.; Tian, J.; Jiang, F.; Liu, Y.; Li, C.; Wang, C.; Wang, Z.L.; Ren, K. Flexoelectricity-Enhanced Photovoltaic Effect in Trapezoid-Shaped NaNbO3 Nanotube Array Composites. Nano Res. 2023, 16, 11914–11924. [Google Scholar] [CrossRef]
- Rao, W.-F.; Wang, Y.-W.; Li, A.-Q.; Zhou, S.-S.; Zheng, Z.-M. An Electromechanical Stimulation Regulating Model with Flexoelectric Effect of Piezoelectric Laminated Micro-Beam for Cell Bionic Culture. Sci. Rep. 2024, 14, 6130. [Google Scholar] [CrossRef]
- Tian, X.; Sladek, J.; Sladek, V.; Deng, Q.; Li, Q. A Collocation Mixed Finite Element Method for the Analysis of Flexoelectric Solids. Int. J. Solids Struct. 2021, 217–218, 27–39. [Google Scholar] [CrossRef]
- Petrov, A.G. Flexoelectricity of Model and Living Membranes. Biochim. Biophys. Acta BBA-Biomembr. 2002, 1561, 1–25. [Google Scholar] [CrossRef]
- Petrov, A.G. Electricity and Mechanics of Biomembrane Systems: Flexoelectricity in Living Membranes. Anal. Chim. Acta 2006, 568, 70–83. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Meunier, V. Electronic Flexoelectricity in Low-Dimensional Systems. Phys. Rev. B 2008, 77, 033403. [Google Scholar] [CrossRef]
- Meyer, R.B. Piezoelectric Effects in Liquid Crystals. Phys. Rev. Lett. 1969, 22, 918–921. [Google Scholar] [CrossRef]
- Hong, J.; Vanderbilt, D. First-Principles Theory and Calculation of Flexoelectricity. Phys. Rev. B 2013, 88, 174107. [Google Scholar] [CrossRef]
- Chatzopoulos, A.; Beck, P.; Roth, J.; Trebin, H.-R. Atomistic Modeling of Flexoelectricity in Periclase. Phys. Rev. B 2016, 93, 024105. [Google Scholar] [CrossRef]
- Maranganti, R.; Sharma, P. Atomistic Determination of Flexoelectric Properties of Crystalline Dielectrics. Phys. Rev. B 2009, 80, 054109. [Google Scholar] [CrossRef]
- Stengel, M. Flexoelectricity from Density-Functional Perturbation Theory. Phys. Rev. B 2013, 88, 174106. [Google Scholar] [CrossRef]
- Schulz, M.; Marvan, M. The Theory of Flexoelectric Effect of Polymer Glasses. Colloid Polym. Sci. 1991, 269, 553–555. [Google Scholar] [CrossRef]
- Marvan, M.; Havránek, A. Flexoelectric Effect in Elastomers; Chudáček, I., Ed.; Steinkopff: Darmstadt, Germany, 1988; pp. 33–36. [Google Scholar]
- Tripathy, A.; Saravanakumar, B.; Mohanty, S.; Nayak, S.K.; Ramadoss, A. Comprehensive Review on Flexoelectric Energy Harvesting Technology: Mechanisms, Device Configurations, and Potential Applications. ACS Appl. Electron. Mater. 2021, 3, 2898–2924. [Google Scholar] [CrossRef]
- Abou-Dakka, M.; Herrera-Valencia, E.E.; Rey, A.D. Linear Oscillatory Dynamics of Flexoelectric Membranes Embedded in Viscoelastic Media with Applications to Outer Hair Cells. J. Non-Newton. Fluid Mech. 2012, 185–186, 1–17. [Google Scholar] [CrossRef]
- Kang, H.; Hou, Z.; Qin, Q.-H. Experimental Study of Time Response of Bending Deformation of Bone Cantilevers in an Electric Field. J. Mech. Behav. Biomed. Mater. 2018, 77, 192–198. [Google Scholar] [CrossRef]
- Venkateshwarlu, A.; Akshayveer; Singh, S.; Melnik, R. Piezoelectricity and Flexoelectricity in Biological Cells: The Role of Cell Structure and Organelles. Biomech. Model. Mechanobiol. 2025, 24, 47–76. [Google Scholar] [CrossRef]
- Sachs, F.; Brownell, W.E.; Petrov, A.G. Membrane Electromechanics in Biology, with a Focus on Hearing. MRS Bull. 2009, 34, 665–670. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Jesse, S.; Liu, W.; Balandin, A.A. Evidence for Possible Flexoelectricity in Tobacco Mosaic Viruses Used as Nanotemplates. Appl. Phys. Lett. 2006, 88, 153902. [Google Scholar] [CrossRef]
- Vasquez-Sancho, F.; Abdollahi, A.; Damjanovic, D.; Catalan, G. Flexoelectricity in Bones. Adv. Mater. 2018, 30, 1705316. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Toldrà, R.; Vasquez-Sancho, F.; Barroca, N.; Catalan, G. Investigation of The Cellular Response to Bone Fractures: Evidence for Flexoelectricity. Sci. Rep. 2020, 10, 254. [Google Scholar] [CrossRef]
- Deng, Q.; Ahmadpoor, F.; Brownell, W.E.; Sharma, P. The Collusion of Flexoelectricity and Hopf Bifurcation in the Hearing Mechanism. J. Mech. Phys. Solids 2019, 130, 245–261. [Google Scholar] [CrossRef]
- Williams, W.S.; Breger, L. Piezoelectricity in Tendon and Bone. J. Biomech. 1975, 8, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Katti, D.R.; Katti, K.S. Cancer Cell Mechanics with Altered Cytoskeletal Behavior and Substrate Effects: A 3D Finite Element Modeling Study. J. Mech. Behav. Biomed. Mater. 2017, 76, 125–134. [Google Scholar] [CrossRef]
- Barreto, S.; Clausen, C.H.; Perrault, C.M.; Fletcher, D.A.; Lacroix, D. A Multi-Structural Single Cell Model of Force-Induced Interactions of Cytoskeletal Components. Biomaterials 2013, 34, 6119–6126. [Google Scholar] [CrossRef]
- Basoli, F.; Giannitelli, S.M.; Gori, M.; Mozetic, P.; Bonfanti, A.; Trombetta, M.; Rainer, A. Biomechanical Characterization at the Cell Scale: Present and Prospects. Front. Physiol. 2018, 9, 1449. [Google Scholar] [CrossRef] [PubMed]
- Link, R.; Weißenbruch, K.; Tanaka, M.; Bastmeyer, M.; Schwarz, U.S. Cell Shape and Forces in Elastic and Structured Environments: From Single Cells to Organoids. Adv. Funct. Mater. 2024, 34, 2302145. [Google Scholar] [CrossRef]
- Fallqvist, B.; Fielden, M.L.; Pettersson, T.; Nordgren, N.; Kroon, M.; Gad, A.K.B. Experimental and Computational Assessment of F-Actin Influence in Regulating Cellular Stiffness and Relaxation Behaviour of Fibroblasts. J. Mech. Behav. Biomed. Mater. 2016, 59, 168–184. [Google Scholar] [CrossRef]
- Singh, S.; Krishnaswamy, J.A.; Melnik, R. Biological Cells and Coupled Electro-Mechanical Effects: The Role of Organelles, Microtubules, and Nonlocal Contributions. J. Mech. Behav. Biomed. Mater. 2020, 110, 103859. [Google Scholar] [CrossRef]
- Xiang, P.; Liew, K.M. Dynamic Behaviors of Long and Curved Microtubules Based on an Atomistic-Continuum Model. Comput. Methods Appl. Mech. Eng. 2012, 223–224, 123–132. [Google Scholar] [CrossRef]
