Smart e-Textile Singlet Prototype and Concept: Multi Sensor Sensing for Geriatric Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Posture-Adaptive Core Temperature Estimation
2.2. ECG Sensors
- Two electrodes are placed on the left and right forearms (limb leads).
- Two electrodes are placed on the left and right lower torso, roughly at the anterior superior iliac spine.
- V1: Fourth intercostal space, right of the sternum.
- V2: Fourth intercostal space, left of the sternum.
- V3: Midway between V2 and V4.
- V4: Fifth intercostal space at the midclavicular line.
- V5: Same horizontal level as V4, at the anterior axillary line.
- V6: Same horizontal level as V4, at the midaxillary line.
2.3. Blood Pressure
2.4. Blood Oxygen Saturation
2.5. IMU Sensor
2.6. Stretch Sensor for Respiratory Monitoring
2.7. Power Supply
3. Ethical Approval
4. Results
4.1. Questionnaire
4.2. Temperature Signal
4.3. Inertial Measurement Unit (IMU) Data
5. Discussion
5.1. Technical Feasibility
5.2. Clinical Relevance
5.3. Limitations
5.4. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kruse, C.S.; Molina-Nava, A.; Kapoor, Y.; Anerobi, C.; Maddukuri, H. Analyzing the Effect of Telemedicine on Domains of Quality through Facilitators and Barriers to Adoption: Systematic Review. J. Med. Internet Res. 2023, 25, e43601. [Google Scholar] [CrossRef]
- Peek, S.T.; Wouters, E.J.; Van Hoof, J.; Luijkx, K.G.; Boeije, H.R.; Vrijhoef, H.J. Factors Influencing Acceptance of Technology for Aging in Place: A Systematic Review. Int. J. Med. Inform. 2014, 83, 235–248. [Google Scholar] [CrossRef]
- Lim, W.M.; Bowman, C. Aging in a Place of Choice. Act. Adapt. Aging 2022, 46, 183–189. [Google Scholar] [CrossRef]
- Chodzko-Zajko, W.J. Exercise and Physical Activity for Older Adults. Kinesiol. Rev. 2014, 3, 101–106. [Google Scholar] [CrossRef]
- Di Rienzo, M.; Racca, V.; Rizzo, F.; Bordoni, B.; Parati, G.; Castiglioni, P.; Ferratini, M. Evaluation of a Textile-Based Wearable System for the Electrocardiogram Monitoring in Cardiac Patients. Europace 2013, 15, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Meena, J.S.; Choi, S.B.; Jung, S.B.; Kim, J.W. Electronic Textiles: New Age of Wearable Technology for Healthcare and Fitness Solutions. Mater. Today Bio 2023, 19, 100565. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Jiang, N.; Yetisen, A.K. Wearable artificial intelligence biosensor networks. Biosens. Bioelectron. 2023, 219, 114825. [Google Scholar] [CrossRef]
- Chen, C.; Fu, Y.; Liu, Y.; Dutta, P.; Lin, Y.; Du, D.; Qiu, K. Next-generation health monitoring: The role of nanomaterials in 3D-printed wearable devices. Mater. Today 2025, 86, 317–339. [Google Scholar] [CrossRef]
- Zhou, X.; Li, D.; He, S.; Xiao, M.; Sui, Z.; Zha, F.; Sun, L.; Lee, C.; Liu, H. MEMS: The Sensory Nervous System for Embodied AI Robots. SmartBot 2025, 1, e70004. [Google Scholar] [CrossRef]
