Exploring the Association of Hallux Limitus with Baropodometric Gait Pattern Changes
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Sample
2.2. Procedure
2.3. Dynamic Baropodometric Analysis
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic Data
3.2. Main Outcome Measure Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coughlin, M.J.; Jones, C.P. Hallux valgus: Demographics, etiology, and radiographic assessment. Foot Ankle Int. 2007, 28, 759–777. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Martínez, C.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Casado-Hernández, I.; Turné-Cárceles, O.; Pérez-Palma, L.; Martiniano, J.; Gómez-Salgado, J.; López-López, D. Analysis of Static Plantar Pressures in School-Age Children with and without Functional Hallux Limitus: A Case-Control Study. Bioengineering 2023, 10, 628. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.; Chuter, V.; Miller, K. Sensitivity and Specificity of the Functional Hallux Limitus Test to Predict Foot Function. J. Am. Podiatr. Med. Assoc. 2002, 92, 269–271. [Google Scholar] [CrossRef]
- Viehöfer, A.F.; Vich, M.; Wirth, S.H.; Espinosa, N.; Camenzind, R.S. The Role of Plantar Fascia Tightness in Hallux Limitus: A Biomechanical Analysis. J. Foot Ankle Surg. 2019, 58, 465–469. [Google Scholar] [CrossRef]
- Kunnasegaran, R.; Thevendran, G. Hallux Rigidus: Nonoperative Treatment and Orthotics. Foot Ankle Clin. 2015, 20, 401–412. [Google Scholar] [CrossRef]
- Senga, Y.; Nishimura, A.; Ito, N.; Kitaura, Y.; Sudo, A. Prevalence of and risk factors for hallux rigidus: A cross-sectional study in Japan. BMC Musculoskelet. Disord. 2021, 22, 786. [Google Scholar] [CrossRef]
- Bejarano-Pineda, L.; Cody, E.A.; Nunley, J.A., II. Prevalence of Hallux Rigidus in Patients with End-Stage Ankle Arthritis. J. Foot Ankle Surg. 2021, 60, 21–24. [Google Scholar] [CrossRef]
- Lam, A.; Chan, J.J.; Surace, M.F.; Vulcano, E. Hallux rigidus: How do I approach it? World J. Orthop. 2017, 8, 364–371. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Calvo-Lobo, C.; Navarro-Flores, E.; Palomo-López, P.; Romero-Morales, C.; López-López, D. Reliability Study of Diagnostic Tests for Functional Hallux Limitus. Foot Ankle Int. 2020, 41, 457–462. [Google Scholar] [CrossRef]
- Shurnas, P.S. Hallux Rigidus: Etiology, Biomechanics, and Nonoperative Treatment. Foot Ankle Clin. 2009, 14, 1–8. [Google Scholar] [CrossRef]
- Fung, J.; Sherman, A.; Stachura, S.; Eckles, R.; Doucette, J.; Chusid, E. Nonoperative Management of Hallux Limitus Using a Novel Forefoot Orthosis. J. Foot Ankle Surg. 2020, 59, 1192–1196. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Martínez, C.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Casado-Hernández, I.; Navarro-Flores, E.; Pérez-Palma, L.; Martiniano, J.; Gómez-Salgado, J.; López-López, D. Hallux Limitus Influence on Plantar Pressure Variations during the Gait Cycle: A Case-Control Study. Bioengineering 2023, 10, 772. [Google Scholar] [CrossRef] [PubMed]
- Merker, J.; Hartmann, M.; Kreuzpointner, F.; Schwirtz, A.; Haas, J.P. Pathophysiology of juvenile idiopathic arthritis induced pes planovalgus in static and walking condition-A functional view using 3d gait analysis. Pediatr. Rheumatol. 2015, 13, 21. [Google Scholar] [CrossRef]
