Applications of Machine Learning-Driven Molecular Models for Advancing Ophthalmic Precision Medicine
Abstract
:1. Introduction
2. Molecular Movements Driving Health and Disease
3. Leveraging AI to Map and Correct MF Disruptions
4. Integrated AI-Enhanced Approach to MF Management: From Predictive Analytics to Personalized Clinical Applications
5. Discussion
5.1. Data and Computational Constraints
5.2. Model Interpretability and Clinical Translation
5.3. Ethical and Regulatory Considerations
6. Conclusions
7. Future Directions and Integrative Approaches
Author Contributions
Funding
Conflicts of Interest
References
- Britton, H. Relationship between the Number of Interacting Particles and Flux Ratio. Nature 1966, 209, 296. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, H.; Li, Y. Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct. Target Ther. 2023, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Hupé, P. Role of Transcription Factor in Gene Expression Regulation. Wikimedia Commons, 7 July 2012. Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported License. Available online: https://commons.wikimedia.org/wiki/File:Role_of_transcription_factor_in_gene_expression_regulation.svg (accessed on 3 January 2025).
- Nath, S.; Korot, E.; Fu, D.J.; Zhang, G.; Mishra, K.; Lee, A.Y.; Keane, P.A. Reinforcement Learning in Ophthalmology: Potential Applications and Challenges to Implementation. Lancet Digit. Health 2022, 4, e692–e697. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph Neural Networks: A Review of Methods and Applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Nusbaum, D.M.; Wu, S.M.; Frankfort, B.J. Elevated intracranial pressure causes optic nerve and retinal ganglion cell degeneration in mice. Exp. Eye Res. 2015, 136, 38–44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van de Meent, J.W.; Bronson, J.E.; Wiggins, C.H.; Gonzalez, R.L., Jr. Empirical Bayes Methods Enable Advanced Population-Level Analyses of Single-Molecule FRET Experiments. Biophys. J. 2014, 106, 1327–1337. [Google Scholar] [CrossRef]
- Yoon, J.; Drumright, L.N.; van der Schaar, M. Anonymization Through Data Synthesis Using Generative Adversarial Networks (ADS-GAN). IEEE J. Biomed. Health Inform. 2020, 24, 2378–2388. [Google Scholar] [CrossRef] [PubMed]
- Flammer, J.; Orgül, S.; Costa, V.P.; Orzalesi, N.; Krieglstein, G.K.; Serra, L.M.; Renard, J.P.; Stefánsson, E. The impact of ocular blood flow in glaucoma. Prog. Retin Eye Res. 2002, 21, 359–393. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog. Retin Eye Res. 2006, 25, 490–513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.J.; Flanagan, E.P.; Jitprapaikulsan, J.; López-Chiriboga, A.S.S.; Fryer, J.P.; Leavitt, J.A.; Weinshenker, B.G.; McKeon, A.; Tillema, J.M.; Lennon, V.A.; et al. Myelin Oligodendrocyte Glycoprotein Antibody-Positive Optic Neuritis: Clinical Characteristics, Radiologic Clues, and Outcome. Am. J. Ophthalmol. 2018, 195, 8–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guier, C.P.; Stokkermans, T.J. Optic Neuritis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557853/ (accessed on 3 January 2025).