- Setayandeh, S.S.; Lohrasebi, A. Multi Scale Modeling of 2450 MHz Electric Field Effects on Microtubule Mechanical Properties. J. Mol. Graph. Model. 2016, 70, 122–128. [Google Scholar] [CrossRef]
- Thackston, K.A.; Deheyn, D.D.; Sievenpiper, D.F. Simulation of Electric Fields Generated from Microtubule Vibrations. Phys. Rev. E 2019, 100, 022410. [Google Scholar] [CrossRef] [PubMed]
- Gudimchuk, N.B.; Alexandrova, V.V. Measuring and Modeling Forces Generated by Microtubules. Biophys. Rev. 2023, 15, 1095–1110. [Google Scholar] [CrossRef]
- Kummer, E.; Ban, N. Mechanisms and Regulation of Protein Synthesis in Mitochondria. Nat. Rev. Mol. Cell Biol. 2021, 22, 307–325. [Google Scholar] [CrossRef]
- Mozaffari, K.; Ahmadpoor, F.; Sharma, P. Flexoelectricity and the Entropic Force between Fluctuating Fluid Membranes. Math. Mech. Solids 2021, 26, 1760–1778. [Google Scholar] [CrossRef]
- Liu, L.P.; Sharma, P. Flexoelectricity and Thermal Fluctuations of Lipid Bilayer Membranes: Renormalization of Flexoelectric, Dielectric, and Elastic Properties. Phys. Rev. E 2013, 87, 032715. [Google Scholar] [CrossRef]
- Gao, L.; Feng, X.; Yin, Y.; Gao, H. An Electromechanical Liquid Crystal Model of Vesicles. J. Mech. Phys. Solids 2008, 56, 2844–2862. [Google Scholar] [CrossRef]
- Rey, A.D. Liquid Crystal Model of Membrane Flexoelectricity. Phys. Rev. E 2006, 74, 011710. [Google Scholar] [CrossRef]
- Galassi, V.V.; Wilke, N. On the Coupling between Mechanical Properties and Electrostatics in Biological Membranes. Membranes 2021, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Petrov, A.G. Flexoelectricity and Mechanotransduction. In Current Topics in Membranes; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 121–150. ISBN 978-0-12-153358-8. [Google Scholar]
- Petrov, A.G.; Miller, B.A.; Hristova, K.; Usherwood, P.N.R. Flexoelectric Effects in Model and Native Membranes Containing Ion Channels. Eur. Biophys. J. 1993, 22, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Ambjörnsson, T.; Lomholt, M.A.; Hansen, P.L. Applying a Potential across a Biomembrane: Electrostatic Contribution to the Bending Rigidity and Membrane Instability. Phys. Rev. E 2007, 75, 051916. [Google Scholar] [CrossRef]
- Harland, B.; Brownell, W.E.; Spector, A.A.; Sun, S.X. Voltage-Induced Bending and Electromechanical Coupling in Lipid Bilayers. Phys. Rev. E 2010, 81, 031907. [Google Scholar] [CrossRef]
- Booth, M.J.; Restrepo Schild, V.; Downs, F.G.; Bayley, H. Functional Aqueous Droplet Networks. Mol. Biosyst. 2017, 13, 1658–1691. [Google Scholar] [CrossRef]
- Challita, E.J.; Makhoul-Mansour, M.M.; Freeman, E.C. Reconfiguring Droplet Interface Bilayer Networks through Sacrificial Membranes. Biomicrofluidics 2018, 12, 034112. [Google Scholar] [CrossRef]
- Tamaddoni, N.; Freeman, E.C.; Sarles, S.A. Sensitivity and Directionality of Lipid Bilayer Mechanotransduction Studied Using a Revised, Highly Durable Membrane-Based Hair Cell Sensor. Smart Mater. Struct. 2015, 24, 065014. [Google Scholar] [CrossRef]
- Freeman, E.C.; Najem, J.S.; Sukharev, S.; Philen, M.K.; Leo, D.J. The Mechanoelectrical Response of Droplet Interface Bilayer Membranes. Soft Matter 2016, 12, 3021–3031. [Google Scholar] [CrossRef] [PubMed]
- Kancharala, A.; Freeman, E.; Philen, M. A Comprehensive Flexoelectric Model for Droplet Interface Bilayers Acting as Sensors and Energy Harvesters. Smart Mater. Struct. 2016, 25, 104007. [Google Scholar] [CrossRef]
- Krichen, S.; Sharma, P. Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling. J. Appl. Mech. 2016, 83, 030801. [Google Scholar] [CrossRef]
- Raphael, R.M.; Popel, A.S.; Brownell, W.E. A Membrane Bending Model of Outer Hair Cell Electromotility. Biophys. J. 2000, 78, 2844–2862. [Google Scholar] [CrossRef] [PubMed]
- Spector, A.A.; Deo, N.; Grosh, K.; Ratnanather, J.T.; Raphael, R.M. Electromechanical Models of the Outer Hair Cell Composite Membrane. J. Membr. Biol. 2006, 209, 135–152. [Google Scholar] [CrossRef]
- Petrov, A.G.; Usherwood, P.N.R. Mechanosensitivity of Cell Membranes: Ion Channels, Lipid Matrix and Cytoskeleton. Eur. Biophys. J. 1994, 23, 1–19. [Google Scholar] [CrossRef] [PubMed]
- More, N.; Kapusetti, G. Piezoelectric Material–a Promising Approach for Bone and Cartilage Regeneration. Med. Hypotheses 2017, 108, 10–16. [Google Scholar] [CrossRef]
- Fukada, E.; Yasuda, I. On the Piezoelectric Effect of Bone. J. Phys. Soc. Jpn. 1957, 12, 1158–1162. [Google Scholar] [CrossRef]
- Kapat, K.; Shubhra, Q.T.H.; Zhou, M.; Leeuwenburgh, S. Piezoelectric Nano-Biomaterials for Biomedicine and Tissue Regeneration. Adv. Funct. Mater. 2020, 30, 1909045. [Google Scholar] [CrossRef]
- Mohammadkhah, M.; Marinkovic, D.; Zehn, M.; Checa, S. A Review on Computer Modeling of Bone Piezoelectricity and Its Application to Bone Adaptation and Regeneration. Bone 2019, 127, 544–555. [Google Scholar] [CrossRef] [PubMed]
- MacGinitie, L.A.; Stanley, G.D.; Bieber, W.A.; Wu, D.D. Bone Streaming Potentials and Currents Depend on Anatomical Structure and Loading Orientation. J. Biomech. 1997, 30, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.A.; Becker, R.O.; Soderholm, S.C. Origin of the Piezoelectric Effect in Bone. Calcif. Tissue Res. 1971, 8, 177–180. [Google Scholar] [CrossRef]
- Shu, Y.; Baumann, M.J.; Case, E.D.; Irwin, R.K.; Meyer, S.E.; Pearson, C.S.; McCabe, L.R. Surface Microcracks Signal Osteoblasts to Regulate Alignment and Bone Formation. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 44, 191–200. [Google Scholar] [CrossRef]
- Sancho, F.V. Flexoelectricity in Biomaterials. Ph.D. Thesis, University of Barcelona, Barcelona, Spain, 2018. [Google Scholar]
- Lakes, R. The Role of Gradient Effects in the Piezoelectricity of Bone. IEEE Trans. Biomed. Eng. 1980, BME-27, 282–283. [Google Scholar] [CrossRef]
