The Future of Anaerobic Digestion: Challenges and Opportunities
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
VFA | Volatile fatty acids |
BMP | Biochemical methane potential |
MAG | Metagenome-assembled genomes |
UASB | Upflow anaerobic sludge blanket |
References
- Dueholm, M.K.D.; Andersen, K.S.; Korntved, A.K.C.; Rudkjobing, V.; Alves, M.; Bajón-Fernández, Y.; Batstone, D.; Butler, C.; Cruz, M.C.; Davidsson, Å.; et al. Midas 5: Global diversity of bacteria and archaea in anaerobic digesters. Nat. Commun. 2024, 15, 5361. [Google Scholar] [CrossRef] [PubMed]
- Ostos, I.; Florez-Pardo, L.M.; Camargo, C. A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: A review. Front. Microbiol. 2024, 15, 1437098. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Wang, D.; Wang, Y.; Wang, C.; Chen, X.; Liu, L.; Wang, Y.; Li, Y.Y.; Kamagata, Y.; Nobu, M.K.; et al. Metatranscriptomics-guided genome-scale metabolic reconstruction reveals the carbon flux and trophic interaction in methanogenic communities. Microbiome 2024, 12, 121. [Google Scholar] [CrossRef]
- Heyer, R.; Schallert, K.; Siewert, C.; Kohrs, F.; Greve, J.; Maus, I.; Klang, J.; Klocke, M.; Heiermann, M.; Hoffmann, M.; et al. Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome 2019, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.-K. Metagenomics vs metaproteomics: A review of their application on anaerobic digestion in biogas generation. Bioresour. Technol. Rep. 2023, 24, 101668. [Google Scholar] [CrossRef]
- Tahon, G.; Geesink, P.; Ettema, T.J.G. Expanding archaeal diversity and phylogeny: Past, present, and future. Annu. Rev. Microbiol. 2021, 75, 359–381. [Google Scholar] [CrossRef]
- Baker, B.J.; De Anda, V.; Seitz, K.W.; Dombrowski, N.; Santoro, A.E.; Lloyd, K.G. Diversity, ecology and evolution of archaea. Nat. Microbiol. 2020, 5, 887–900. [Google Scholar] [CrossRef]
- Chouari, R.; Le Paslier, D.; Dauga, C.; Daegelen, P.; Weissenbach, J.; Sghir, A. Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl. Environ. Microb. 2005, 71, 2145–2153. [Google Scholar] [CrossRef]
- Lucas, R.; Kuchenbuch, A.; Fetzer, I.; Harms, H.; Kleinsteuber, S. Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops. Fems. Microbiol. Ecol. 2015, 91, fiv004. [Google Scholar] [CrossRef]
- Limam, R.D.; Chouari, R.; Mazéas, L.; Wu, T.D.; Li, T.L.; Grossin-Debattista, J.; Guerquin-Kern, J.L.; Saidi, M.; Landoulsi, A.; Sghir, A.; et al. Members of the uncultured bacterial candidate division wwe1 are implicated in anaerobic digestion of cellulose. Microbiologyopen 2014, 3, 157–167. [Google Scholar] [CrossRef]
- Pelletier, E.; Kreimeyer, A.; Bocs, S.; Rouy, Z.; Gyapay, G.; Chouari, R.; Riviére, D.; Ganesan, A.; Daegelen, P.; Sghir, A.; et al. “Cloacamonas acidaminovorans”: Genome sequence reconstruction provides a first glimpse of a new bacterial division. J. Bacteriol. 2008, 190, 2572–2579. [Google Scholar] [CrossRef] [PubMed]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Koch, K.; Hefner, S.D.; Weinrich, S.; Astals, S.; Holliger, C. Power and limitations of biochemical methane potential (bmp) tests. Front. Energy. Res. 2020, 8, 63. [Google Scholar] [CrossRef]
- Pererva, Y.; Miller, C.D.; Sims, R.C. Approaches in design of laboratory-scale uasb reactors. Processes 2020, 8, 734. [Google Scholar] [CrossRef]