- Qureshi, R.; Irfan, M.; Gondal, T.M.; Khan, S.; Wu, J.; Hadi, M.U.; Heymach, J.; Le, X.; Yan, H.; Alam, T. AI in drug discovery and its clinical relevance. Heliyon 2023, 9, e17575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Visan, A.I.; Negut, I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life 2024, 14, 233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choudhury, R. Hypoxia and hyperbaric oxygen therapy: A review. Int. J. Gen. Med. 2018, 11, 431–442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, K.; Xiao, C.; Glass, L.M.; Zitnik, M.; Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Sci. Rep. 2020, 10, 21092. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, L.; Wang, J.; Wang, C. A Hierarchical Graph Neural Network Framework for Predicting Protein-Protein Interaction Modulators with Functional Group Information and Hypergraph Structure. IEEE J. Biomed. Health Inform. 2024, 28, 4295–4305. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G. TNF-alpha signaling in glaucomatous neurodegeneration. Prog. Brain Res. 2008, 173, 409–421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Wang, S.Q.; Li, H.X. Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge. BMC Syst. Biol. 2012, 6 (Suppl. S1), S3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Del Negro, I.; Pauletto, G.; Verriello, L.; Spadea, L.; Salati, C.; Ius, T.; Zeppieri, M. Uncovering the Genetics and Physiology behind Optic Neuritis. Genes 2023, 14, 2192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Engin, K.N.; Harmancı Karagülle, D.; Durmaz Engin, C.; Kant, M.; Yaman, A.; Akış, M.; Özel Yıldız, S.; İşlekel, H.; Güner Akdoğan, G.; Söylev Bajin, M. Is the clinical course of non-arteritic ischemic optic neuropathy associated with oxidative damage and the dynamics of the antioxidant response? Int. Ophthalmol. 2023, 43, 2935–2945. [Google Scholar] [CrossRef] [PubMed]
- Paladugu, P.S.; Ong, J.; Nelson, N.; Kamran, S.A.; Waisberg, E.; Zaman, N.; Kumar, R.; Dias, R.D.; Lee, A.G.; Tavakkoli, A. Generative Adversarial Networks in Medicine: Important Considerations for this Emerging Innovation in Artificial Intelligence. Ann. Biomed. Eng. 2023, 51, 2130–2142. [Google Scholar] [CrossRef] [PubMed]
- Pun, F.W.; Liu, B.H.M.; Long, X.; Leung, H.W.; Leung, G.H.D.; Mewborne, Q.T.; Gao, J.; Shneyderman, A.; Ozerov, I.V.; Wang, J.; et al. Identification of Therapeutic Targets for Amyotrophic Lateral Sclerosis Using PandaOmics—An AI-Enabled Biological Target Discovery Platform. Front. Aging Neurosci. 2022, 14, 914017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kvistad, C.E.; Kråkenes, T.; Gavasso, S.; Bø, L. Neural regeneration in the human central nervous system-from understanding the underlying mechanisms to developing treatments. Where do we stand today? Front. Neurol. 2024, 15, 1398089. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β signaling in health, disease and therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, X.; Steven, K.; Qassim, A.; Marshall, H.N.; Bean, C.; Tremeer, M.; An, J.; Siggs, O.M.; Gharahkhani, P.; Craig, J.E.; et al. Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. Am. J. Hum. Genet. 2021, 108, 1204–1216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, S.; Modgil, S.; Bhatt, P.C.; Chiappetta Jabbour, C.J.; Kamble, S. Quantum computing led innovation for achieving a more sustainable COVID-19 healthcare industry. Technovation 2023, 120, 102544. [Google Scholar] [CrossRef] [PubMed Central]
- Abgrall, G.; Holder, A.L.; Chelly Dagdia, Z.; Zeitouni, K.; Monnet, X. Should AI models be explainable to clinicians? Crit. Care 2024, 28, 301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, M.M.; Huang, K.; Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng. 2022, 6, 1353–1369. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thakkar, S.; Slikker, W.; Yiannas, F.; Silva, P.; Blais, B.; Chng, K.R.; Liu, Z.; Adholeya, A.; Pappalardo, F.; Soares, M.d.L.C.; et al. Artificial intelligence and real-world data for drug and food safety—A regulatory science perspective. Regul. Toxicol. Pharmacol. 2023, 140, 105388. [Google Scholar] [CrossRef]