- Fu, J. Experimental Studies of the Direct Flexoelectric Effect in Bone Materials. In Proceedings of the APS March Meeting 2010, Portland, OR, USA, 15–19 March 2010; The American Physical Society: Portland, OR, USA, 2010; Volume 55, p. T18.00013. [Google Scholar]
- Stock, S.R.; Yuan, F.; Brinson, L.C.; Almer, J.D. Internal Strain Gradients Quantified in Bone under Load Using High-Energy X-Ray Scattering. J. Biomech. 2011, 44, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Zubko, P.; Catalan, G.; Tagantsev, A.K. Flexoelectric Effect in Solids. Annu. Rev. Mater. Res. 2013, 43, 387–421. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Goyal, A.; Prasad, J. Modeling Cortical Bone Adaptation Using Strain Gradients. Proc. Inst. Mech. Eng. 2021, 235, 636–654. [Google Scholar] [CrossRef]
- Frost, H.M. Tetracycline-Based Histological Analysis of Bone Remodeling. Calcif. Tissue Res. 1969, 3, 211–237. [Google Scholar] [CrossRef]
- Eriksen, E.F. Cellular Mechanisms of Bone Remodeling. Rev. Endocr. Metab. Disord. 2010, 11, 219–227. [Google Scholar] [CrossRef]
- Kenkre, J.S.; Bassett, J.H.D. The Bone Remodelling Cycle. Ann. Clin. Biochem. 2018, 55, 308–327. [Google Scholar] [CrossRef]
- Chang, B.; Liu, X. Osteon: Structure, Turnover, and Regeneration. Tissue Eng. Part B Rev. 2021, 28, 261–278. [Google Scholar] [CrossRef]
- Mori, S.; Burr, D.B. Increased Intracortical Remodeling Following Fatigue Damage. Bone 1993, 14, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Functions of the Osteocyte Network in the Regulation of Bone Mass. Cell Tissue Res. 2013, 352, 191–198. [Google Scholar] [CrossRef]
- Sun, X.; McLamore, E.; Kishore, V.; Fites, K.; Slipchenko, M.; Porterfield, D.M.; Akkus, O. Mechanical Stretch Induced Calcium Efflux from Bone Matrix Stimulates Osteoblasts. Bone 2012, 50, 581–591. [Google Scholar] [CrossRef]
- Franz-Odendaal, T.A.; Hall, B.K.; Witten, P.E. Buried Alive: How Osteoblasts Become Osteocytes. Dev. Dyn. 2006, 235, 176–190. [Google Scholar] [CrossRef]
- O’Brien, F.J.; Taylor, D.; Lee, T.C. Microcrack Accumulation at Different Intervals during Fatigue Testing of Compact Bone. J. Biomech. 2003, 36, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Verborgt, O.; Gibson, G.J.; Schaffler, M.B. Loss of Osteocyte Integrity in Association with Microdamage and Bone Remodeling After Fatigue In Vivo*. J. Bone Miner. Res. 2000, 15, 60–67. [Google Scholar] [CrossRef]
- Taylor, D.; Hazenberg, J.G.; Lee, T.C. Living with Cracks: Damage and Repair in Human Bone. Nat. Mater. 2007, 6, 263–268. [Google Scholar] [CrossRef] [PubMed]
- McCullen, S.D.; McQuilling, J.P.; Grossfeld, R.M.; Lubischer, J.L.; Clarke, L.I.; Loboa, E.G. Application of Low-Frequency Alternating Current Electric Fields Via Interdigitated Electrodes: Effects on Cellular Viability, Cytoplasmic Calcium, and Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Tissue Eng. Part C Methods 2010, 16, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Edwards, K.; Kianirad, H.; Canalias, C.; Sort, J.; Catalan, G. Flexoelectric Fracture-Ratchet Effect in Ferroelectrics. Phys. Rev. Lett. 2019, 122, 135502. [Google Scholar] [CrossRef]
- Fernandez, J.R.; Garcia-Aznar, J.M.; Martínez, R. Piezoelectricity Could Predict Sites of Formation/Resorption in Bone Remodelling and Modelling. J. Theor. Biol. 2012, 292, 86–92. [Google Scholar] [CrossRef]
- Fernández, J.R.; García-Aznar, J.M.; Martínez, R.; Viaño, J.M. Numerical Analysis of a Strain-Adaptive Bone Remodelling Problem. Comput. Methods Appl. Mech. Eng. 2010, 199, 1549–1557. [Google Scholar] [CrossRef]
- Bansod, Y.D.; Kebbach, M.; Kluess, D.; Bader, R.; van Rienen, U. Computational Analysis of Bone Remodeling in the Proximal Tibia Under Electrical Stimulation Considering the Piezoelectric Properties. Front. Bioeng. Biotechnol. 2021, 9, 705199. [Google Scholar] [CrossRef]
- Bansod, Y.D.; Kebbach, M.; Kluess, D.; Bader, R.; van Rienen, U. Finite Element Analysis of Bone Remodelling with Piezoelectric Effects Using an Open-Source Framework. Biomech. Model. Mechanobiol. 2021, 20, 1147–1166. [Google Scholar] [CrossRef]
- Ganghoffer, J.F.; Do, X.N.; Ibrahimbegovic, A. Thermodynamic Formulations of the Growth of Solid Bodies Subjected to Electromechanical Interactions and Application to Bone External and Internal Remodeling. Contin. Mech. Thermodyn. 2021, 33, 1567–1602. [Google Scholar] [CrossRef]
- Witt, C.; Kaiser, T.; Menzel, A. Modelling and Numerical Simulation of Remodelling Processes in Cortical Bone: An IGA Approach to Flexoelectricity-Induced Osteocyte Apoptosis and Subsequent Bone Cell Diffusion. J. Mech. Phys. Solids 2023, 173, 105194. [Google Scholar] [CrossRef]
- Witt, C.; Kaiser, T.; Menzel, A. An IGA-FEA Model for Flexoelectricity-Induced Healing of Microcracks in Cortical Bone. Comput. Methods Appl. Mech. Eng. 2024, 425, 116919. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, P.; Zhang, Y.; Ma, Z.; Teng, K.; Hu, X.; Lu, L.; Zhang, Y.; Zhao, Y.; An, Q. Remarkably Boosted Molecular Delivery Triggered by Combined Thermal and Flexoelectrical Field Dual Stimuli. ChemistrySelect 2020, 5, 6715–6722. [Google Scholar] [CrossRef]
- Amiri, A.; Vesal, R.; Talebitooti, R. Flexoelectric and Surface Effects on Size-Dependent Flow-Induced Vibration and Instability Analysis of Fluid-Conveying Nanotubes Based on Flexoelectricity Beam Model. Int. J. Mech. Sci. 2019, 156, 474–485. [Google Scholar] [CrossRef]
- Li, A.; Zhang, T.; Zhang, X.; Xu, Z.; Liu, H.; Yuan, M.; Wei, X.; Zhu, Y.; Tu, W.; Jiang, X.; et al. Flexocatalytic Reduction of Tumor Interstitial Fluid/Solid Pressure for Efficient Nanodrug Penetration. ACS Nano 2024, 18, 5344–5357. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, N.; Chattopadhyay, S. Electrically Conductive “SMART” Hydrogels for on-Demand Drug Delivery. Asian J. Pharm. Sci. 2025, 20, 101007. [Google Scholar] [CrossRef]
