Local Extremum Mapping for Weak Supervision Learning on Mammogram Classification and Localization
Abstract
:1. Introduction
- A weakly supervised mammogram classification and localization model is proposed, which can locate lesions without detailed segmentation or detection annotations.
- A local extremum mapping method is proposed that utilizes the extrema as criteria to select candidate lesion regions. It is a more comprehensive way to extend the feature distance between benign and malignant lesions.
- Based on the above method, a sparse loss function is proposed to facilitate the generation of extremes and limit the number of extremes, and a localization algorithm is designed to obtain pixel-level lesion locations by backpropagating the extremes.
2. Related Work
3. Method
3.1. The Overall Structure
3.2. Local Extremum Mapping
3.3. Sparse Loss Function
3.4. Lesion Localization
Algorithm 1 Training process of LEM |
Require:
|
Algorithm 2 Lesion localization |
Require:
|
4. Experiments and Results
4.1. Dataset
4.2. Training Details
4.3. Results and Analysis
4.3.1. Evaluation with Different Backbone Structures
4.3.2. Evaluation of Different Mapping Methods
4.3.3. Comparisons with Other Methods
4.3.4. Evaluation of Localization Performance
4.3.5. Ablation Study
4.3.6. Visualization of the Score Map
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Accuracy |
AUC | Area under the receiver operating characteristic curve |
CAD | Computer-aided diagnosis |
CAM | Class activation map |
CNN | Convolutional neural network |
DNN | Deep neural network |
DSC | Dice similarity coefficient |
GAP | Global average pooling |
GGP | global group-max pooling |
GMP | Global max pooling |
LEM | Local extremum mapping |
MIL | Multiple instance learning |
RGP | Region-based group-max pooling |
ROI | Regions of interest |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.M.; Nystrom, L.; Jonsson, H.; Paci, E.; Lynge, E.; Njor, S.; Broeders, M. The impact of mammographic screening on breast cancer mortality in Europe: A review of trend studies. J. Med. Screen. 2012, 19 (Suppl. S1), 26. [Google Scholar] [CrossRef] [PubMed]
- Hupse, R.; Karssemeijer, N. Use of normal tissue context in computer-aided detection of masses in mammograms. IEEE Trans. Med. Imaging 2009, 28, 2033–2041. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, Y. A context-sensitive deep learning approach for microcalcification detection in mammograms. Pattern Recognit. 2018, 78, 12–22. [Google Scholar]
- Jouirou, A.; Baâzaoui, A.; Barhoumi, W. Multi-view content-based mammogram retrieval using dynamic similarity and locality sensitive hashing. Pattern Recognit. 2021, 112, 107786. [Google Scholar] [CrossRef]
- Karagoz, M.A.; Nalbantoglu, O.U. A self-supervised learning model based on variational autoencoder for limited-sample mammogram classification. Appl. Intell. 2024, 54, 3448–3463. [Google Scholar]
- Zhao, W.; Lou, M.; Qi, Y.; Wang, Y.; Xu, C.; Deng, X.; Ma, Y. Adaptive channel and multiscale spatial context network for breast mass segmentation in full-field mammograms. Appl. Intell. 2021, 51, 8810–8827. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, N.; Phang, J.; Park, J.; Kim, G.; Moy, L.; Cho, K.; Geras, K.J. Globally-aware multiple instance classifier for breast cancer screening. In Proceedings of the International Workshop on Machine Learning in Medical Imaging; Springer: Cham, Switzerland, 2019; pp. 18–26. [Google Scholar]
- Wu, N.; Phang, J.; Park, J.; Shen, Y.; Huang, Z.; Zorin, M.; Jastrzbski, S.; F¨¦vry, T.; Katsnelson, J.; Kim, E.a. Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening. IEEE Trans. Med. Imaging 2020, 39, 1184–1194. [Google Scholar] [CrossRef]