- Connelly, S.; Shin, S.G.; Dillon, R.J.; Ijaz, U.Z.; Quince, C.; Sloan, W.T.; Collins, G. Bioreactor scalability: Laboratory-scale bioreactor design influences performance, ecology, and community physiology in expanded granular sludge bed bioreactors. Front. Microbiol. 2017, 8, 664. [Google Scholar] [CrossRef]
- Pyykkönen, V.; Winquist, E.; Seppänen, A.M.; Vainio, M.; Virkkunen, E.; Koppelmäki, K.; Rasi, S. Anaerobic digestion of solid agricultural biomass in leach-bed reactors. Bioengineering 2023, 10, 433. [Google Scholar] [CrossRef]
- Lenis, A.; Ramírez, M.; González-Cortés, J.J.; Ooms, K.; Pinnekamp, J. Implementation of a pilot-scale biotrickling filtration process for biogas desulfurization under anoxic conditions using agricultural digestate as trickling liquid. Bioengineering 2023, 10, 160. [Google Scholar] [CrossRef]
- Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.G.; Dlugokencky, E.J.; Etiope, G.; Bastviken, D.; Houweling, S.; et al. The global methane budget 2000-2012. Earth Syst. Sci. Data 2016, 8, 697–751. [Google Scholar] [CrossRef]
- Ozbayram, E.G.; Kleinsteuber, S.; Nikolausz, M. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Appl. Microbiol. Biot. 2020, 104, 489–508. [Google Scholar] [CrossRef]
- Wi, J.; Lee, S.; Ahn, H. Influence of dairy manure as inoculum source on anaerobic digestion of swine manure. Bioengineering 2023, 10, 432. [Google Scholar] [CrossRef]
- Logroño, W.; Kluge, P.; Kleinsteuber, S.; Harms, H.; Nikolausz, M. Effect of inoculum microbial diversity in ex situ biomethanation of hydrogen. Bioengineering 2022, 9, 678. [Google Scholar] [CrossRef] [PubMed]
- Logroño, W.; Kleinsteuber, S.; Kretzschmar, J.; Harnisch, F.; De Vrieze, J.; Nikolausz, M. The microbiology of power-to-x applications. Fems. Microbiol. Rev. 2023, 47, fuad013. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, R.; Bele, V.; Saady, N.M.C.; Hickmann, F.M.W.; Goyette, B. Anaerobic digestion of pig-manure solids at low temperatures: Start-up strategies and effects of mode of operation, adapted inoculum, and bedding material. Bioengineering 2022, 9, 435. [Google Scholar] [CrossRef] [PubMed]
- Nazar, M.; Ullah, M.W.; Wang, S.R.; Zhao, J.; Dong, Z.H.; Li, J.F.; Kaka, N.A.; Shao, T. Exploring the epiphytic microbial community structure of forage crops: Their adaptation and contribution to the fermentation quality of forage sorghum during ensiling. Bioengineering 2022, 9, 428. [Google Scholar] [CrossRef]
- Pereira, J.; de Melo, M.M.R.; Silva, C.M.; Lemos, P.C.; Serafim, L.S. Impact of a pretreatment step on the acidogenic fermentation of spent coffee grounds. Bioengineering 2022, 9, 362. [Google Scholar] [CrossRef]
- Reid, W.V.; Ali, M.K.; Field, C.B. The future of bioenergy. Glob. Change Biol. 2020, 26, 274–286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolausz, M.; Kornatz, P. The Future of Anaerobic Digestion: Challenges and Opportunities. Bioengineering 2025, 12, 524. https://doi.org/10.3390/bioengineering12050524
Nikolausz M, Kornatz P. The Future of Anaerobic Digestion: Challenges and Opportunities. Bioengineering. 2025; 12(5):524. https://doi.org/10.3390/bioengineering12050524
Chicago/Turabian StyleNikolausz, Marcell, and Peter Kornatz. 2025. "The Future of Anaerobic Digestion: Challenges and Opportunities" Bioengineering 12, no. 5: 524. https://doi.org/10.3390/bioengineering12050524
APA StyleNikolausz, M., & Kornatz, P. (2025). The Future of Anaerobic Digestion: Challenges and Opportunities. Bioengineering, 12(5), 524. https://doi.org/10.3390/bioengineering12050524