- Jariwala, T.; Ico, G.; Tai, Y.; Park, H.; Myung, N.V.; Nam, J. Mechano-Responsive Piezoelectric Nanofiber as an On-Demand Drug Delivery Vehicle. ACS Appl. Bio Mater. 2021, 4, 3706–3715. [Google Scholar] [CrossRef]
- Asghari Ardalani, A.-R.; Amiri, A.; Talebitooti, R.; Safizadeh, M.S. On Wave Dispersion Characteristics of Fluid-Conveying Smart Nanotubes Considering Surface Elasticity and Flexoelectricity Approach. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 3506–3518. [Google Scholar] [CrossRef]
- Fillafer, C.; Mussel, M.; Muchowski, J.; Schneider, M.F. Cell Surface Deformation during an Action Potential. Biophys. J. 2018, 114, 410–418. [Google Scholar] [CrossRef]
- Badawe, H.M.; El Hassan, R.H.; Khraiche, M.L. Modeling Ultrasound Modulation of Neural Function in a Single Cell. Heliyon 2023, 9, e22522. [Google Scholar] [CrossRef]
- Chen, H.; Garcia-Gonzalez, D.; Jérusalem, A. Computational Model of the Mechanoelectrophysiological Coupling in Axons with Application to Neuromodulation. Phys. Rev. E 2019, 99, 032406. [Google Scholar] [CrossRef]
- Sassaroli, E.; Vykhodtseva, N. Acoustic Neuromodulation from a Basic Science Prospective. J. Ther. Ultrasound 2016, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Zhou, M.; Liu, L.; Shen, H. Electromagnetic Based Flexible Bioelectronics and Its Applications. Front. Electron. 2024, 5, 1240603. [Google Scholar] [CrossRef]
- Kutbee, A.T.; Bahabry, R.R.; Alamoudi, K.O.; Ghoneim, M.T.; Cordero, M.D.; Almuslem, A.S.; Gumus, A.; Diallo, E.M.; Nassar, J.M.; Hussain, A.M.; et al. Flexible and Biocompatible High-Performance Solid-State Micro-Battery for Implantable Orthodontic System. Npj Flex. Electron. 2017, 1, 7. [Google Scholar] [CrossRef]
- Gil, B.; Anastasova, S.; Yang, G.-Z. Low-Powered Implantable Devices Activated by Ultrasonic Energy Transfer for Physiological Monitoring in Soft Tissue via Functionalized Electrochemical Electrodes. Biosens. Bioelectron. 2021, 182, 113175. [Google Scholar] [CrossRef] [PubMed]
- Selvarajan, S.; Islam, S.; Song, S.H.; Kim, A. Flexoelectric Pyramid Ultrasonic Receivers for Powering Miniature Implants. In Proceedings of the 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), Austin, TX, USA, 21–25 January 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 630–633. [Google Scholar]
- Ren, D.; Yin, Y.; Li, C.; Chen, R.; Shi, J. Recent Advances in Flexible Ultrasonic Transducers: From Materials Optimization to Imaging Applications. Micromachines 2023, 14, 126. [Google Scholar] [CrossRef] [PubMed]
- Almasri, R.M.; AlChamaa, W.; Tehrani-Bagha, A.R.; Khraiche, M.L. Highly Flexible Single-Unit Resolution All Printed Neural Interface on a Bioresorbable Backbone. ACS Appl. Bio Mater. 2020, 3, 7040–7051. [Google Scholar] [CrossRef]
- Chen, H.; Jerusalem, A. A Framework for Low-Intensity Low-Frequency Ultrasound Neuromodulation Sonication Parameter Identification from Micromechanical Flexoelectricity Modelling. Ultrasound Med. Biol. 2021, 47, 1985–1991. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, Z.; Liu, H.; Fan, R.; Tu, W.; Xue, W.; Zhang, X.; He, Y.; Gao, D. Disrupt Mitochondrial Proton Gradients via Flexoelectric Catalysis to Deplete Tumor Energy and Enhance Immunotherapy. Adv. Funct. Mater. 2025, 2421302. [Google Scholar] [CrossRef]
- Li, A.; Xu, L.; Jia, Y.; Yuan, M.; Zhang, J.; Liu, H.; Liu, S.; Zhu, Y.; Wei, X.; Tu, W.; et al. Flexocatalysis Enhances Tumor Photodynamic Therapy. Small 2024, 20, 2310964. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Sheng, H.; Lian, Y. Advances in Using Ultrasound to Regulate the Nervous System. Neurol. Sci. 2024, 45, 2997–3006. [Google Scholar] [CrossRef]
- Gortsas, T.V.; Tsinopoulos, S.V.; Polyzos, E.; Pyl, L.; Fotiadis, D.I.; Polyzos, D. BEM Evaluation of Surface Octahedral Strains and Internal Strain Gradients in 3D-Printed Scaffolds Used for Bone Tissue Regeneration. J. Mech. Behav. Biomed. Mater. 2022, 125, 104919. [Google Scholar] [CrossRef]
- Jia, L.; Li, L.; Guo, Z.H.; Sun, H.; Huang, H.; Sun, F.; Wang, Z.L.; Pu, X. Giant Iontronic Flexoelectricity in Soft Hydrogels Induced by Tunable Biomimetic Ion Polarization. Adv. Mater. 2024, 36, 2403830. [Google Scholar] [CrossRef]
- Mathew, A.; Kulkarni, Y. An Electro-Chemo-Mechanical Theory with Flexoelectricity: Application to Ionic Conductivity of Soft Solid Electrolytes. J. Appl. Mech. 2024, 91, 041001. [Google Scholar] [CrossRef]
- Sadeghi-Goughari, M.; Jeon, S.; Kwon, H.-J. Flutter Instability of Cantilevered Carbon Nanotubes Caused by Magnetic Fluid Flow Subjected to a Longitudinal Magnetic Field. Phys. E Low-Dimens. Syst. Nanostructures 2018, 98, 184–190. [Google Scholar] [CrossRef]
- Rajapaksha, C.P.H.; Feng, C.; Piedrahita, C.; Cao, J.; Kaphle, V.; Lüssem, B.; Kyu, T.; Jákli, A. Poly(Ethylene Glycol) Diacrylate Based Electro-Active Ionic Elastomer. Macromol. Rapid Commun. 2020, 41, 1900636. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, C.P.H.; Gunathilaka, M.D.T.; Narute, S.; Albehaijan, H.; Piedrahita, C.; Paudel, P.; Feng, C.; Lüssem, B.; Kyu, T.; Jákli, A. Flexo-Ionic Effect of Ionic Liquid Crystal Elastomers. Molecules 2021, 26, 4234. [Google Scholar] [CrossRef]
- Feng, C.; Rajapaksha, C.P.H.; Cedillo, J.M.; Piedrahita, C.; Cao, J.; Kaphle, V.; Lüssem, B.; Kyu, T.; Jákli, A. Electroresponsive Ionic Liquid Crystal Elastomers. Macromol. Rapid Commun. 2019, 40, 1900299. [Google Scholar] [CrossRef]
- Cao, J.; Piedrahita, C.; Kyu, T. Mechanoelectrical Conversion in Highly Ionic Conductive Solid-State Polymer Electrolyte Membranes. Macromol. Mater. Eng. 2019, 304, 1800777. [Google Scholar] [CrossRef]