- Fevry, T.; Phang, J.; Wu, N.; Kim, S.G.; Moy, L.; Cho, K.; Geras, K.J. Improving localization-based approaches for breast cancer screening exam classification. arXiv 2019, arXiv:1908.00615. [Google Scholar]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.C.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Feng, Y.; Zhang, L. WDCCNet: Weighted Double-Classifier Constraint Neural Network for Mammographic Image Classification. IEEE Trans. Med. Imaging 2022, 41, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shu, X.; Zhang, L.; Li, D.; Lv, Q. Deep multiscale multi-instance networks with regional scoring for mammogram classification. IEEE Trans. Artif. Intell. 2021, 3, 485–496. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, N.; Phang, J.; Park, J.; Liu, K.; Tyagi, S.; Heacock, L.; Kim, S.G.; Moy, L.; Cho, K.; et al. An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization. Med. Image Anal. 2021, 68, 101908. [Google Scholar] [CrossRef]
- Liang, G.; Wang, X.; Zhang, Y.; Jacobs, N. Weakly-Supervised Self-Training for Breast Cancer Localization. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1124–1127. [Google Scholar] [CrossRef]
- Sampaio, V.; Cordeiro, F.R. Improving Mass Detection in Mammography Images: A Study of Weakly Supervised Learning and Class Activation Map Methods. In Proceedings of the 2023 36th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Rio Grande, Brazil, 6–9 November 2023; pp. 139–144. [Google Scholar] [CrossRef]
- Pereira, S.M.P.; McCormack, V.A.; Moss, S.M.; dos Santos Silva, I. The spatial distribution of radiodense breast tissue: A longitudinal study. Breast Cancer Res. 2009, 11, R33. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Chan, H.P.; Wu, Y.T.; Zhou, C.; Helvie, M.A.; Tsodikov, A.; Hadjiiski, L.M.; Sahiner, B. Association of computerized mammographic parenchymal pattern measure with breast cancer risk: A pilot case-control study. Radiology 2011, 260, 42–49. [Google Scholar] [CrossRef]
- Oliver, A.; Freixenet, J.; Marti, J.; Perez, E.; Pont, J.; Denton, E.R.; Zwiggelaar, R. A review of automatic mass detection and segmentation in mammographic images. Med. Image Anal. 2010, 14, 87–110. [Google Scholar] [CrossRef]
- Tang, J.; Rangayyan, R.M.; Xu, J.; Naqa, I.E.; Yang, Y. Computer-Aided Detection and Diagnosis of Breast Cancer With Mammography: Recent Advances. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 236–251. [Google Scholar] [CrossRef]
- Shu, X.; Zhang, L.; Wang, Z.; Lv, Q.; Yi, Z. Deep Neural Networks with Region-Based Pooling Structures for Mammographic Image Classification. IEEE Trans. Med. Imaging 2020, 39, 2246–2255. [Google Scholar] [CrossRef]
- Zhang, L.; Yi, Z.; Amari, S.i. Theoretical study of oscillator neurons in recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5242–5248. [Google Scholar] [CrossRef]
- Li, Y.; Qian, G.; Jiang, X.; Jiang, Z.; Wen, W.; Zhang, S.; Li, K.; Lao, Q. Hierarchical-Instance Contrastive Learning for Minority Detection on Imbalanced Medical Datasets. IEEE Trans. Med. Imaging 2024, 43, 416–426. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Wang, L.; Zhang, L.; Yi, Z. Trajectory Predictor by Using Recurrent Neural Networks in Visual Tracking. IEEE Trans. Cybern. 2017, 47, 3172–3183. [Google Scholar] [PubMed]
- Wang, L.; Zhang, L.; Qi, X.; Yi, Z. Deep Attention-Based Imbalanced Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 3320–3330. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhang, L.; Chen, Y.; Pi, Y.; Chen, Y.; Lv, Q.; Yi, Z. Automated diagnosis of breast ultrasonography images using deep neural networks. Med. Image Anal. 2019, 52, 185–198. [Google Scholar] [PubMed]
- Xie, L.; Zhang, L.; Hu, T.; Li, G.; Yi, Z. Neural Network Model Based on Branch Architecture for the Quality Assurance of Volumetric Modulated Arc Therapy. Bioengineering 2024, 11, 362. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- Azad, R.; Kazerouni, A.; Heidari, M.; Aghdam, E.K.; Molaei, A.; Jia, Y.; Jose, A.; Roy, R.; Merhof, D. Advances in medical image analysis with vision transformers: A comprehensive review. Med. Image Anal. 2024, 91, 103000. [Google Scholar]
