Engagement and Stress Concentration Evaluation of a Novel Two-Part Compression Screw: A Preliminary Finite Element Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Two-Part Compression Screw Prototype Design and Implantation Procedures
2.2. Finite Element Analysis
3. Results
3.1. Pull-Out Load Simulation with Different Two-Part Combination Percentages
3.2. Bending Load Simulation at Different Two-Part Combination Percentages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, L.B.C.; Manfredi, V.M.; Costa, I.A.P.; Imoto, F.S.; Dobashi, E.T.; Almeida, T.B.C.; Rodrigues, L.M.R. Osteosynthesis of a Scaphoid Neck Fracture with a Cannulated Compression Screw: Evaluation of 52 Patients. Acta Ortop. Bras. 2023, 31, e264116. [Google Scholar] [CrossRef] [PubMed]
- Berk, T.; Zderic, I.; Varga, P.; Schwarzenberg, P.; Lesche, F.; Halvachizadeh, S.; Richards, G.; Gueorguiev, B.; Pape, H.C. Evaluation of Cannulated Compression Headless Screw (CCHS) as an alternative implant in comparison to standard S1-S2 screw fixation of the posterior pelvis ring: A biomechanical study. BMC Musculoskelet. Disord. 2023, 24, 215. [Google Scholar] [CrossRef] [PubMed]
- Bonte, F.; Bonte, C.; Pierreux, P.; Vandevivere, H.; Berghs, B.; Stockmans, F. Percutaneous Headless Compression Screw Fixation for Bennett’s Fracture. Hand Surg. Rehabil. 2025, 44, 102123. [Google Scholar] [CrossRef]
- Kwan, S.A.; Bridges, T.N.; Buchan, L.; Sedigh, A.; Kistler, J.M.; Tosti, R.; Kachooei, A.R.; Rivlin, M. The Biomechanical Stability of a Single Headless Compression Screw Construct to Fix Scaphoid Waist Fractures. J. Am. Acad. Orthop. Surg. 2025. [Google Scholar] [CrossRef]
- Faroug, R.; Abbasian, A. Saw transection of retained compression screws with damaged heads instead of removal in revision first metatarsal osteotomy: A technique tip. BMJ Case Rep. 2021, 14, e234868. [Google Scholar] [CrossRef]
- Nagi, A.; Elgalli, M.; Mubark, I.; Motawea, B.A.; Karagkevrekis, C. Headless Compression Screw Fixation of Delayed Union Jones Fractures: A Case Series. Ortop. Traumatol. Rehabil. 2021, 23, 121–127. [Google Scholar] [CrossRef]
- Lynch, D.; Mickley, J.P.; Gordon, A.; Roebke, A.J.; Goyal, K.S. The Effect of Derotational Kirschner Wires on Fracture Gap Reduction With Variable-Pitch Headless Screws. J. Hand Surg. Am. 2023, 48, 86.e81–86.e87. [Google Scholar] [CrossRef]
- Hoffer, A.J.; Tummala, S.V.; Tokish, J.M. Arthroscopic Technique for Headless Compression Screw Fixation of Large Bony Bankart Fractures in Anterior Shoulder Instability. Arthrosc. Tech. 2024, 13, 103029. [Google Scholar] [CrossRef]
- Mandala, M.; Shaunak, S.; Kreitmair, P.; Phadnis, J.; Guryel, E. Biomechanical comparison of headless compression screws versus independent locking screw for intra-articular fractures. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1319–1325. [Google Scholar] [CrossRef]
- Mickley, J.P.; Lynch, D.J.; Gordon, A.M.; Roebke, A.J.; Goyal, K.S. Fracture Gap Closure and Reduction Are Affected by the Orientation of the Headless Compression Screw. Hand 2024, 19, 656–663. [Google Scholar] [CrossRef]
- Muller, J.U.; Muller, J.; Marx, S.; Matthes, M.; Nowak, S.; Schroeder, H.W.S.; Pillich, D.T. Biomechanical comparison of three different compression screws for treatment of odontoid fractures evaluation of a new screw design. Clin. Biomech. 2020, 77, 105049. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.U.; Nowak, S.; Matthes, M.; Pillich, D.T.; Schroeder, H.W.S.; Muller, J. Biomechanical comparison of two different compression screws for the treatment of odontoid fractures in human dens axis specimen. Clin. Biomech. 2024, 111, 106162. [Google Scholar] [CrossRef] [PubMed]