- Grasinger, M.; Mozaffari, K.; Sharma, P. Flexoelectricity in Soft Elastomers and the Molecular Mechanisms Underpinning the Design and Emergence of Giant Flexoelectricity. Proc. Natl. Acad. Sci. USA 2021, 118, e2102477118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yan, D.; Wang, J.; Shao, L.-H. Ultrahigh Flexoelectric Effect of 3D Interconnected Porous Polymers: Modelling and Verification. J. Mech. Phys. Solids 2021, 151, 104396. [Google Scholar] [CrossRef]
- Harden, J.; Mbanga, B.; Éber, N.; Fodor-Csorba, K.; Sprunt, S.; Gleeson, J.T.; Jákli, A. Giant Flexoelectricity of Bent-Core Nematic Liquid Crystals. Phys. Rev. Lett. 2006, 97, 157802. [Google Scholar] [CrossRef]
- Guiffard, B.; Saadeh, M.; Frère, P.; Seveno, R.; El-Gibari, M.; Sghaier, T.; Merupo, V.I.; Kassiba, A. Potentialities of Flexoelectric Effect in Soft Polymer Films for Electromechanical Applications. J. Phys. Conf. Ser. 2019, 1322, 012041. [Google Scholar] [CrossRef]
- Sharma, N.D.; Landis, C.M.; Sharma, P. Piezoelectric Thin-Film Superlattices without Using Piezoelectric Materials. J. Appl. Phys. 2010, 108, 024304. [Google Scholar] [CrossRef]
- Vayalil, S.N.; Kumar, S.; Murugavel, P. Flexo-Photovoltaic Effect in a Bandgap-Engineered Ferroelectric BaTiO3-Based Epitaxial Thin Film. ACS Appl. Electron. Mater. 2025, 7, 3837–3847. [Google Scholar] [CrossRef]
- Ma, W.; Cross, L.E. Flexoelectric Effect in Ceramic Lead Zirconate Titanate. Appl. Phys. Lett. 2005, 86, 072905. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Hu, X.; Chu, B. Flexoelectric Effect in PVDF-Based Copolymers and Terpolymers. Appl. Phys. Lett. 2018, 112, 232901. [Google Scholar] [CrossRef]
- Todorov, A.T.; Petrov, A.G.; Fendler, J.H. Flexoelectricity of Charged and Dipolar Bilayer Lipid Membranes Studied by Stroboscopic Interferometry. Langmuir 1994, 10, 2344–2350. [Google Scholar] [CrossRef]
- Cheng, T.; Gao, H.; Li, R.; Wang, S.; Yi, Z.; Yang, H. Flexoelectricity-Induced Enhancement in Carrier Separation and Photocatalytic Activity of a Photocatalyst. Appl. Surf. Sci. 2021, 566, 150669. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Feng, X.; Zhai, C.; Zhang, S.; Xu, M. Enhanced Flexoelectricity of Liquid with Hydrated Ions. J. Phys. Appl. Phys. 2024, 57, 41LT01. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, S.; Cheng, Z. Flexocatalysis of Nanoscale Titanium Dioxide. Nano Energy 2024, 127, 109731. [Google Scholar] [CrossRef]
- López-Sancho, M.P.; Brey, L. Temperature Dependence of the Dielectric Constant and Resistivity of Diluted Magnetic Semiconductors. Phys. Rev. B 2003, 68, 113201. [Google Scholar] [CrossRef]
- Thi, T.H.N.; Tran, V.K.; Tu, P.H.; Thao, P.H. Dynamic Instability Analysis of Piezoelectric Fluid-Infiltrated Porous Metal Foam Nanosheet Considering Surface and Flexoelectricity Effects in Hygro-Thermal Environment. Int. J. Mech. Mater. Des. 2025, 1–36. [Google Scholar] [CrossRef]
- Zhan, H.; Lazaridis, T. Influence of the Membrane Dipole Potential on Peptide Binding to Lipid Bilayers. Biophys. Chem. 2012, 161, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Heimburg, T. The Capacitance and Electromechanical Coupling of Lipid Membranes Close to Transitions: The Effect of Electrostriction. Biophys. J. 2012, 103, 918–929. [Google Scholar] [CrossRef]
- Fan, F.; Chang, M.; Che, M.; Guo, K.; Tang, E. Comprehensive Analysis of the Influence of Temperature, Impact Velocity and Geometric Parameters on the Electromechanical Response of PDMS Stress Sensors. Mater. Today Commun. 2025, 44, 112052. [Google Scholar] [CrossRef]
- Vandiver, M.A.; Caire, B.R.; Pandey, T.P.; Li, Y.; Seifert, S.; Kusoglu, A.; Knauss, D.M.; Herring, A.M.; Liberatore, M.W. Effect of Hydration on the Mechanical Properties and Ion Conduction in a Polyethylene-b-Poly(Vinylbenzyl Trimethylammonium) Anion Exchange Membrane. J. Membr. Sci. 2016, 497, 67–76. [Google Scholar] [CrossRef]
- Lošdorfer Božič, A.; Podgornik, R. pH Dependence of Charge Multipole Moments in Proteins. Biophys. J. 2017, 113, 1454–1465. [Google Scholar] [CrossRef]
- Angelova, M.I.; Bitbol, A.-F.; Seigneuret, M.; Staneva, G.; Kodama, A.; Sakuma, Y.; Kawakatsu, T.; Imai, M.; Puff, N. pH Sensing by Lipids in Membranes: The Fundamentals of pH-Driven Migration, Polarization and Deformations of Lipid Bilayer Assemblies. Biochim. Biophys. Acta BBA-Biomembr. 2018, 1860, 2042–2063. [Google Scholar] [CrossRef]
- Wanasingha, N.; Dorishetty, P.; Dutta, N.; Choudhury, N. Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels 2021, 7, 148. [Google Scholar] [CrossRef] [PubMed]
- Yeh, L.-H.; Zhang, M.; Qian, S.; Hsu, J.-P.; Tseng, S. Ion Concentration Polarization in Polyelectrolyte-Modified Nanopores. J. Phys. Chem. C 2012, 116, 8672–8677. [Google Scholar] [CrossRef]
- Kotulska, M.; Kubica, K. Structural and Energetic Model of the Mechanisms for Reduced Self-Diffusion in a Lipid Bilayer with Increasing Ionic Strength. Phys. Rev. E 2005, 72, 061903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Y.; Li, Y.; Ji, H.; Feng, X.; Song, S.; Liu, K.; Zhai, C.; Xu, M. Ion Identification and Ultralow Concentration Sensing with Liquid Flexoelectricity. Nano Lett. 2024, 24, 14279–14285. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Piedrahita, C.R.; Kyu, T. Polymer Electrolytes as Energy-Harvesting Materials to Capture Electrical Energy from Dynamic Mechanical Deformations. Macromol. Rapid Commun. 2022, 43, 2100204. [Google Scholar] [CrossRef]
- Lee, D.; Noh, T.W. Giant Flexoelectric Effect through Interfacial Strain Relaxation. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2012, 370, 4944–4957. [Google Scholar] [CrossRef]
- Mizzi, C.A.; Guo, B.; Marks, L.D. Twin-Boundary-Mediated Flexoelectricity in LaAlO3. Phys. Rev. Mater. 2021, 5, 064406. [Google Scholar] [CrossRef]
- Gao, P.; Yang, S.; Ishikawa, R.; Li, N.; Feng, B.; Kumamoto, A.; Shibata, N.; Yu, P.; Ikuhara, Y. Atomic-Scale Measurement of Flexoelectric Polarization at SrTiO3 Dislocations. Phys. Rev. Lett. 2018, 120, 267601. [Google Scholar] [CrossRef]