- Okamura, K.; Egawa, K.; Ikeda, T.; Fukuda, K.; Kanai, S. Relationship between foot muscle morphology and severity of pronated foot deformity and foot kinematics during gait: A preliminary study. Gait Posture 2021, 86, 273–277. [Google Scholar] [CrossRef]
- Vanore, J.V.; Christensen, J.C.; Kravitz, S.R.; Schuberth, J.M.; Thomas, J.L.; Weil, L.S.; Zlotoff, H.J.; Couture, S.D. Diagnosis and treatment of first metatarsophalangeal joint disorders. Section 2: Hallux rigidus. J. Foot Ankle Surg. 2003, 42, 124–136. [Google Scholar] [CrossRef]
- Evans, R.D.L.; Averett, R.; Sanders, S. The Association of Hallux Limitus with the Accessory Navicular. J. Am. Podiatr. Med. Assoc. 2002, 92, 359–365. [Google Scholar] [CrossRef]
- Tzioupis, C.; Oliveto, A.; Grabherr, S.; Vallotton, J.; Riederer, B.M. Identification of the retrotalar pulley of the Flexor Hallucis Longus tendon. J. Anat. 2019, 235, 757–764. [Google Scholar] [CrossRef]
- Manfredi-Márquez, M.J.; Tavara-Vidalón, S.P.; Tavaruela-Carrión, N.; Gómez Benítez, M.Á.; Fernandez-Seguín, L.M.; Ramos-Ortega, J. Study of Windlass Mechanism in the Lower Limb Using Inertial Sensors. Int. J. Environ. Res. Public Health 2023, 20, 3220. [Google Scholar] [CrossRef]
- Grady, J.F.; Axe, T.M.; Zager, E.J.; Sheldon, L.A. A Retrospective Analysis of 772 Patients with Hallux Limitus. J. Am. Podiatr. Med. Assoc. 2002, 92, 102–108. [Google Scholar] [CrossRef]
- Zammit, G.V.; Menz, H.B.; Munteanu, S.E. Structural factors associated with hallux limitus/rigidus: A systematic review of case control studies. J. Orthop. Sports Phys. Ther. 2009, 39, 733–742. [Google Scholar] [CrossRef]
- Clough, J.G. Functional hallux limitus and lesser-metatarsal overload. J. Am. Podiatr. Med. Assoc. 2005, 95, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Meyr, A.J.; Berkelbach, C.; Dreikorn, C.; Arena, T. Descriptive Quantitative Analysis of First Metatarsal Sagittal Plane Motion. J. Foot Ankle Surg. 2020, 59, 1244–1247. [Google Scholar] [CrossRef] [PubMed]
- Padrón, L.; Bayod, J.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.; López-López, D.; Casado-Hernández, I. Influence of the center of pressure on baropodometric gait pattern variations in the adult population with flatfoot: A case-control study. Front. Bioeng. Biotechnol. 2023, 11, 1147616. [Google Scholar] [CrossRef] [PubMed]
- Dananberg, H.J. Functional hallux limitus and its relationship to gait efficiency. J. Am. Podiatr. Med. Assoc. 1986, 76, 648–652. [Google Scholar] [CrossRef]
- Teyhen, D.S.; Stoltenberg, B.E.; Collinsworth, K.M.; Giesel, C.L.; Williams, D.G.; Kardouni, C.H.; Molloy, J.M.; Goffar, S.L.; Christie, D.S.; McPoil, T. Dynamic plantar pressure parameters associated with static arch height index during gait. Clin. Biomech. 2009, 24, 391–396. [Google Scholar] [CrossRef]
- Miana, A.; Paola, M.; Duarte, M.; Nery, C.; Freitas, M. Gait and Balance Biomechanical Characteristics of Patients with Grades III and IV Hallux Rigidus. J. Foot Ankle Surg. 2022, 61, 452–455. [Google Scholar] [CrossRef]