- Graul, I.; Lindner, R.; Schettler, N.; Friedel, R.; Hofmann, G.O. Deviations in positioning variable pitch screws- scaphoid waist fractures. Orthop. Traumatol. Surg. Res. 2020, 106, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.G.; Alves, J.L.; Fonseca, E.M.M. Diaphyseal femoral fracture: 3D biomodel and intramedullary nail created by additive manufacturing. Int. J. Mater. Eng. Innov. 2016, 7, 130–142. [Google Scholar] [CrossRef]
- Kundu, J.; Pati, F.; Shim, J.H.; Cho, D.W. 10-Rapid prototyping technology for bone regeneration. Rapid Prototyp. Biomater. 2014, 254–284. [Google Scholar] [CrossRef]
- Zhu, Y.; Babazadeh-Naseri, A.; Brake, M.R.W.; Akin, J.E.; Li, G.; Lewis, V.O.; Fregly, B.J. Evaluation of finite element modeling methods for predicting compression screw failure in a custom pelvic implant. Front. Bioeng. Biotechnol. 2024, 12, 1420870. [Google Scholar] [CrossRef]
- Pan, C.C.; Lee, C.H.; Chen, K.H.; Yen, Y.C.; Su, K.C. Comparative Biomechanical Analysis of Unilateral, Bilateral, and Lateral Pedicle Screw Implantation in Oblique Lumbar Interbody Fusion: A Finite Element Study. Bioengineering 2023, 10, 1238. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, S.; Nie, M.; Yuan, J.; Lin, X.; Chu, X.; Shi, Z. Treatment of Lumbar Degenerative Disease with a Novel Interlaminar Screw Elastic Spacer Technique: A Finite Element Analysis. Bioengineering 2023, 10, 1204. [Google Scholar] [CrossRef]
- Alito, A.; Fenga, D.; Tropeano, G.; Milardi, D.; Leonetti, D.; Migliorato, A.; Tisano, A.; D’Andrea, D.; Filardi, V. Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis. Bioengineering 2023, 10, 1402. [Google Scholar] [CrossRef]
- MatWeb Material Property Data. Titanium Alloy Ti-6Al-4V (Grade 5), Annealed. Available online: https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP643 (accessed on 10 April 2025).
- Hsu, C.C.; Chao, C.K.; Wang, J.L.; Hou, S.M.; Tsai, Y.T.; Lin, J. Increase of pullout strength of spinal pedicle screws with conical core: Biomechanical tests and finite element analyses. J. Orthop. Res. 2005, 23, 788–794. [Google Scholar] [CrossRef]
- Chao, C.K.; Hsu, C.C.; Wang, J.L.; Lin, J. Increasing bending strength and pullout strength in conical pedicle screws: Biomechanical tests and finite element analyses. J. Spinal Disord. Tech. 2008, 21, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Shih, K.S.; Hsu, C.C.; Hou, S.M.; Yu, S.C.; Liaw, C.K. Comparison of the bending performance of solid and cannulated spinal pedicle screws using finite element analyses and biomechanical tests. Med. Eng. Phys. 2015, 37, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Croccolo, D.; De Agostinis, M.; Fini, S.; Khan, M.Y.; Mele, M.; Olmi, G. Optimization of Bolted Joints: A Literature Review. Metals 2023, 13, 1708. [Google Scholar] [CrossRef]
- Croccolo, D.; de Agostinis, M.; Fini, S.; Olmi, G.; Robusto, F.; Vincenzi, N. Steel screws on aluminium nuts: Different engagement ratio tapped threads compared to threaded inserts with a proper tolerance choice. Tribol. Int. 2019, 138, 297–306. [Google Scholar] [CrossRef]
- Murai, A.; Watanabe, T.; Fukuda, M.; Hashimura, S. Influences of various parameters on shear stiffness of bolted joints subjected to shear load. Int. J. Adv. Manuf. Technol. 2023, 127, 5139–5154. [Google Scholar] [CrossRef]