- Chen, J.E.; Glover, G.H. Functional Magnetic Resonance Imaging Methods. Neuropsychol. Rev. 2015, 25, 289–313, Erratum in: Neuropsychol. Rev. 2015, 25, 314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2018, 380, 1347–1358. [Google Scholar] [CrossRef]
- Kenney, R.C.; Requarth, T.W.; Jack, A.I.; Hyman, S.W.; Galetta, S.L.; Grossman, S.N. AI in Neuro-Ophthalmology: Current Practice and Future Opportunities. J. Neuroophthalmol. 2024, 44, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guindani, M.; Vannucci, M. Bayesian Models for fMRI Data Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2015, 7, 21–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horton, L.; Bennett, J.L. Acute Management of Optic Neuritis: An Evolving Paradigm. J. Neuroophthalmol. 2018, 38, 358–367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.; Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Sommer, T.; et al. Graph Neural Networks for Materials Science and Chemistry. Commun. Mater. 2022, 3, 93. [Google Scholar] [CrossRef]
- Jayaraman, P.; Desman, J.; Sabounchi, M.; Nadkarni, G.N.; Sakhuja, A. A Primer on Reinforcement Learning in Medicine for Clinicians. npj Digit. Med. 2024, 7, 337. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Wu, X.; Jiang, J.; Qiang, W.; Xie, H.; Zhou, H.; Wu, S.; Shao, Y.; Chen, W. Artificial Intelligence in Ophthalmology: The Path to the Real-World Clinic. Cell Rep. Med. 2023, 4, 101095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chandler, M.; Jain, S.; Halman, J.; Hong, E.; Dobrovolskaia, M.A.; Zakharov, A.V.; Afonin, K.A. Artificial Immune Cell, AI-Cell, a New Tool to Predict Interferon Production by Peripheral Blood Monocytes in Response to Nucleic Acid Nanoparticles. Small 2022, 18, e2204941. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colvee-Martin, H.; Parra, J.R.; Gonzalez, G.A.; Barker, W.; Duara, R. Neuropathology, Neuroimaging, and Fluid Biomarkers in Alzheimer’s Disease. Diagnostics 2024, 14, 704. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lipkova, J.; Chen, R.J.; Chen, B.; Lu, M.Y.; Barbieri, M.; Shao, D.; Vaidya, A.J.; Chen, C.; Zhuang, L.; Williamson, D.F.K.; et al. Artificial Intelligence for Multimodal Data Integration in Oncology. Cancer Cell 2022, 40, 1095–1110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeyakumar, N.; Lerch, M.; Dale, R.C.; Ramanathan, S. MOG Antibody-Associated Optic Neuritis. Eye 2024, 38, 2289–2301. [Google Scholar] [CrossRef]
- Jiang, D.; Wu, Z.; Hsieh, C.-Y.; Chen, G.; Liao, B.; Wang, Z.; Shen, C.; Cao, D.; Wu, J.; Hou, T. Could Graph Neural Networks Learn Better Molecular Representation for Drug Discovery? A Comparison Study of Descriptor-Based and Graph-Based Models. J. Cheminform. 2021, 13, 12. [Google Scholar] [CrossRef]
- Manley, A.; Meshkat, B.I.; Jablonski, M.M.; Hollingsworth, T.J. Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023, 13, 271. [Google Scholar] [CrossRef]
- Corbali, O.; Chitnis, T. Pathophysiology of Myelin Oligodendrocyte Glycoprotein Antibody Disease. Front. Neurol. 2023, 14, 1137998. [Google Scholar] [CrossRef]
- You, W.; Knoops, K.; Boesten, I.; Berendschot, T.T.J.M.; van Zandvoort, M.A.M.J.; Benedikter, B.J.; Webers, C.A.B.; Reutelingsperger, C.P.M.; Gorgels, T.G.M.F. A Time Window for Rescuing Dying Retinal Ganglion Cells. Cell Commun. Signal. 2024, 22, 88. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, H.; Zhai, Q.; Li, H.; Wang, C.; Wang, Y. Traumatic Optic Neuropathy: A Review of Current Studies. Neurosurg. Rev. 2022, 45, 1895–1913. [Google Scholar] [CrossRef]
- Bahr, T.; Welburn, K.; Donnelly, J.; Bai, Y. Emerging Model Systems and Treatment Approaches for Leber’s Hereditary Optic Neuropathy: Challenges and Opportunities. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165743. [Google Scholar] [CrossRef] [PubMed]