- Köpke, S.; Meyer, G. Der Tinetti-Test–Babylon im Geriatrischen Assessment: Babylon in Geriatric Assessment. Z. Gerontol. Geriatr. 2006, 39, 288–291. [Google Scholar] [CrossRef]
- Pandiyan, A.; Veeramuthu, L.; Yan, Z.L.; Lin, Y.C.; Tsai, C.H.; Chang, S.T.; Chiang, W.-H.; Xu, S.; Zhou, T.; Kuo, C.-C. A Comprehensive Review on Perovskite and Its Functional Composites in Smart Textiles. Prog. Mater. Sci. 2023, 140, 101206. [Google Scholar] [CrossRef]
- Steinmetzer, T.; Michel, S. Towards Wearable Respiration Monitoring: 1D-CRNN-Based Breathing Detection in Smart Textiles. Sensors 2025, 25, 6832. [Google Scholar] [CrossRef]
- Taylor, N.A.; Tipton, M.J.; Kenny, G.P. Considerations for the Measurement of Core, Skin and Mean Body Temperatures. J. Therm. Biol. 2014, 46, 72–101. [Google Scholar] [CrossRef]
- Nathansen, A.B.; Mølgaard, J.; Meyhoff, C.S.; Aasvang, E.K. Comparison of Wireless Continuous Axillary and Core Temperature Measurement after Major Surgery. Sensors 2024, 24, 4469. [Google Scholar] [CrossRef]
- Niven, D.J.; Gaudet, J.E.; Laupl, K.B.; Mrklas, K.J.; Roberts, D.J.; Stelfox, H.T. Accuracy of Peripheral Thermometers for Estimating Temperature: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2015, 163, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Tada, S.; Nishida, Y. Improvement of Environmental Robustness in Non-Invasive Core Body Temperature Sensor Studied Numerically and Experimentally. Sens. Actuators A Phys. 2024, 368, 115136. [Google Scholar] [CrossRef]
- Zougali, A.; Thamsuwan, O. Posture Estimation in Agriculture: Employing Inertial Measurement Units and Unscented Kalman Filtering for Trunk, Shoulder, and Elbow Analysis. IEEE Access 2024, 12, 97332–97345. [Google Scholar] [CrossRef]
- Texas Instruments. ADS1298: Low-Power, 8-Channel, 24-Bit Analog Front-End for Biopotential Measurements. 2010. Available online: https://www.ti.com/product/ADS1298 (accessed on 13 September 2025).
- Vysotskaya, N.; Will, C.; Servadei, L.; Maul, N.; Mandl, C.; Nau, M.; Harnisch, J.; Maier, A. Continuous Non-Invasive Blood Pressure Measurement Using 60 GHz-Radar—A Feasibility Study. Sensors 2023, 23, 4111. [Google Scholar] [CrossRef]
- Zhao, H.; Gu, X.; Hong, H.; Li, Y.; Zhu, X.; Li, C. Non-Contact Beat-to-Beat Blood Pressure Measurement Using Continuous Wave Doppler Radar. In Proceedings of the IEEE/MTT-S International Microwave Symposium (IMS), Philadelphia, PA, USA, 10–15 June 2018; pp. 1413–1415. [Google Scholar] [CrossRef]
- Infineon Technologies AG. BGT60ATR24C E6327 Datasheet; V1.6; Infineon Technologies AG: Munich, Germany, 2017. [Google Scholar]
- Davies, H.J.; Williams, I.; Peters, N.S.; Mandic, D.P. In-ear spo2: A tool for wearable, unobtrusive monitoring of core blood oxygen saturation. Sensors 2020, 20, 4879. [Google Scholar] [CrossRef] [PubMed]
- Vavrinsky, E.; Esfahani, N.E.; Hausner, M.; Kuzma, A.; Rezo, V.; Donoval, M.; Kosnacova, H. The Current State of Optical Sensors in Medical Wearables. Biosensors 2022, 12, 217. [Google Scholar] [CrossRef]
