Deep Learning-Enhanced Portable Chemiluminescence Biosensor: 3D-Printed, Smartphone-Integrated Platform for Glucose Detection
Abstract
1. Introduction
2. Materials and Method
2.1. Chemical Materials Used
2.2. CL Sensor Functionalization and Imaging Mechanism
2.3. Fabrication of Paper-Based CL Sensor
3. Results and Discussion
3.1. Optimization for CL Biosensor
3.2. Analytical Performance of Paper-Based CL Biosensors
3.3. Repeatability, Stability, and Interference Study with CL Biosensor
4. Deep Learning for CL Sensor Validation
4.1. Dataset Statistics
4.2. Various Deep Learning Model’s Implementation
4.3. Comparison of Various Standardized Deep Learning Models Used
5. Analysis and Validation of an Unknown Glucose Sample Using Support Vector Machines
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef] [PubMed]
- Polat, E.O.; Cetin, M.M.; Tabak, A.F.; Bilget Güven, E.; Uysal, B.Ö.; Arsan, T.; Kabbani, A.; Hamed, H.; Gül, S.B. Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors 2022, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Huang, Y.; Wang, T.; Ma, J. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 2013, 3, 3487. [Google Scholar] [CrossRef]
- Dhara, K.; Mahapatra, D.R. Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim. Acta 2018, 185, 49. [Google Scholar] [CrossRef]
- Singh, K.; Agarwal, T.; Kumar, U.; Pal, S.; Runthala, A.; Pan, T.M.; Wu, C.C. Optical biosensors for diabetes management: Advancing into stimuli-responsive sensing mechanisms. Smart Mater. Med. 2023, 4, 91–101. [Google Scholar] [CrossRef]
- Rachim, V.P.; Chung, W.-Y. Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring. Sens. Actuators B Chem. 2019, 286, 173–180. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, P.; Gupta, A.; Sapra, G. Piezoelectric Biosensors in Healthcare. In Enzyme-Based Biosensors: Recent Advances and Applications in Healthcare; Springer Nature: Singapore, 2023; pp. 255–271. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, X.; Wang, Y.; Duan, X.; Qu, H.; Zhang, H.; Zhang, D.; Pang, W. Microchip based electrochemical-piezoelectric integrated multi-mode sensing system for continuous glucose monitoring. Sens. Actuators B Chem. 2016, 223, 83–88. [Google Scholar] [CrossRef]
- Zalke, J.B.; Pandey, S.R.; Narkhede, N.P. An Ultrasonic Time-of-Flight Sensing System Based on Custom Hardware of Time to Digital Converter (TDC) for Measurement of Glucose Concentration. IEEE Sens. J. 2024, 24, 11136–11143. [Google Scholar] [CrossRef]
- Sim, J.Y.; Ahn, C.-G.; Jeong, E.-J.; Kim, B.K. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products. Sci. Rep. 2018, 8, 1059. [Google Scholar] [CrossRef]
- Mohankumar, P.; Ajayan, J.; Mohanraj, T.; Yasodharan, R. Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement 2021, 167, 108293. [Google Scholar] [CrossRef]
- Huang, C.-W.; Lin, C.; Nguyen, M.K.; Hussain, A.; Bui, X.-T.; Ngo, H.H. A review of biosensor for environmental monitoring: Principle, application, and corresponding achievement of sustainable development goals. Bioengineered 2023, 14, 58–80. [Google Scholar] [CrossRef] [PubMed]