- Mulier, T.; Steenwerckx, A.; Thienpont, E.; Sioen, W.; Hoore, K.D.; Peeraer, L.; Dereymaeker, G. Results after cheilectomy in athletes with hallux rigidus. Foot Ankle Int. 1999, 20, 232–237. [Google Scholar] [CrossRef]
- DeFrino, P.F.; Brodsky, J.W.; Pollo, F.E.; Crenshaw, S.J.; Beischer, A.D. First metatarsophalangeal arthrodesis: A clinical, pedobarographic and gait analysis study. Foot Ankle Int. 2002, 23, 496–502. [Google Scholar] [CrossRef]
- Bryant, A.; Tinley, P.; Singer, K. A comparison of radiographic measurements in normal, hallux valgus, and hallux limitus feet. J. Foot Ankle Surg. 2000, 39, 39–43. [Google Scholar] [CrossRef]
- Zammit, G.V.; Menz, H.B.; Munteanu, S.E.; Landorf, K.B. Plantar pressure distribution in older people with osteoarthritis of the first metatarsophalangeal joint (Hallux limitus/rigidus). J. Orthop. Res. 2008, 26, 1665–1669. [Google Scholar] [CrossRef]
- Van Gheluwe, B.; Dananberg, H.J.; Hagman, F.; Vanstaen, K. Effects of hallux limitus on plantar foot pressure and foot kinematics during walking. J. Am. Podiatr. Med. Assoc. 2006, 96, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; de Bot, R.T.A.L.; Hermus, J.P.S.; Schotanus, M.G.M.; Meijer, K.; Witlox, A.M. Gait analysis of foot compensation in symptomatic Hallux Rigidus patients. Foot Ankle Surg. Off. J. Eur. Soc. Foot Ankle Surg. 2022, 28, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.; Sternad, D. Complexity of human postural control in young and older adults during prolonged standing. Exp. Brain Res. 2008, 191, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Lugade, V.; Kaufman, K. Center of pressure trajectory during gait: A comparison of four foot positions. Gait Posture 2014, 40, 719–722. [Google Scholar] [CrossRef]
- Bryant, A.R.; Tinley, P.; Cole, J.H. Plantar pressure and joint motion after the Youngswick procedure for hallux limitus. J. Am. Podiatr. Med. Assoc. 2004, 94, 22–30. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef]
- Parsa-Parsi, R.W.; Ellis, R.; Wiesing, U. Fifty years at the forefront of ethical guidance: The world medical association declaration of Helsinki. South. Med. J. 2014, 107, 405–406. [Google Scholar] [CrossRef]
- Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Rodriguez-Sanz, D. Static and Dynamic Plantar Pressures in Children with and without Sever Disease: A Case-Control Study. Phys. Ther. 2014, 94, 818–826. [Google Scholar] [CrossRef]
- Menz, H.B.; Auhl, M.; Tan, J.M.; Buldt, A.K.; Munteanu, S.E. Centre of pressure characteristics during walking in individuals with and without first metatarsophalangeal joint osteoarthritis. Gait Posture 2018, 63, 91–96. [Google Scholar] [CrossRef]
- Painceira-Villar, R.; García-Paz, V.; de Bengoa-Vallejo, R.B.; Losa-Iglesias, M.E.; López-López, D.; Martiniano, J.; Pereiro-Buceta, H.; Martínez-Jiménez, E.M.; Calvo-Lobo, C. Impact of Asthma on Plantar Pressures in a Sample of Adult Patients: A Case-Control Study. J. Pers. Med. 2021, 11, 1157. [Google Scholar] [CrossRef]
- de Bengoa Vallejo, R.B.; Iglesias, M.E.L.; Zeni, J.; Thomas, S. Reliability and repeatability of the portable EPS-platform digital pressure-plate system. J. Am. Podiatr. Med. Assoc. 2013, 103, 197–203. [Google Scholar] [CrossRef]