- Steinmetzer, T.; Maasch, M.; Bönninger, I.; Travieso, C.M. Analysis and Classification of Motor Dysfunctions in Arm Swing in Parkinson’s Disease. Electronics 2019, 8, 1471. [Google Scholar] [CrossRef]
- Cesareo, A.; Previtali, Y.; Biffi, E.; Aliverti, A. Assessment of Breathing Parameters Using an Inertial Measurement Unit (IMU)-Based System. Sensors 2018, 19, 88. [Google Scholar] [CrossRef]
- Windolf, M.; Götzen, N.; Morlock, M. Systematic Accuracy and Precision Analysis of Video Motion Capturing Systems—Exemplified on the Vicon-460 System. J. Biomech. 2008, 41, 2776–2780. [Google Scholar] [CrossRef] [PubMed]
- Guyton, A.C.; Hall, J.E. Guyton and Hall Textbook of Medical Physiology; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Cheng, T.; Shao, J.; Wang, Z.L. Triboelectric Nanogenerators. Nat. Rev. Methods Prim. 2023, 3, 39. [Google Scholar] [CrossRef]
- Azeem, M.; Shahid, M.; Masin, I.; Petru, M. Design and Development of Textile-Based Wearable Sensors for Real-Time Biomedical Monitoring: A Review. J. Text. Inst. 2025, 116, 80–95. [Google Scholar] [CrossRef]
- Jiang, R.; Ge, Y.; Deng, Y.M. Textile Electrode, Monitoring Performance, and Durability for ECG Monitoring Garment: A Review. AATCC J. Res. 2025, 12, 24723444251326674. [Google Scholar] [CrossRef]
- Liu, X.; Miao, J.; Fan, Q.; Zhang, W.; Zuo, X.; Tian, M.; Qu, L. Recent Progress on Smart Fiber and Textile-Based Wearable Strain Sensors: Materials, Fabrications and Applications. Adv. Fiber Mater. 2022, 4, 361–389. [Google Scholar] [CrossRef]
- Anikwe, C.V.; Nweke, H.F.; Ikegwu, A.C.; Egwuonwu, C.A.; Onu, F.U.; Alo, U.R.; Teh, Y.W. Mobile and Wearable Sensors for Data-Driven Health Monitoring System: State-of-the-Art and Future Prospect. Expert Syst. Appl. 2022, 202, 117362. [Google Scholar] [CrossRef]
- Ettaloui, N.; Arezki, S.; Gadi, T. An Overview of Blockchain-Based Electronic Health Record and Compliance with GDPR and HIPAA. In Artificial Intelligence, Data Science and Applications, Proceedings of the ICAISE’2023, Xi’an, China, 21–23 April 2023; Springer Nature: Cham, Switzerland, 2024; pp. 405–412. [Google Scholar] [CrossRef]
- Mattison, G.; Canfell, O.; Forrester, D.; Dobbins, C.; Smith, D.; Töyräs, J.; Sullivan, C. The Influence of Wearables on Health Care Outcomes in Chronic Disease: Systematic Review. J. Med. Internet Res. 2022, 24, e36690. [Google Scholar] [CrossRef]
- Ghosal, R.; Varma, V.R.; Volfson, D.; Urbanek, J.; Hausdorff, J.M.; Watts, A.; Zipunnikov, V. Scalar on Time-by-Distribution Regression and Its Application for Modelling Associations between Daily-Living Physical Activity and Cognitive Functions in Alzheimer’s Disease. Sci. Rep. 2022, 12, 11558. [Google Scholar] [CrossRef]
- World Health Organization. Falls; WHO: Geneva, Switzerland, 2018; Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 13 September 2025).