- Lozano, M.G.; García, Y.P.; Gonzalez, J.A.S.; Bañuelos, C.V.O.; Escareño, M.P.L.; Balagurusamy, N. Biosensors for Food Quality and Safety Monitoring: Fundamentals and Applications. In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 691–709. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 2019, 37, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Jović, M.; Prim, D.; Saini, E.; Pfeifer, M.E. Towards a Point-of-Care (POC) Diagnostic Platform for the Multiplex Electrochemiluminescent (ECL) Sensing of Mild Traumatic Brain Injury (mTBI) Biomarkers. Biosensors 2022, 12, 172. [Google Scholar] [CrossRef] [PubMed]
- Pradela-Filho, L.A.; Veloso, W.B.; Arantes, I.V.; Gongoni, J.L.; de Farias, D.M.; Araujo, D.A.; Paixão, T.R. Paper-based analytical devices for point-of-need applications. Microchim. Acta 2023, 190, 179. [Google Scholar] [CrossRef]
- Xia, S.; Pan, J.; Dai, D.; Dai, Z.; Yang, M.; Yi, C. Design of portable electrochemiluminescence sensing systems for point-of-care-testing applications. Chin. Chem. Lett. 2023, 34, 107799. [Google Scholar] [CrossRef]
- Ying, X.; Zhou, L.; Fu, W.; Wang, Y.; Su, B. Electrochemiluminescence devices for point-of-care testing. Sens. Diagn. 2023, 2, 480–491. [Google Scholar] [CrossRef]
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012, 12, 2118. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef]
- Bhatia, D.; Paul, S.; Acharjee, T.; Ramachairy, S.S. Biosensors and their widespread impact on human health. Sens. Int. 2024, 5, 100257. [Google Scholar] [CrossRef]
- Heidt, B.; Siqueira, W.F.; Eersels, K.; Diliën, H.; van Grinsven, B.; Fujiwara, R.T.; Cleij, T.J. Point of Care Diagnostics in Resource-Limited Settings: A Review of the Present and Future of PoC in Its Most Needed Environment. Biosensors 2020, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Senf, B.; Yeo, W.-H.; Kim, J.-H. Recent Advances in Portable Biosensors for Biomarker Detection in Body Fluids. Biosensors 2020, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Tung, S. Development and Applications of Portable Biosensors. SLAS Technol. 2015, 20, 365–389. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, J. Recent Advances in Electrochemiluminescence Emitters for Biosensing and Imaging of Protein Biomarkers. Chemosensors 2023, 11, 432. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, C. Electrogenerated Chemiluminescence Biosensing. Anal. Chem. 2020, 92, 524–534. [Google Scholar] [CrossRef]
- Yan, Y.; Shi, P.; Song, W.; Bi, S. Chemiluminescence and Bioluminescence Imaging for Biosensing and Therapy: In Vitro and In Vivo Perspectives. Theranostics 2019, 9, 4047–4065. [Google Scholar] [CrossRef]
- Tzani, M.A.; Gioftsidou, D.K.; Kallitsakis, M.G.; Pliatsios, N.V.; Kalogiouri, N.P.; Angaridis, P.A.; Lykakis, I.N.; Terzidis, M.A. Direct and Indirect Chemiluminescence: Reactions, Mechanisms and Challenges. Molecules 2021, 26, 7664. [Google Scholar] [CrossRef]
- Das, A.; Paul, P.; Raj, M.; Sarkar, A.; De, A.; Banerjee, T.; Bhowmik, R.; Shaharyar, M.A.; Anand, K.; Biswas, E.; et al. Chemiluminescence-based biosensor: From principle to its applications. In Fundamentals of Biosensors in Healthcare; Elsevier: Amsterdam, The Netherlands, 2025; pp. 315–336. [Google Scholar] [CrossRef]
- Luo, M.; Chen, X.; Zhou, G.; Xiang, X.; Chen, L.; Ji, X.; He, Z. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chem. Commun. 2012, 48, 1126–1128. [Google Scholar] [CrossRef]