- Rousseau, R.I.; Bouzid, A.-H. The Tightening and Untightening Modeling and Simulation of Bolted Joints. Machines 2024, 12, 654. [Google Scholar] [CrossRef]
- Plumarom, Y.; Wilkinson, B.G.; Marsh, J.L.; Willey, M.C.; An, Q.; Gao, Y.; Karam, M.D. Radiographic Healing of Far Cortical Locking Constructs in Distal Femur Fractures: A Comparative Study with Standard Locking Plates. J. Orthop. Trauma 2019, 33, 277–283. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Cui, H.; Fan, Z.; Xu, K.; Liu, P.; Ji, F.; Tang, H. Clinical effects and risk factors of far cortical locking system in the treatment of lower limb fractures. Injury 2019, 50, 432–437. [Google Scholar] [CrossRef]
- Hast, M.W.; Chin, M.; Schmidt, E.C.; Sanville, J.; Van Osten, G.K.; Mehta, S. Mechanical Effects of Bone Substitute and Far-Cortical Locking Techniques in 2-Part Proximal Humerus Fracture Reconstruction: A Cadaveric Study. J. Orthop. Trauma 2020, 34, 199–205. [Google Scholar] [CrossRef]
- Seo, J.B.; Yoo, J.S.; Kim, Y.J.; Kim, K.B. Assessment of the efficacy of the far cortical locking technique in proximal humeral fractures: A comparison with the conventional bi-cortical locking technique. BMC Musculoskelet. Disord. 2020, 21, 800. [Google Scholar] [CrossRef]
- Deng, Y.; Ouyang, H.; Xie, P.; Wang, Y.; Yang, Y.; Tan, W.; Zhao, D.; Zhong, S.; Huang, W. Biomechanical assessment of screw safety between far cortical locking and locked plating constructs. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.J.; Lin, K.P.; Tsai, C.L.; Wei, H.W. Influence of gap distance between bone and plate on structural stiffness and parallel interfragmental movement in far-cortical locking technique—A biomechanical study. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, A.; Gee, A.; Bougherara, H.; Kuzyk, P.R.T.; Schemitsch, E.H.; Zdero, R. Biomechanical optimization of the far cortical locking technique for early healing of distal femur fractures. Med. Eng. Phys. 2021, 89, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, D.; Yang, Y.; Ouyang, H.; Xu, C.; Xiong, L.; Li, Y.; Tan, W.; Huang, G.; Huang, W. Optimal design and biomechanical analysis of sandwich composite metal locking screws for far cortical locking constructs. Front. Bioeng. Biotechnol. 2022, 10, 967430. [Google Scholar] [CrossRef]
- England, T.; Khan, H.; Moniz, S.; Mitchell, D.; Kuster, M.S. Does Far Cortical Locking Improve Fracture Healing in Distal Femur Fractures: A Randomised, Controlled, Prospective Multicentre Study. J. Clin. Med. 2023, 12, 7554. [Google Scholar] [CrossRef]
- Lee, D.O.; Kang, H.W.; Kim, D.Y.; Park, G.Y.; Hwang, I.U.; Lee, D.Y. Efficacy of Far Cortical Locking Screws in Treating Distal Tibia Fractures in Comparison with That of Standard Locking Screws. J. Foot Ankle Surg. 2023, 62, 422–425. [Google Scholar] [CrossRef]
- Brzozowski, P.; Inculet, C.; Schemitsch, E.H.; Zdero, R. Biomechanical testing of a computationally optimized far cortical locking plate versus traditional implants for distal femur fracture repair. Clin. Biomech. 2024, 117, 106296. [Google Scholar] [CrossRef]
- Lim, E.J.; Cho, J.W.; Shon, O.J.; Oh, J.K.; Hwang, K.T.; Lee, G.C. Far cortical locking constructs for fixation of distal femur fractures in an Asian population: A prospective observational study. J. Orthop. Sci. 2024, 30, 372–378. [Google Scholar] [CrossRef]