- Canseco, K.; Long, J.; Marks, R.; Khazzam, M.; Harris, G. Quantitative characterization of gait kinematics in patients with hallux rigidus using the Milwaukee foot model. J. Orthop. Res. 2008, 26, 419–427. [Google Scholar] [CrossRef]
- Allan, J.J.; McClelland, J.A.; Munteanu, S.E.; Buldt, A.K.; Landorf, K.B.; Roddy, E.; Auhl, M.; Menz, H.B. First metatarsophalangeal joint range of motion is associated with lower limb kinematics in individuals with first metatarsophalangeal joint osteoarthritis. J. Foot Ankle Res. 2020, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Castro-Méndez, A.; Canca-Sánchez, F.J.; Pabón-Carrasco, M.; Jiménez-Cebrián, A.M.; Córdoba-Fernández, A. Evaluation of Gait Parameters on Subjects with Hallux Limitus Using an Optogait Sensor System: A Case–Control Study. Medicina 2023, 59, 1519. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Auhl, M.; Tan, J.M.; Levinger, P.; Roddy, E.; Munteanu, S.E. Biomechanical Effects of Prefabricated Foot Orthoses and Rocker-Sole Footwear in Individuals with First Metatarsophalangeal Joint Osteoarthritis. Arthritis Care Res. 2016, 68, 603–611. [Google Scholar] [CrossRef]
- Tarante, J.; Taranto, M.J.; Bryant, A.R.; Singer, K.P. Analysis of Dynamic Angle of Gait and Radiographic Features in Subjects with Hallux Abducto Valgus and Hallux Limitus. J. Am. Podiatr. Med. Assoc. 2007, 97, 175–188. [Google Scholar] [CrossRef]
- Morasiewicz, P.; Konieczny, G.; Dejnek, M.; Urbański, W.; Dragan, S.Ł.; Kulej, M.; Dragan, S.F.; Pawik, Ł. Assessment of the distribution of load on the lower limbs and balance before and after ankle arthrodesis with the Ilizarov method. Sci. Rep. 2018, 8, 15693. [Google Scholar] [CrossRef]
Characteristics | Total Sample (n = 80) Mean ± SD (Range) | Case Group (n = 40) Mean ± SD (Range) | Control Group (n = 40) Mean ± SD (Range) | p-Value |
---|---|---|---|---|
Age (years) | 25.22 ± 4.45 (21–39) | 25.45 ± 4.34 (21–36) | 25.00 ± 4.60 (21–39) | 0.214 † |
Weight (kg) | 71.58 ± 13.69 (53–98) | 76.75 ± 14.80 (56–98) | 66.40 ± 10.30 (53–89) | <0.002 † |
Height (cm) | 165.15 ± 0.08 (150–185) | 163.15 ± 0.08 (152–185) | 166.15 ± 0.08 (150–185) | 0.231 † |
BMI (kg/m2) | 26.30 ± 5.26 (19.00–39.26) | 28.58 ± 6.00 (21.08–39.26) | 24.02 ± 3.06 (19.00–32.44) | <0.001 † |
Sex, male/female (%) | 11/69 (13.8/86.3) | 7/33 (17.5/82.5) | 4/36 (10/90) | 0.518 ‡ |
Foot size | 39.00 ± 2.26 (36–46) | 38.83 ± 1.98 (36–44) | 39.18 ± 2.53 (36–46) | 0.600 † |
Characteristic | Total Sample (n = 80) Mean ± SD (Range) | Case Group (n = 40) Mean ± SD (Range) | Control Group (n = 40) Mean ± SD (Range) | p-Value |
---|---|---|---|---|
Left foot FFCP (ms) | 241.23 ± 57.22 (148–414) | 243.78 ± 45.28 (178–335) | 238.67 ± 67.59 (148–414) | 0.349 † |
Left foot FFCP (%) | 33.21 ± 7.34 (20–54) | 33.65 ± 6.77 (21–54) | 32.78 ± 7.39 (20–48) | 0.415 † |
Left foot min frame FFCP | 51.78 ± 8.71 (32–73) | 51.95 ± 9.33 (32–73) | 51.60 ± 8.15 (34–70) | 0.555 † |
Left foot max frame FFCP | 76.24 ± 7.46 (58–91) | 76.65 ± 7.38 (68–91) | 75.82 ± 7.61 (58–89) | 0.958 † |
Left foot FFP (ms) | 419.66 ± 90.39 (275–632) | 433.03 ± 104.03 (275–632) | 406.30 ± 73.23 (275–593) | 0.196 † |