- Heckenlaible, N.; Snyder, S.; Herchenbach, P.; Kava, A.; Henry, C.S.; Gross, E.M. Comparison of Mobile Phone and CCD Cameras for Electrochemiluminescent Detection of Biogenic Amines. Sensors 2022, 22, 7008. [Google Scholar] [CrossRef]
- Hao, M.; Liu, N.; Ma, Z. A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide. Analyst 2013, 138, 4393. [Google Scholar] [CrossRef]
- Park, J.Y.; Kricka, L.J. Prospects for the commercialization of chemiluminescence-based point-of-care and on-site testing devices. Anal. Bioanal. Chem. 2014, 406, 5631–5637. [Google Scholar] [CrossRef] [PubMed]
- Mirasoli, M.; Guardigli, M.; Michelini, E.; Roda, A. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J. Pharm. Biomed. Anal. 2014, 87, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Noh, H. Chemiluminescent detection of tear glucose on paper microfluidic devices. Macromol. Res. 2015, 23, 493–495. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, X.; Cai, Z.; Tu, M.; Wang, Y.; Ouyang, Q.; Yan, X.; Jing, G.; Yang, G. Transformation gap from research findings to large-scale commercialized products in microfluidic field. Mater. Today Bio 2024, 29, 101373. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.; Wang, D.; Zhang, C. Chemiluminescence cloth-based glucose test sensors (CCGTSs): A new class of chemiluminescence glucose sensors. Biosens. Bioelectron. 2017, 91, 268–275. [Google Scholar] [CrossRef]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Panigrahi, D.; Rewatkar, P.; Haick, H. Role of Machine Learning Assisted Biosensors in Point-of-Care-Testing For Clinical Decisions. ACS Sens. 2024, 9, 4495–4519. [Google Scholar] [CrossRef]
- Zalke, J.B.; Bhaiyya, M.L.; Jain, P.A.; Sakharkar, D.N.; Kalambe, J.; Narkhede, N.P.; Thakre, M.B.; Rotake, D.R.; Kulkarni, M.B.; Singh, S.G. A Machine Learning Assisted Non-Enzymatic Electrochemical Biosensor to Detect Urea Based on Multi-Walled Carbon Nanotube Functionalized with Copper Oxide Micro-Flowers. Biosensors 2024, 14, 504. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Rewatkar, P.; Pimpalkar, A.; Jain, D.; Srivastava, S.K.; Zalke, J.; Kalambe, J.; Balpande, S.; Kale, P.; Kalantri, Y.; et al. Deep Learning-Assisted Smartphone-Based Electrochemiluminescence Visual Monitoring Biosensor: A Fully Integrated Portable Platform. Micromachines 2024, 15, 1059. [Google Scholar] [CrossRef]
- Bhaiyya, M.L.; Srivastava, S.K.; Pattnaik, P.K.; Goel, S. Closed-Bipolar Mini Electrochemiluminescence Sensor to Detect Various Biomarkers: A Machine Learning Approach. IEEE Trans. Instrum. Meas. 2023, 72, 9510308. [Google Scholar] [CrossRef]
- Kumar, A.; Jain, D.; Bahuguna, J.; Bhaiyya, M.; Dubey, S.K.; Javed, A.; Goel, S. Machine learning assisted and smartphone integrated homogeneous electrochemiluminescence biosensor platform for sample to answer detection of various human metabolites. Biosens. Bioelectron. 2023, 238, 115582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, Y.; Sun, M.; Wang, T.; Liu, T.; Dai, X.; Zou, P.; Zhao, Y.; Wang, X.; Wang, Y.; et al. Deep learning-assisted smartphone-based molecularly imprinted electrochemiluminescence detection sensing platform: Protable device and visual monitoring furosemide. Biosens. Bioelectron. 2022, 209, 114262. [Google Scholar] [CrossRef]