- Bullock, R.S.; Coury, J.G.; Liakos, B.; Huish, E.G. Far cortical locking versus standard locking screw fixation in simulated femoral fractures: A biomechanical meta-analysis. J. Orthop. 2025, 61, 43–46. [Google Scholar] [CrossRef]
- Freude, T.; Schroeter, S.; Plecko, M.; Bahrs, C.; Martetschlaeger, F.; Kraus, T.M.; Stoeckle, U.; Doebele, S. Dynamic-locking-screw (DLS)-leads to less secondary screw perforations in proximal humerus fractures. BMC Musculoskelet. Disord. 2014, 15, 194. [Google Scholar] [CrossRef]
- Freude, T.; Schroter, S.; Gonser, C.E.; Stockle, U.; Acklin, Y.P.; Hontzsch, D.; Dobele, S. Controlled dynamic stability as the next step in “biologic plate osteosynthesis”—A pilot prospective observational cohort study in 34 patients with distal tibia fractures. Patient Saf. Surg. 2014, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Vicenti, G.; Pesce, V.; Tartaglia, N.; Abate, A.; Mori, C.M.; Moretti, B. Micromotion in the fracture healing of closed distal metaphyseal tibial fractures: A multicentre prospective study. Injury 2014, 45 (Suppl. 6), S27–S35. [Google Scholar] [CrossRef] [PubMed]
- Pohlemann, T.; Gueorguiev, B.; Agarwal, Y.; Wahl, D.; Sprecher, C.; Schwieger, K.; Lenz, M. Dynamic locking screw improves fixation strength in osteoporotic bone: An in vitro study on an artificial bone model. Int. Orthop. 2015, 39, 761–768. [Google Scholar] [CrossRef]
- Richter, H.; Plecko, M.; Andermatt, D.; Frigg, R.; Kronen, P.W.; Klein, K.; Nuss, K.; Ferguson, S.J.; Stockle, U.; von Rechenberg, B. Dynamization at the near cortex in locking plate osteosynthesis by means of dynamic locking screws: An experimental study of transverse tibial osteotomies in sheep. J. Bone Jt. Surg. Am. 2015, 97, 208–215. [Google Scholar] [CrossRef]
- Acklin, Y.P.; Stockle, U.; Sommer, C. Clinical and radiologic outcomes associated with the use of dynamic locking screws (DLS) in distal tibia fractures. Eur. J. Trauma Emerg. Surg. 2016, 42, 351–356. [Google Scholar] [CrossRef]
- Bottlang, M.; Shetty, S.S.; Blankenau, C.; Wilk, J.; Tsai, S.; Fitzpatrick, D.C.; Marsh, L.J.; Madey, S.M. Advances in Dynamization of Plate Fixation to Promote Natural Bone Healing. J. Clin. Med. 2024, 13, 2905. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-H.; Wang, C.-K.; Wang, Y.-H.; Lin, S.-Y.; Lu, C.-C.; Fu, Y.-C.; Huang, H.-T.; Chen, C.-H.; Chou, P.-H. Engagement and Stress Concentration Evaluation of a Novel Two-Part Compression Screw: A Preliminary Finite Element Analysis. Bioengineering 2025, 12, 483. https://doi.org/10.3390/bioengineering12050483
Hsu C-H, Wang C-K, Wang Y-H, Lin S-Y, Lu C-C, Fu Y-C, Huang H-T, Chen C-H, Chou P-H. Engagement and Stress Concentration Evaluation of a Novel Two-Part Compression Screw: A Preliminary Finite Element Analysis. Bioengineering. 2025; 12(5):483. https://doi.org/10.3390/bioengineering12050483
Chicago/Turabian StyleHsu, Chia-Hao, Chih-Kuang Wang, Yan-Hsiung Wang, Sung-Yen Lin, Cheng-Chang Lu, Yin-Chih Fu, Hsuan-Ti Huang, Chung-Hwan Chen, and Pei-Hsi Chou. 2025. "Engagement and Stress Concentration Evaluation of a Novel Two-Part Compression Screw: A Preliminary Finite Element Analysis" Bioengineering 12, no. 5: 483. https://doi.org/10.3390/bioengineering12050483
APA StyleHsu, C.-H., Wang, C.-K., Wang, Y.-H., Lin, S.-Y., Lu, C.-C., Fu, Y.-C., Huang, H.-T., Chen, C.-H., & Chou, P.-H. (2025). Engagement and Stress Concentration Evaluation of a Novel Two-Part Compression Screw: A Preliminary Finite Element Analysis. Bioengineering, 12(5), 483. https://doi.org/10.3390/bioengineering12050483