- Sakaida, M.; Yoshimura, T.; Tang, M.; Ichikawa, S.; Sugimori, H.; Hirata, K.; Kudo, K. The Effectiveness of Semi-Supervised Learning Techniques in Identifying Calcifications in X-ray Mammography and the Impact of Different Classification Probabilities. Appl. Sci. 2024, 14, 5968. [Google Scholar] [CrossRef]
- Carneiro, G.; Nascimento, J.; Bradley, A.P. Unregistered Multiview Mammogram Analysis with Pre-trained Deep Learning Models. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 652–660. [Google Scholar]
- Jiao, Z.; Gao, X.; Wang, Y.; Li, J. A deep feature based framework for breast masses classification. Neurocomputing 2016, 197, 221–231. [Google Scholar]
- Han, B.; Sun, L.; Li, C.; Yu, Z.; Jiang, W.; Liu, W.; Tao, D.; Liu, B. Deep Location Soft-Embedding-Based Network With Regional Scoring for Mammogram Classification. IEEE Trans. Med. Imaging 2024, 43, 3137–3148. [Google Scholar]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef]
- Al-Antari, M.A.; Al-Masni, M.A.; Kim, T.S. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram. In Deep Learning in Medical Image Analysis; Springer: Berlin/Heidelberg, Germany, 2020; pp. 59–72. [Google Scholar]
- Chougrad, H.; Zouaki, H.; Alheyane, O. Multi-label transfer learning for the early diagnosis of breast cancer. Neurocomputing 2019, 392, 168–180. [Google Scholar]
- Agnes, S.A.; Anitha, J.; Pandian, S.I.A.; Peter, J.D. Classification of mammogram images using multiscale all convolutional neural network (MA-CNN). J. Med. Syst. 2020, 44, 30. [Google Scholar]
- Arora, R.; Rai, P.K.; Raman, B. Deep feature–based automatic classification of mammograms. Med. Biol. Eng. Comput. 2020, 58, 1199–1211. [Google Scholar] [PubMed]
- Zhu, W.; Lou, Q.; Vang, Y.S.; Xie, X. Deep Multi-instance Networks with Sparse Label Assignment for Whole Mammogram Classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec City, QC, Canada, 11–13 September 2017; pp. 603–611. [Google Scholar]
- Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Is object localization for free?—Weakly-supervised learning with convolutional neural networks. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Sun, C.; Paluri, M.; Collobert, R.; Nevatia, R.; Bourdev, L. Pronet: Learning to propose object-specific boxes for cascaded neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3485–3493. [Google Scholar]
- Durand, T.; Mordan, T.; Thome, N.; Cord, M. Wildcat: Weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 642–651. [Google Scholar]
- Zhou, Y.; Zhu, Y.; Ye, Q.; Qiu, Q.; Jiao, J. Weakly supervised instance segmentation using class peak response. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3791–3800. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847. [Google Scholar] [CrossRef]
- Zhang, J.; Bargal, S.A.; Lin, Z.; Brandt, J.; Shen, X.; Sclaroff, S. Top-Down Neural Attention by Excitation Backprop. Int. J. Comput. Vis. 2018, 126, 1084–1102. [Google Scholar]
- Lee, R.S.; Gimenez, F.; Hoogi, A.; Miyake, K.K.; Gorovoy, M.; Rubin, D.L. A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 2017, 4, 170177. [Google Scholar]
- Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. INbreast: Toward a full-field digital mammographic database. Acad. Radiol. 2012, 19, 236–248. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Dhungel, N.; Carneiro, G.; Bradley, A.P. Automated Mass Detection in Mammograms Using Cascaded Deep Learning and Random Forests. In Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, Gold Coast, Australia, 30 November–2 December 2016; pp. 1–8. [Google Scholar]
- Al-Antari, M.A.; Al-Masni, M.A.; Choi, M.T.; Han, S.M.; Kim, T.S. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int. J. Med. Inform. 2018, 117, 44–54. [Google Scholar]
- Chougrad, H.; Zouaki, H.; Alheyane, O. Deep convolutional neural networks for breast cancer screening. Comput. Methods Programs Biomed. 2018, 157, 19–30. [Google Scholar]
- Wang, Y.; Feng, Y.; Zhang, L.; Wang, Z.; Lv, Q.; Yi, Z. Deep adversarial domain adaptation for breast cancer screening from mammograms. Med. Image Anal. 2021, 73, 102147. [Google Scholar]