- Zhao, P.; Zhu, W.; Zheng, M.; Feng, J. Deep Learning Enhanced Electrochemiluminescence Microscopy. Anal. Chem. 2023, 95, 4803–4809. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, B.; Tavakoli, A.; Bozorgzadeh, S. Improved electrogenerated chemiluminescence of luminol by cobalt nanoparticles decorated multi-walled carbon nanotubes. J. Electroanal. Chem. 2016, 762, 80–86. [Google Scholar] [CrossRef]
- Beigi, S.M.; Mesgari, F.; Hosseini, M.; Aghazadeh, M.; Ganjali, M.R. An enhancement of luminol chemiluminescence by cobalt hydroxide decorated porous graphene and its application in glucose analysis. Anal. Methods 2019, 11, 1346–1352. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Cui, H.; Lai, C.-Z.; Liu, L.-J. Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications. Anal. Chem. 2005, 77, 3324–3329. [Google Scholar] [CrossRef]
- Spohn, U.; Preuschoff, F.; Blankenstein, G.; Janasek, D.; Kula, M.R.; Hacker, A. Chemiluminometric enzyme sensors for flow-injection analysis. Anal. Chim. Acta 1995, 303, 109–120. [Google Scholar] [CrossRef]
- Kazemi, M.S.; Kazemi, K.; Yaghoobi, M.A.; Bazargan, H. A hybrid method for estimating the process change point using support vector machine and fuzzy statistical clustering. Appl. Soft Comput. 2016, 40, 507–516. [Google Scholar] [CrossRef]
- Ali, L.; Niamat, A.; Khan, J.A.; Golilarz, N.A.; Xingzhong, X.; Noor, A.; Nour, R.; Bukhari, S.A. An Optimized Stacked Support Vector Machines Based Expert System for the Effective Prediction of Heart Failure. IEEE Access 2019, 7, 54007–54014. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A. Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.Z.; Rahman, M.S.; Rahman, M.S. A Random Forest based predictor for medical data classification using feature ranking. Inform. Med. Unlocked 2019, 15, 100180. [Google Scholar] [CrossRef]
- Syriopoulos, P.K.; Kalampalikis, N.G.; Kotsiantis, S.B.; Vrahatis, M.N. kNN Classification: A review. Ann. Math. Artif. Intell. 2023. [Google Scholar] [CrossRef]
- Jabbar, M.A.; Deekshatulu, B.L.; Chandra, P. Classification of Heart Disease Using K- Nearest Neighbor and Genetic Algorithm. Procedia Technol. 2013, 10, 85–94. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Li, W.; Guo, Q.; Du, Z.; Xu, Z. Deep learning. In AI Computing Systems; Elsevier: Amsterdam, The Netherlands, 2024; pp. 53–121. [Google Scholar] [CrossRef]
- Linkon, A.H.M.; Labib, M.M.; Hasan, T.; Hossain, M.; Jannat, M.-E. Deep learning in prostate cancer diagnosis and Gleason grading in histopathology images: An extensive study. Inform. Med. Unlocked 2021, 24, 100582. [Google Scholar] [CrossRef]
- Shoeibi, A.; Moridian, P.; Khodatars, M.; Ghassemi, N.; Jafari, M.; Alizadehsani, R.; Kong, Y.; Gorriz, J.M.; Ramírez, J.; Khosravi, A.; et al. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput. Biol. Med. 2022, 149, 106053. [Google Scholar] [CrossRef]
- Sharma, P.; Nayak, D.R.; Balabantaray, B.K.; Tanveer, M.; Nayak, R. A survey on cancer detection via convolutional neural networks: Current challenges and future directions. Neural Netw. 2024, 169, 637–659. [Google Scholar] [CrossRef]