- Hong, J.; Vanderbilt, D. First-Principles Theory of Frozen-Ion Flexoelectricity. Phys. Rev. B 2011, 84, 180101. [Google Scholar] [CrossRef]
- Abdollahi, A.; Peco, C.; Millán, D.; Arroyo, M.; Arias, I. Computational Evaluation of the Flexoelectric Effect in Dielectric Solids. J. Appl. Phys. 2014, 116, 093502. [Google Scholar] [CrossRef]
- Codony, D.; Marco, O.; Fernández-Méndez, S.; Arias, I. An Immersed Boundary Hierarchical B-Spline Method for Flexoelectricity. Comput. Methods Appl. Mech. Eng. 2019, 354, 750–782. [Google Scholar] [CrossRef]
- Deng, F.; Deng, Q.; Yu, W.; Shen, S. Mixed Finite Elements for Flexoelectric Solids. J. Appl. Mech. 2017, 84, 081004. [Google Scholar] [CrossRef]
- Mao, S.; Purohit, P.K.; Aravas, N. Mixed Finite-Element Formulations in Piezoelectricity and Flexoelectricity. Proc. R. Soc. Math. Phys. Eng. Sci. 2016, 472, 20150879. [Google Scholar] [CrossRef]
- McBride, A.T.; Davydov, D.; Steinmann, P. Modelling the Flexoelectric Effect in Solids: A Micromorphic Approach. Comput. Methods Appl. Mech. Eng. 2020, 371, 113320. [Google Scholar] [CrossRef]
- Ventura, J.; Codony, D.; Fernández-Méndez, S. A C0 Interior Penalty Finite Element Method for Flexoelectricity. J. Sci. Comput. 2021, 88, 88. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, R.; Vaish, R. Universal Converse Flexoelectricity in Dielectric Materials via Varying Electric Field Direction. Int. J. Smart Nano Mater. 2021, 12, 107–128. [Google Scholar] [CrossRef]
- Ghasemi, H.; Park, H.S.; Rabczuk, T. A Level-Set Based IGA Formulation for Topology Optimization of Flexoelectric Materials. Comput. Methods Appl. Mech. Eng. 2017, 313, 239–258. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Xu, G.; Kamlah, M.; Zhang, T.-Y. An Isogeometric Approach to Flexoelectric Effect in Ferroelectric Materials. Int. J. Solids Struct. 2019, 162, 198–210. [Google Scholar] [CrossRef]
- Vahidi, M.; Rizkalla, A.S.; Mequanint, K. Extracellular Matrix-Surrogate Advanced Functional Composite Biomaterials for Tissue Repair and Regeneration. Adv. Healthc. Mater. 2024, 13, 2401218. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Q.; Sun, W.; Yue, Q.; He, P.; Niu, D.; Zhang, M. Mechanical Forces in the Tumor Microenvironment: Roles, Pathways, and Therapeutic Approaches. J. Transl. Med. 2025, 23, 313. [Google Scholar] [CrossRef]
- Dong, Y.; Lu, M.; Yin, Y.; Wang, C.; Dai, N. Tumor Biomechanics-Inspired Future Medicine. Cancers 2024, 16, 4107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Du, X.; Fang, B.; Liu, Q.; Yang, H.; Li, F.; Sheng, Y.; Zeng, X.; Zhong, H.; Zhao, W. Direct Investigations of the Electrical Conductivity of Normal and Cancer Breast Cells by Conductive Atomic Force Microscopy. Ultramicroscopy 2022, 237, 113531. [Google Scholar] [CrossRef]
- Sarreshtehdari, A.; García-Sánchez, T.; Sánchez-Velázquez, P.; Ielpo, B.; Berjano, E.; Villamonte, M.; Moll, X.; Burdio, F. Electrical Conductivity Measurement in Human Liver Tissue: Assessment on Normal vs. Tumor Tissue and under In Vivo vs. Ex Vivo Conditions. Biosensors 2024, 14, 382. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, E.; Israel, S.; Staelens, M.; Tankel, G.; Shankar, K.; Tuszyński, J.A. The Distinguishing Electrical Properties of Cancer Cells. Phys. Life Rev. 2022, 43, 139–188. [Google Scholar] [CrossRef]
- Laufer, S.; Ivorra, A.; Reuter, V.E.; Rubinsky, B.; Solomon, S.B. Electrical Impedance Characterization of Normal and Cancerous Human Hepatic Tissue. Physiol. Meas. 2010, 31, 995–1009. [Google Scholar] [CrossRef]
- Klabukov, I.; Smirnova, A.; Yakimova, A.; Kabakov, A.E.; Atiakshin, D.; Petrenko, D.; Shestakova, V.A.; Sulina, Y.; Yatsenko, E.; Stepanenko, V.N.; et al. Oncomatrix: Molecular Composition and Biomechanical Properties of the Extracellular Matrix in Human Tumors. J. Mol. Pathol. 2024, 5, 437–453. [Google Scholar] [CrossRef]
- Klein-Nulend, J.; Bakker, A.D.; Bacabac, R.G.; Vatsa, A.; Weinbaum, S. Mechanosensation and Transduction in Osteocytes. Bone 2013, 54, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Dallas, S.L.; Prideaux, M.; Bonewald, L.F. The Osteocyte: An Endocrine Cell… and More. Endocr. Rev. 2013, 34, 658–690. [Google Scholar] [CrossRef]
- Shuai, C.; Yang, W.; Peng, S.; Gao, C.; Guo, W.; Lai, Y.; Feng, P. Physical Stimulations and Their Osteogenesis-Inducing Mechanisms. Int. J. Bioprinting 2018, 4, 138. [Google Scholar] [CrossRef]
- Bassett, C.A.L.; Pauluk, R.J.; Becker, R.O. Effects of Electric Currents on Bone In Vivo. Nature 1964, 204, 652–654. [Google Scholar] [CrossRef]
- Lemaire, T.; Kaiser, J.; Naili, S.; Sansalone, V. Three-Scale Multiphysics Modeling of Transport Phenomena within Cortical Bone. Math. Probl. Eng. 2015, 2015, 398970. [Google Scholar] [CrossRef]
- Lemaire, T.; Capiez-Lernout, E.; Kaiser, J.; Naili, S.; Sansalone, V. What Is the Importance of Multiphysical Phenomena in Bone Remodelling Signals Expression? A Multiscale Perspective. J. Mech. Behav. Biomed. Mater. 2011, 4, 909–920. [Google Scholar] [CrossRef]
- Cullinane, D.M.; Einhorn, T.A. Chapter 2—Biomechanics of Bone. In Principles of Bone Biology, 2nd ed.; Bilezikian, J.P., Raisz, L.G., Rodan, G.A., Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 17–32. ISBN 978-0-12-098652-1. [Google Scholar]
- Mohammadi, P.; Liu, L.P.; Sharma, P. A Theory of Flexoelectric Membranes and Effective Properties of Heterogeneous Membranes. J. Appl. Mech. 2013, 81, 011007. [Google Scholar] [CrossRef]
- Wang, K.F.; Wang, B.L. Non-Linear Flexoelectricity in Energy Harvesting. Int. J. Eng. Sci. 2017, 116, 88–103. [Google Scholar] [CrossRef]
- Lieber, R.L.; Binder-Markey, B.I. Biochemical and Structural Basis of the Passive Mechanical Properties of Whole Skeletal Muscle. J. Physiol. 2021, 599, 3809–3823. [Google Scholar] [CrossRef]
- Huang, Y.; Fuller, G.G.; Chandran Suja, V. Physicochemical Characteristics of Droplet Interface Bilayers. Adv. Colloid Interface Sci. 2022, 304, 102666. [Google Scholar] [CrossRef]