- Safi, S.Z.; Qvist, R.; Kumar, S.; Batumalaie, K.; Ismail, I.S. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets. Biomed. Res. Int. 2014, 2014, 801269. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, J.; Koleske, J.P.; Chao, A.; Sauerbeck, A.D.; Chen, J.-K.; Qi, X.; Ouyang, M.; Boggs, L.G.; Idate, R.; Marco Y Marquez, L.I.; et al. Brain Injury Drives Optic Glioma Formation Through Neuron-Glia Signaling. Acta Neuropathol. Commun. 2024, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Cremers, F.P.M.; Boon, C.J.F.; Bujakowska, K.; Zeitz, C. Special Issue Introduction: Inherited Retinal Disease: Novel Candidate Genes, Genotype-Phenotype Correlations, and Inheritance Models. Genes 2018, 9, 215. [Google Scholar] [CrossRef]
- Petzold, A.; Plant, G.T. Diagnosis and Classification of Autoimmune Optic Neuropathy. Autoimmun. Rev. 2014, 13, 539–545. [Google Scholar] [CrossRef]
- Burch, R.; Rizzoli, P.; Loder, E. The Prevalence and Impact of Migraine and Severe Headache in the United States: Figures and Trends From Government Health Studies. Headache 2018, 58, 496–505. [Google Scholar] [CrossRef]
ML Model | Primary Function | Clinical Utility | Specific Applications |
---|---|---|---|
RL | Simulates TF navigation paths in hypoxic environments, identifying key metabolic chokepoints. | Assists in prioritizing interventions like hyperbaric oxygen therapy and gene therapy to enhance ATP balance in hypoxic regions. | Useful in ischemic optic neuropathy to determine when ATP restoration therapies can stabilize TF-DNA binding. |
GNNs | Maps molecular interactions within inflamed optic nerve environments, highlighting areas of disrupted MF. | Identifies cytokine-induced molecular vulnerabilities, enabling targeted anti-inflammatory treatment selection in optic neuritis. | Applies to MOG optic neuritis in order to prioritize treatments that counteract TNF-alpha-mediated disruptions to myelin-protective genes. |
Bayesian Inference | Provides probabilistic predictions on TF binding disruptions and enzyme inactivation under varying clinical conditions. | Forecasts molecular disruptions to guide early intervention with targeted therapies, optimizing treatment precision. | Provides real-time adaptive treatment strategies for inflammatory surges in neuro-ophthalmic diseases. |
GANs | Generates synthetic datasets to model MF disruptions, providing insights into early intervention points. | Reveals optimal therapeutic thresholds, aiding in preemptive intervention to stabilize molecular pathways in optic neuropathies. | Simulates effects of ROS levels on TF efficiency, aiding in antioxidant treatment planning for ischemic conditions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Ong, J.; Waisberg, E.; Lee, R.; Nguyen, T.; Paladugu, P.; Rivolta, M.C.; Gowda, C.; Janin, J.V.; Saintyl, J.; et al. Applications of Machine Learning-Driven Molecular Models for Advancing Ophthalmic Precision Medicine. Bioengineering 2025, 12, 156. https://doi.org/10.3390/bioengineering12020156
Kumar R, Ong J, Waisberg E, Lee R, Nguyen T, Paladugu P, Rivolta MC, Gowda C, Janin JV, Saintyl J, et al. Applications of Machine Learning-Driven Molecular Models for Advancing Ophthalmic Precision Medicine. Bioengineering. 2025; 12(2):156. https://doi.org/10.3390/bioengineering12020156
Chicago/Turabian StyleKumar, Rahul, Joshua Ong, Ethan Waisberg, Ryung Lee, Tuan Nguyen, Phani Paladugu, Maria Chiara Rivolta, Chirag Gowda, John Vincent Janin, Jeremy Saintyl, and et al. 2025. "Applications of Machine Learning-Driven Molecular Models for Advancing Ophthalmic Precision Medicine" Bioengineering 12, no. 2: 156. https://doi.org/10.3390/bioengineering12020156
APA StyleKumar, R., Ong, J., Waisberg, E., Lee, R., Nguyen, T., Paladugu, P., Rivolta, M. C., Gowda, C., Janin, J. V., Saintyl, J., Amiri, D., Gosain, A., & Jagadeesan, R. (2025). Applications of Machine Learning-Driven Molecular Models for Advancing Ophthalmic Precision Medicine. Bioengineering, 12(2), 156. https://doi.org/10.3390/bioengineering12020156