- Jing, Y.; Li, C.; Du, T.; Jiang, T.; Sun, H.; Yang, J.; Shi, L.; Gao, M.; Grzegorzek, M.; Li, X. A comprehensive survey of intestine histopathological image analysis using machine vision approaches. Comput. Biol. Med. 2023, 165, 107388. [Google Scholar] [CrossRef]
- Oğuz, A.; Ertuğrul, Ö.F. Introduction to deep learning and diagnosis in medicine. In Diagnostic Biomedical Signal and Image Processing Applications with Deep Learning Methods; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–40. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, C.; Long, Y.; Cai, H.; Yin, C.; Yang, Q.; Xiao, D. An enhanced chemiluminescence bioplatform by confining glucose oxidase in hollow calcium carbonate particles. Sci. Rep. 2016, 6, 24490. [Google Scholar] [CrossRef]
- Calabria, D.; Pace, A.; Lazzarini, E.; Trozzi, I.; Zangheri, M.; Guardigli, M.; Pieraccini, S.; Masiero, S.; Mirasoli, M. Smartphone-Based Chemiluminescence Glucose Biosensor Employing a Peroxidase-Mimicking, Guanosine-Based Self-Assembled Hydrogel. Biosensors 2023, 13, 650. [Google Scholar] [CrossRef]
- Zangheri, M.; Cevenini, L.; Anfossi, L.; Baggiani, C.; Simoni, P.; Di Nardo, F.; Roda, A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 2015, 64, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hou, Y.; Lv, C.; Liu, W.; Zhang, Z.; Peng, X. Copper-based metal–organic xerogels on paper for chemiluminescence detection of dopamine. Anal. Methods 2020, 12, 4191–4198. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Shi, F.; Zhang, R.; Wang, X.; Sun, X.; Li, Y.; Ren, X.; Ma, H.; Wei, Q. Long-lasting chemiluminescence bioassays for glucose enabled by a MOFs-in-hydrogel hybrid platform. Sens. Diagn. 2022, 1, 1044–1051. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Zhou, D.; Kuang, M.; Fang, D.; Yang, W.; Wei, S.; Ma, L. A novel chemiluminescence sensor for sensitive detection of cholesterol based on the peroxidase-like activity of copper nanoclusters. Sci. Rep. 2016, 6, 39157. [Google Scholar] [CrossRef]
- Ning, Y.; Lu, F.; Liu, Y.; Yang, S.; Wang, F.; Ji, X.; He, Z. Glow-type chemiluminescent hydrogels for point-of-care testing (POCT) of cholesterol. Analyst 2021, 146, 4775–4780. [Google Scholar] [CrossRef]
- Fu, H.J.; Yuan, L.P.; Shen, Y.D.; Liu, Y.X.; Liu, B.; Zhang, S.W.; Xie, Z.X.; Lei, H.T.; Sun, Y.M.; Xu, Z.L. A full-automated magnetic particle-based chemiluminescence immunoassay for rapid detection of cortisol in milk. Anal. Chim. Acta 2018, 1035, 129–135. [Google Scholar] [CrossRef]
Name of Sample Test Data | Dataset Before Augmentation | Dataset After Augmentation | ||||
---|---|---|---|---|---|---|
Train Data | Test Data | Total Dataset | Train Data | Test Data | Total Dataset | |
10 µM | 10 | 40 | 50 | 100 | 400 | 500 |
50 µM | 10 | 40 | 50 | 100 | 400 | 500 |
100 µM | 10 | 40 | 50 | 100 | 400 | 500 |
200 µM | 10 | 40 | 50 | 100 | 400 | 500 |
300 µM | 10 | 40 | 50 | 100 | 400 | 500 |
400 µM | 10 | 40 | 50 | 100 | 400 | 500 |
500 µM | 10 | 40 | 50 | 100 | 400 | 500 |
600 µM | 10 | 40 | 50 | 100 | 400 | 500 |
700 µM | 10 | 40 | 50 | 100 | 400 | 500 |
800 µM | 10 | 40 | 50 | 100 | 400 | 500 |
900 µM | 10 | 40 | 50 | 100 | 400 | 500 |
1000 µM | 10 | 40 | 50 | 100 | 400 | 500 |