- Hu, T.; Zhang, L.; Xie, L.; Yi, Z. A multi-instance networks with multiple views for classification of mammograms. Neurocomputing 2021, 443, 320–328. [Google Scholar]
- Zhang, C.; Zhao, J.; Niu, J.; Li, D. New convolutional neural network model for screening and diagnosis of mammograms. PLoS ONE 2020, 15, e0237674. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zhang, L.; Hu, T.; Huang, H.; Yi, Z. Neural networks model based on an automated multi-scale method for mammogram classification. Knowl.-Based Syst. 2020, 208, 106465. [Google Scholar] [CrossRef]
- Lopez, E.; Grassucci, E.; Valleriani, M.; Comminiello, D. Multi-View Breast Cancer Classification via Hypercomplex Neural Networks. arXiv 2022, arXiv:2204.05798. [Google Scholar]
- Gao, Y.; Wang, X.; Zhang, T.; Han, L.; Beets-Tan, R.; Mann, R. Self-supervised learning of mammograms with pathology aware. In Proceedings of the Medical Imaging with Deep Learning, Zurich, Switzerland, 6–8 July 2022. [Google Scholar]
- Lou, M.; Wang, R.; Qi, Y.; Zhao, W.; Xu, C.; Meng, J.; Deng, X.; Ma, Y. MGBN: Convolutional neural networks for automated benign and malignant breast masses classification. Multimed. Tools Appl. 2021, 80, 26731–26750. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
Method | ACC (%) | AUC |
---|---|---|
Resnet-18 | 87.7 | 0.890 |
Resnet-50 | 88.9 | 0.921 |
Resnet-101 | 87.7 | 0.940 |
DenseNet-121 | 93.8 | 0.953 |
DenseNet-169 | 88.9 | 0.942 |
LEM Resnet-18 | 92.6 | 0.951 |
LEM Resnet-50 | 92.6 | 0.953 |
LEM Resnet-101 | 95.1 | 0.946 |
LEM DenseNet-121 | 96.3 | 0.976 |
LEM DenseNet-169 | 91.4 | 0.957 |
Methods | ACC (%) | AUC |
---|---|---|
GAP Resnet-18 | 87.7 | 0.89 |
GMP Resnet-18 | 85.2 | 0.841 |
RGP Resnet-18 | 91.9 | 0.930 |
GGP Resnet-18 | 91.4 | 0.936 |
LEM Resnet-18 | 92.6 | 0.951 |
Method | Pixel Label | ACC (%) | AUC |
---|---|---|---|
Random Forest [52] | Y | 91.0 | 0.760 |
FrCN [53] | Y | 95.6 | 0.948 |
Chougrad et al. [54] | Y | 95.5 | 0.970 |
deep MIL [40] | N | 90.0 | 0.89 |
FrCN [53] | N | 91.1 | 0.906 |
RGP [21] | N | 91.9 | 0.934 |
GGP [21] | N | 92.2 | 0.924 |
DADA [55] | N | 91.2 | 0.937 |
WMDNet [56] | N | 94.7 | 0.936 |
CSAM [57] | N | 94.9 | 0.961 |
WDCC [12] | N | 93.4 | 0.943 |
DLSEN-RS [34] | N | 95.1 | 0.936 |
MS+BRS [58] | N | 96.3 | 0.971 |
LEM | N | 96.3 | 0.976 |
Method | ACC (%) | AUC |
---|---|---|
PHResNet [59] | 73.9 | 0.754 |
PA [60] | N/A | 0.780 |
deep MIL [40] | 74.2 | 0.791 |
RGP [21] | 76.2 | 0.838 |
GGP [21] | 76.7 | 0.823 |
MGBN [61] | 74.5 | 0.825 |
GMIC [14] | N/A | 0.840 |
WDCC [12] | 77.0 | 0.834 |
DLSEN-RS [34] | 74.2 | 0.753 |
LEM | 76.5 | 0.840 |
Method | Pixel Label | DSC | Recall |
---|---|---|---|
UNet [62] | Y | 0.90 | 0.848 |
CAM [42] | N | 0.25 | 0.49 |
grad-CAM [46] | N | 0.29 | 0.52 |
LEM | N | 0.37 | 0.56 |
Method | DSC | AUC |
---|---|---|
without sparse loss | 0.33 | 0.979 |
with sparse loss | 0.37 | 0.976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Zhang, L.; Wang, L.; Wang, Z.; Wang, Y.; Qian, G. Local Extremum Mapping for Weak Supervision Learning on Mammogram Classification and Localization. Bioengineering 2025, 12, 325. https://doi.org/10.3390/bioengineering12040325
Zhu M, Zhang L, Wang L, Wang Z, Wang Y, Qian G. Local Extremum Mapping for Weak Supervision Learning on Mammogram Classification and Localization. Bioengineering. 2025; 12(4):325. https://doi.org/10.3390/bioengineering12040325
Chicago/Turabian StyleZhu, Minjuan, Lei Zhang, Lituan Wang, Zizhou Wang, Yan Wang, and Guangwu Qian. 2025. "Local Extremum Mapping for Weak Supervision Learning on Mammogram Classification and Localization" Bioengineering 12, no. 4: 325. https://doi.org/10.3390/bioengineering12040325
APA StyleZhu, M., Zhang, L., Wang, L., Wang, Z., Wang, Y., & Qian, G. (2025). Local Extremum Mapping for Weak Supervision Learning on Mammogram Classification and Localization. Bioengineering, 12(4), 325. https://doi.org/10.3390/bioengineering12040325