Left foot FFP (%) | 55.25 ± 8.75 (38–70) | 56.33 ± 9.36 (41–70) | 54.17 ± 8.06 (38–69) | 0.359 † |
Left foot min frame FFP | 9.13 ± 3.72 (1–17) | 7.95 ± 4.06 (1–13) | 10.30 ± 2.96 (3–17) | 0.006 † |
Left foot max frame FFP | 51.75 ± 8.72 (32–73) | 51.90 ± 9.36 (32–73) | 51.60 ± 8.15 (34–70) | 0.514 † |
Left foot ICP (ms) | 89.35 ± 36.80 (9–167) | 77.83 ± 40.17 (9–128) | 100.87 ± 29.27 (29–167) | 0.010 † |
Left foot ICP (%) | 11.54 ± 4.96 (1–21) | 10.02 ± 5.68 (1–18) | 13.05 ± 3.60 (4–21) | 0.013 † |
Left foot min frame ICP | 0 ± 0.00 (0–0) | 0 ± 0.00 (0–0) | 0 ± 0.00 (0–0) | 1.000 † |
Left foot max frame ICP | 9.33 ± 3.92 (1–17) | 8.15 ± 4.25 (1–16) | 10.50 ± 3.20 (3–17) | 0.009 † |
Right foot FFCP (ms) | 261.50 ± 139.24 (148–748) | 278.65 ± 173.85 (148–748) | 244.35 ± 91.91 (158–455) | 0.900 † |
Right foot FFCP (%) | 35.81 ± 17.56 (20–99) | 37.63 ± 22.32 (21–99) | 34.00 ± 10.93 (20–58) | 0.896 † |
Right foot min frame FFCP | 49.76 ± 14.96 (1–71) | 48.95 ± 18.40 (1–71) | 50.58 ± 10.66 (30–68) | 0.664 † |
Right foot max frame FFCP | 76.31 ± 8.41 (54–91) | 77.23 ± 7.30 (68–89) | 75.40 ± 9.40 (54–91) | 0.527 † |
Right foot FFP (ms) | 404.57 ± 129.36 (0–602) | 391.38 ± 157.12 (0–602) | 417.77 ± 94.09 (254–561) | 0.881 † |
Right foot FFP (%) | 53.40 ± 15.50 (0–70) | 50.88 ± 19.01 (0–68) | 55.93 ± 10.57 (34–70) | 0.434 † |
Right foot min frame FFP | 8.63 ± 3.48 (1–18) | 9.15 ± 3.32 (1–18) | 8.10 ± 3.61 (1–14) | 0.090 † |
Right foot max frame FFP | 49.76 ± 14.96 (1–71) | 48.95 ± 18.40 (1–71) | 50.58 ± 10.66 (30–68) | 0.664 † |
Right foot ICP (ms) | 84.41 ± 34.42 (9.00–176) | 89.58 ± 32.76 (9.00–176) | 79.25 ± 35.67 (9.00–138) | 0.078 † |
Right foot ICP (%) | 10.79 ± 4.59 (1–22) | 11.50 ± 4.57 (1–22) | 10.08 ± 4.54 (1–17) | 0.282 † |
Right foot min frame ICP | 0 ± 0.00 (0–0) | 0 ± 0.00 (0–0) | 0 ± 0.00 (0–0) | 1.000 † |
Right foot max frame ICP | 8.63 ± 3.48 (1–18) | 9.15 ± 3.32 (1–18) | 8.10 ± 3.61 (1–14) | 0.090 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tovaruela-Carrión, N.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; López-López, D.; Gómez-Salgado, J.; Bayod-López, J. Exploring the Association of Hallux Limitus with Baropodometric Gait Pattern Changes. Bioengineering 2025, 12, 316. https://doi.org/10.3390/bioengineering12030316
Tovaruela-Carrión N, Becerro-de-Bengoa-Vallejo R, Losa-Iglesias ME, López-López D, Gómez-Salgado J, Bayod-López J. Exploring the Association of Hallux Limitus with Baropodometric Gait Pattern Changes. Bioengineering. 2025; 12(3):316. https://doi.org/10.3390/bioengineering12030316
Chicago/Turabian StyleTovaruela-Carrión, Natalia, Ricardo Becerro-de-Bengoa-Vallejo, Marta Elena Losa-Iglesias, Daniel López-López, Juan Gómez-Salgado, and Javier Bayod-López. 2025. "Exploring the Association of Hallux Limitus with Baropodometric Gait Pattern Changes" Bioengineering 12, no. 3: 316. https://doi.org/10.3390/bioengineering12030316
APA StyleTovaruela-Carrión, N., Becerro-de-Bengoa-Vallejo, R., Losa-Iglesias, M. E., López-López, D., Gómez-Salgado, J., & Bayod-López, J. (2025). Exploring the Association of Hallux Limitus with Baropodometric Gait Pattern Changes. Bioengineering, 12(3), 316. https://doi.org/10.3390/bioengineering12030316