Total | 120 | 480 | 600 | 1200 | 4800 | 6000 |
Epoch/Model | KNN | Random Forest | InceptionV3 | VGG16 | RasNet-50 | SVM |
---|---|---|---|---|---|---|
10 | 73 | 59 | 87 | 66 | 98 | 98 |
15 | 71 | 64 | 89 | 77 | 98 | 99 |
20 | 73 | 71 | 93 | 80 | 98 | 99 |
25 | 69 | 70 | 90 | 85 | 98 | 99 |
30 | 71 | 75 | 93 | 87 | 98 | 99 |
35 | 73 | 72 | 93 | 88 | 98 | 99 |
40 | 72 | 71 | 92 | 93 | 98 | 99 |
Peak Accuracy | 73 | 75 | 93 | 93 | 98 | 99 |
Analyte Tested | Known Concentration (µM) | Lab Testing Result (µM) | Testing with WPµ-pad CL Device (µM) | Prediction Using SVM (µM) | Absolute Error Value |
---|---|---|---|---|---|
Glucose | 150 | 151.34 | 148.85 | 149.059 | 0.941 |
250 | 252.541 | 255.64 | 253.265 | 3.265 | |
450 | 456.321 | 444.026 | 445.621 | 4.379 | |
650 | 653.253 | 652.121 | 652.321 | 2.321 | |
850 | 853.984 | 843.789 | 845.967 | 4.033 | |
Average Mean Absolute Error Value | 2.9878 |
Sr. No. | Sensing System/Materials Used | Application of Sensor | Linear Range | LOD | AI Algorithm Used | References |
---|---|---|---|---|---|---|
1. | HCC/HLG film | Glucose | 0.01–50 nM and 50 nM–2.0 μM | 9.0 pM | No | [64] |
2. | Microplates | Glucose | 0.1–2.5 mmol L−1 | 120 µmol L−1 | No | [65] |
3. | CCGTSs | Glucose | 0.1–100 mM | 0.0948 mM | No | [38] |
4. | LFIA | cortisol | 0.3–60 ng/mL | 0.3 ng/mL | No | [66] |
5. | Cu-MOXs | Dopamine | 40–200 nM | 10 nM | No | [67] |
6. | MOFs | Glucose | 0.2–100 mmol L−1 | 0.011 mM L−1 | No | [68] |
7. | Flow injection system | cholesterol | 0.05–10 mM | 1.5 μM | No | [69] |
8. | HRP/COD/luminol/Alg | cholesterol | 0.01–0.35 mM | 7.2 µM | No | [70] |
9. | Spectrometer | Cortisol | 0.42 to 72.27 ng/mL | 0.12 ng/mL | No | [71] |
10. | WPµ-pad | Glucose | 10–1000 µM | 8.68 µM | Yes | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singhal, C.M.; Kaushik, V.; Awasthi, A.; Zalke, J.B.; Palekar, S.; Rewatkar, P.; Srivastava, S.K.; Kulkarni, M.B.; Bhaiyya, M.L. Deep Learning-Enhanced Portable Chemiluminescence Biosensor: 3D-Printed, Smartphone-Integrated Platform for Glucose Detection. Bioengineering 2025, 12, 119. https://doi.org/10.3390/bioengineering12020119
Singhal CM, Kaushik V, Awasthi A, Zalke JB, Palekar S, Rewatkar P, Srivastava SK, Kulkarni MB, Bhaiyya ML. Deep Learning-Enhanced Portable Chemiluminescence Biosensor: 3D-Printed, Smartphone-Integrated Platform for Glucose Detection. Bioengineering. 2025; 12(2):119. https://doi.org/10.3390/bioengineering12020119
Chicago/Turabian StyleSinghal, Chirag M., Vani Kaushik, Abhijeet Awasthi, Jitendra B. Zalke, Sangeeta Palekar, Prakash Rewatkar, Sanjeet Kumar Srivastava, Madhusudan B. Kulkarni, and Manish L. Bhaiyya. 2025. "Deep Learning-Enhanced Portable Chemiluminescence Biosensor: 3D-Printed, Smartphone-Integrated Platform for Glucose Detection" Bioengineering 12, no. 2: 119. https://doi.org/10.3390/bioengineering12020119
APA StyleSinghal, C. M., Kaushik, V., Awasthi, A., Zalke, J. B., Palekar, S., Rewatkar, P., Srivastava, S. K., Kulkarni, M. B., & Bhaiyya, M. L. (2025). Deep Learning-Enhanced Portable Chemiluminescence Biosensor: 3D-Printed, Smartphone-Integrated Platform for Glucose Detection. Bioengineering, 12(2), 119. https://doi.org/10.3390/bioengineering12020119