- Stephenson, E.B.; Korner, J.L.; Elvira, K.S. Challenges and Opportunities in Achieving the Full Potential of Droplet Interface Bilayers. Nat. Chem. 2022, 14, 862–870. [Google Scholar] [CrossRef]
- Fettiplace, R.; Kim, K.X. The Physiology of Mechanoelectrical Transduction Channels in Hearing. Physiol. Rev. 2014, 94, 951–986. [Google Scholar] [CrossRef] [PubMed]
- Frolenkov, G.I.; Kalinec, F.; Tavartkiladze, G.A.; Kachar, B. Cochlear Outer Hair Cell Bending in an External Electric Field. Biophys. J. 1997, 73, 1665–1672. [Google Scholar] [CrossRef]
- Dewey, J.B.; Altoè, A.; Shera, C.A.; Applegate, B.E.; Oghalai, J.S. Cochlear Outer Hair Cell Electromotility Enhances Organ of Corti Motion on a Cycle-by-Cycle Basis at High Frequencies in Vivo. Proc. Natl. Acad. Sci. USA 2021, 118, e2025206118. [Google Scholar] [CrossRef]
- Rey, A.D.; Servio, P.; Herrera-Valencia, E.E. Bioinspired Model of Mechanical Energy Harvesting Based on Flexoelectric Membranes. Phys. Rev. E 2013, 87, 022505. [Google Scholar] [CrossRef] [PubMed]
Material | Measurement Method | Flexoelectric Coefficient [C/m] | References |
---|---|---|---|
(K,Na,Li)(Nb,Sb)O3 (KNNLS) | Three-point bending | 10−6 | [42] |
Liquid crystal materials | Pure bend and splay | 10−8 | [43] |
Barium Titanate (BaTiO3) | Cantilever bending | 1 × 10−6 | [44] |
Barium Strontinum Titanate ((Ba(1–x) Srx)TiO3) | Pyramid compression | 1−10 × 10−9 | [2,31] |
Strontium Titanate (SrTiO3) | Dynamic mechanical analyzer, three-point bending, cantilever beam | 1–10 × 10−9 | [35,45,46] |
Polyvinylidene fluoride (PVDF) | Cantilever beam-based approach | 1.1 (±0.1) × 10−8 | [47] |
Graphene | Molecular dynamics simulations | 1.53 × 10−16–5.18 × 10−13 | [48] |
Silicene (flat) | Molecular dynamics simulations | 1.04 × 10−14–1.91 × 10−14 | [48] |
Silicene | Molecular dynamics simulations | 2.7 × 10−12–2.94 × 10−14 | [48] |
Boron nitride (BN) | Molecular dynamics simulations | 1.46 × 10−12–3.06 × 10−14 | [48] |
Amorphous HfO2 | Laser Doppler Vibrometer-based approach | 105 (±10) × 10−12 | [49] |
Oriented PET | Cantilever bending | 9.9 (±0.4) × 10−9 | [40] |
Polyethylene | Cantilever bending | 5.8 (±1.1) × 10−9 | [40] |
Epoxy | Cantilever bending | 2.9 (±0.3) × 10−9 | [40] |
BST/Ni0.8Zn0.2Fe2O4 | Conventional pure bending | 128 × 10−6 | [50] |
Single crystals of Titanium Dioxide (TiO2) | Three-point bending | 1–10 × 10−9 | [46] |
Halides (XPbBr3 and XPbCl3) | Oscillatory bending induced by piezoelectric actuator | 3 × 10−5 | [6] |
Molybdenum disulfide (MoS2) | Piezoresponse Force Microscopy | 0.1 × 10−9 | [51] |
Molecular dynamics simulations | 1.6–9.6 × 10−12 | [48] | |
Zinc/aluminum-layered double hydroxides nanosheets | Bending test | 1.8 (±0.35) × 10−6 | [52] |
(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7/Ag | Beam bending method | 1.7 × 10−7 | [53] |
NaNbO3 nanotube/epoxy composite | Cantilever bending | 2.77 × 10−8 | [54] |
Biological Material | Key Findings | References |
---|---|---|
Cell | Development of a coupled 2D model of biological cells with piezoelectric and nonlocal flexoelectric properties of their organelles Flexoelectricity generates electric fields up to four orders of magnitude stronger than those from piezoelectric effects alone. | [82] |
Developed models to investigate separate electromechanical response from Microtubule | [83,84,85] | |
The role of cell structure and organelles in flexoelectric behavior of biological cells | [70] | |
Bio-membrane | The microscopic groundwork of flexoelectricity were established by Petrov for biological membranes in a series of founding studies | [57,58,93,94] |
Flexoelectric effects are relevant to study ion channels, thermal fluctuations, and equilibrium shape of the vesicle. | [12,89,90,91] | |
Flexoelectricity in membranes results from the interaction between the electric field and the molecular multipoles, leading to an inhomogeneous electric force across the membrane. Effects of ions, PH, external potentials are a simple physicochemical phenomenon in essence, but spatial and temporal interconnection of them occurring simultaneously and locally in different regions of the membrane regulate very complex electromotility. | [92] | |
Development of a continuum model to assess the electrostatic contribution to membrane instability and bending rigidity using the Poisson-Boltzmann equation | [95] | |
A simple model of counter-ion absorption was developed to investigate voltage-induced bending and electromechanical coupling in lipid bilayers. Lower flexoelectric coefficients in comparison with experimental data were predicted. | [57,96] | |
Use of droplet interface bilayer (DIB) technology to study bio-membrane flexoelectricity This technique can be used to investigate mechanotransduction and the interfacial properties of unsupported liquid biomimetic membranes. | [97,98] | |
Bio-membranes with smaller radii (higher curvature) exhibit a stronger flexoelectric response. | [58] | |
Flexoelectricity in bio-membrane can drive the activation of tension-gated channels within the membrane. | [99,100,101] | |
Investigation of the role of flexoelectricity in modifying the entropic force between two fluctuating fluid membranes using a variational perturbative approximation | [88] | |
Hearing system | Petrov (1994) was the first to propose that direct flexoelectricity might trigger mechanotransduction in auditory hair cells | [105] |
There is substantial evidence to show flexoelectricity as the major mechanism behind outer hair cell electromotility. | [13,71,75,92,102] | |
Several works have indicated flexoelectricity as an important electromechanical coupling in hearing system. | [103,104] | |
Stereocilia are fast flexoelectric motors and highly efficient to capture the energy in the extracellular electro-chemical potential of the inner ear to generate mechanical power output. | [13] | |