- Usmani, S.; Saboor, A.; Haris, M.; Khan, M.A.; Park, H. Latest Research Trends in Fall Detection and Prevention Using Machine Learning: A Systematic Review. Sensors 2021, 21, 5134. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Lin, Y.; Jing, W.; Ma, Z.; Liu, H.; Yin, R.; Zhang, W. Development of a Real-Time Wearable Fall Detection System in the Context of Internet of Things. IEEE Internet Things J. 2022, 9, 21999–22007. [Google Scholar] [CrossRef]
- Favata, A.; Gallart-Agut, R.; Pàmies-Vilà, R.; Torras, C.; Font-Llagunes, J.M. IMU-Based Systems for Upper Limb Kinematic Analysis in Clinical Applications: A Systematic Review. IEEE Sens. J. 2024, 24, 28576–28594. [Google Scholar] [CrossRef]




| Sensor | Measured Quantities | Physical Range/Limits | Frequency |
|---|---|---|---|
| ECG (ADS1298) | 24-bit data for 8 channels in voltage | Sample rate up to 32 kSPS | 250 Hz |
| Temperature (SHT21/HTU21) | Temperature, relative humidity | −40 °C to +125 °C, 0% to 100% RH (non-condensing) | 6 Hz |
| Blood Oxygen (MAX30102) | Red and infrared light absorption, measured and converted via algorithm into pulse rate and oxygen saturation (SpO2). Sampling rate is 100 Hz. SPO2 values are averaged over 20 raw samples. | SpO2: 70–100% (below 70% unreliable/invalid), Heart rate: approximate 30–240 BPM | 6 Hz |
| GPS (NEO-6MV2) | Longitude and latitude for position tracking | Horizontal accuracy 2.5–5 m, vertical accuracy usually 5–10 m | 6 Hz |
| IMU (BNO08x) | i, j, k (quaternion vector components), real (scalar part), accuracy (uncertainty in radians), ax, ay, az (linear acceleration without gravity, in m/s2) | Acceleration: ±16 g, Gyroscope: ±2000°/s; | Rotation Vector 250 Hz, Linear Acceleration 250 Hz |
| Stretch Sensor (DMS) | Resistance change measured via voltage divider (330 Ω) | voltage to 1000 Values | 250 Hz |
| Question | Mean ± Standard Deviation |
|---|---|
| Independent decision on data | 5.06 ± 3.96 |
| Feeling of being observed / behavioral change * | 3.50 ± 2.31 |
| Number of sensors perceived as disturbing * | 2.89 ± 2.22 |
| Perception of compression * | 2.17 ± 0.51 |
| Discomfort or irritation * | 3.44 ± 2.20 |
| Material pleasantness | 7.94 ± 1.51 |
| Ease of putting on the undershirt | 6.33 ± 2.00 |
| Ability to perform usual movements | 7.78 ± 2.05 |
| Constant awareness of the undershirt * | 3.33 ± 2.54 |
| Feeling cold or sweating | 6.22 ± 2.58 |
| Breathability of the undershirt | 4.82 ± 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinmetzer, T.; Wieczorek, F.; Naake, A.; Wolf, P.; Braun, A.; Michel, S. Smart e-Textile Singlet Prototype and Concept: Multi Sensor Sensing for Geriatric Monitoring. Bioengineering 2025, 12, 1275. https://doi.org/10.3390/bioengineering12111275
Steinmetzer T, Wieczorek F, Naake A, Wolf P, Braun A, Michel S. Smart e-Textile Singlet Prototype and Concept: Multi Sensor Sensing for Geriatric Monitoring. Bioengineering. 2025; 12(11):1275. https://doi.org/10.3390/bioengineering12111275
Chicago/Turabian StyleSteinmetzer, Tobias, Florian Wieczorek, Anselm Naake, Peter Wolf, Alexander Braun, and Sven Michel. 2025. "Smart e-Textile Singlet Prototype and Concept: Multi Sensor Sensing for Geriatric Monitoring" Bioengineering 12, no. 11: 1275. https://doi.org/10.3390/bioengineering12111275
APA StyleSteinmetzer, T., Wieczorek, F., Naake, A., Wolf, P., Braun, A., & Michel, S. (2025). Smart e-Textile Singlet Prototype and Concept: Multi Sensor Sensing for Geriatric Monitoring. Bioengineering, 12(11), 1275. https://doi.org/10.3390/bioengineering12111275