Development of a physical model of hair bundles by incorporating flexoelectricity and a physics-based nonlinear dynamical model. Due to flexoelectricity, certain combinations of inner surface charge density and membrane bending stiffness can cause hair bundle oscillations to become unstable, enabling the amplification of weak acoustic signals. Increasing the bending modulus can stabilize the system, potentially impairing the hair bundle’s ability to amplify external stimuli. Flexoelectricity plays a key role in inducing the Hopf bifurcation state, which is believed to underlie several highly nonlinear aspects of the hearing mechanism. | [75] | |
Bone | Bone’s hierarchical structure gives rise to various deformation gradients that promote flexoelectricity, particularly near microcracks. | [76,113] |
A very first theoretical analysis on the potential role of strain gradients in bone | [114] | |
Information on bending-induced polarization in bones, mistakenly attributed to collagen | [115] | |
Experimental confirmation on the presence of substantial strain gradient fields in bone. | [116] | |
Comparison of bone and pure HA flexoelectricity using the cantilever system to clarify the origin of bone flexoelectricity. HA governs the flexoelectric behavior. | [69,73,74] | |
Near bone cracks, flexoelectricity is theoretically highest where there is neither collagen nor streaming potentials. Flexoelectric fields near bone crack apices can reach several . Flexoelectricity plays two different roles in bone remodelling near cracks: apoptotic triggering of the repair protocol, and electro-stimulating the bone-building activity of osteoblasts. | [73,74] | |
Computational frameworks for bone growth and remodeling In larger samples, the piezoelectric effect dominates. However, at smaller scales, the flexoelectric effect increases, eventually surpassing piezoelectricity | [136,137,138] |
Tissues | Limitations Posed by Experimental Conditions | Comparison to In Vivo Physiological Conditions | References |
---|---|---|---|
Cell and bio-membrane | Limitations with DIB: Use of symmetric lipid compositions and flat bilayer geometries | Physiological membranes are highly dynamic, curved, and compositionally heterogeneous, with distinct lipid distributions between the inner and outer leaflets. | [97,98,223,224] |
lack of membrane-associated proteins, cytoskeletal elements, and ECM components | Membrane-associated components are integral to native membrane structure and function. | ||
Oil phase introduces a non-physiological environment altering membrane properties. | Biological membranes form in aqueous environments, without an interfacial oil phase. | ||
Mechanical environment in DIB setups do not replicate the complex biomechanical cues and osmotic gradients present in tissues. | Membrane tension is often passively set by droplet size or manipulated externally, not dynamically regulated as in cells. Osmotic gradients can be imposed manually, but they are not sustained or physiologically complex. Shear stress (e.g., blood flow) and substrate stiffness/ECM interactions are present in real bio-membrane. | ||
Most DIB applications rely on static architectures. | In contrast, living organisms continuously reshape and adapt their membranes to maintain functionality | ||
Hearing system | Focusing on isolated outer hair cell membranes or simplified bilayers | Cochlea is a complex organ with finely tuned mechanical and electrical gradients. | [71,75,103,225,226,227] |
Neglecting the coupled behavior of cells, fluids, and structural components | Cochlea is a fluid-filled organ. | ||
Ignoring key in vivo features | The electromechanical function of the auditory system relies critically on ionic gradients, lipid membrane asymmetry, and tightly regulated mechanical feedback loops. | ||
Bone | Flexoelectricity has been measured often on microscale samples. | Flexoelectricity is a nanoscale effect, requiring very small electrodes at the micro/nanoscale, enabling direct in vivo measurement of flexoelectricity. | [73,74] |
Electrodes used in experiments may induce local polarization, leading to misinterpretation of flexoelectric signals. | Bone is inherently heterogeneous, anisotropic, and porous, which require accurate, artifact-free electrical measurements. | ||
In vitro studies do not replicate true in vivo conditions. | In vivo, other mechanisms may also contribute to flexoelectric fields. | ||
Dehydrated, demineralized, or highly processed samples have been used | Hydration and collagen-mineral interactions are essential features in bone’s electromechanical and adaptive behaviors. Porosity of own-made HA samples differs from reality. | ||
Use of idealized mechanical deformations | uniform bending and high strain gradients do not reflect the complexity of real bone environments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadkhah, M.; Slavkovic, V.; Klinge, S. Flexoelectricity in Biological Materials and Its Potential Applications in Biomedical Research. Bioengineering 2025, 12, 579. https://doi.org/10.3390/bioengineering12060579
Mohammadkhah M, Slavkovic V, Klinge S. Flexoelectricity in Biological Materials and Its Potential Applications in Biomedical Research. Bioengineering. 2025; 12(6):579. https://doi.org/10.3390/bioengineering12060579
Chicago/Turabian StyleMohammadkhah, Melika, Vukasin Slavkovic, and Sandra Klinge. 2025. "Flexoelectricity in Biological Materials and Its Potential Applications in Biomedical Research" Bioengineering 12, no. 6: 579. https://doi.org/10.3390/bioengineering12060579
APA StyleMohammadkhah, M., Slavkovic, V., & Klinge, S. (2025). Flexoelectricity in Biological Materials and Its Potential Applications in Biomedical Research. Bioengineering, 12(6), 579. https://doi.org/10.3390/bioengineering12060579